期权定价二叉树模型
- 格式:ppt
- 大小:807.50 KB
- 文档页数:39
2015年注册会计师资格考试内部资料财务成本管理第九章 期权估价知识点:二叉树期权定价模型● 详细描述:一、单期二叉树模型 关于单期二叉树模型,其计算结果与前面介绍的复制组合原理和风险中性原理是一样的。
以风险中性原理为例: 根据前面推导的结果: 代入(1)式有:二、两期二叉树模型 如果把单期二叉树模型的到期时间分割成两部分,就形成了两期二叉树模型。
由单期模型向两期模型的扩展,不过是单期模型的两次应用。
三、多期二叉树模型原理从原理上看,与两期模型一样,从后向前逐级推进乘数确定期数增加以后带来的主要问题是股价上升与下降的百分比如何确定问题。
期数增加以后,要调整价格变化的升降幅度,以保证年收益率的标准差不变。
把年收益率标准差和升降百分比联系起来的公式是:u=1+上升百分比= d=1-下降百分比= 其中:e=自然常数,约等于2.7183 σ=标的资产连续复利收益率的标准差t=以年表示的时间长度(每期时间长度用年表示)做题程序: (1)根据标准差和每期时间间隔确定每期股价变动乘数(应用上述的两个公式) (2)建立股票价格二叉树模型 (3)根据股票价格二叉树和执行价格,构建期权价值的二叉树。
构建顺序由后向前,逐级推进。
——复制组合定价或者风险中性定价。
(4)确定期权的现值例题:1.如果股票目前市价为50元,半年后的股价为51元,假设没有股利分红,则连续复利年股票投资收益率等于()。
A.4%B.3.96%C.7.92%D.4.12%正确答案:B解析:r=ln(51/50)/0.5=3.96%。
期权定价公式的二叉树推导与分析期权作为金融衍生品的重要组成部分,对于投资者和风险管理师来说具有重要意义。
期权的价值取决于多种因素,包括标的资产的价格、行权价格、剩余到期时间、无风险利率、波动率等。
期权的定价是金融领域的一个重要问题,准确的期权定价可以帮助投资者更好地进行投资决策和风险管理。
本文将介绍期权的定价公式,并通过二叉树的方法推导期权的价格,最后对各种情况下期权定价的计算方法与特点进行分析。
期权的定价公式是由费雪·布莱克、迈伦·斯科尔斯和罗伯特·默顿提出的布莱克-斯科尔斯模型。
该模型基于一些假设,例如无摩擦市场、无套利机会等,通过 Black-Scholes方程求解期权的定价。
具体公式如下:C = SₐN(d1) - XₐN(d2)其中, C为期权的公允价值; Sₐ为标的资产当前的价格; Xₐ为期权的行权价格; N(d1)和 N(d2)分别为正态分布变量的累积分布函数;d1和 d2分别为: d1 = (ln(Sₐ/Xₐ) + (r + σ²/2)T) / (σ√T) d2 = d1 - σ√T T为期权的剩余到期时间,以年为单位; r为无风险利率;σ为标的资产的年波动率。
二叉树方法是一种常用的期权定价模型,它可以用来推导期权的预期价格。
二叉树方法的思路是将期权的到期时间划分为若干个时间段,并假设标的资产在每个时间段内只有两种可能的价格,即上涨或下跌。
基于这个假设,我们可以构建一个二叉树来描述标的资产的价格变动情况。
假设初始时刻为 t0,标的资产的价格为 S0,行权价格为 X。
在每个时间段Δt内,标的资产的价格有两种可能的变化:上涨到 Su = S0 × u,或者下跌到 Sd = S0 × d,其中 u > 1,d < 1,u和 d分别为标的资产的上涨和下跌因子。
假设该期权的剩余到期时间为 T,共分为 n个时间段。
那么在 t0时,该期权的预期价格为:C0 = ∑CN(d1, d2, u, d) × (u × S0 - X)^+ ×Δt其中, N(d1, d2, u, d)为风险中性概率; (u × S0 - X)^+表示当标的资产价格上涨时,取 u × S0 - X,否则取 0;Δt为每个时间段的时间长度。
二叉树期权定价模型
二叉树期权定价模型是指基于二叉树构建的期权定价模型,该模型结合了终值定理(Binomial Option Pricing Model;BOPM)和二叉树的理论。
该模型的精确性比一般的期权定价模型(即欧式期权定价模型)要高,为投资者提供了更多的信息和选择。
二叉树期权定价模型以股票价格移动变量来构建定价模型,而欧式期权定价模型只考虑股票价格固定。
该模型使用二叉树,其中每个分支都对应一定的定价模型,以确定期权价格。
该方法有三个基本步骤:1)构建二叉树;2)确定期权执行价值;3)通过使用backward卷积,利用当前价格和当前的期权价值,来决定每个分支的期权价格。
二叉树期权定价模型具有不同的算法变种,它们能够捕获市场(股价)的单向和双向变化,以及波动性。
它比欧式期权模型更精确,也更灵活,可以捕获一系列特殊事件,比如空头期权,复合期权,多元期权,多档次期权。
此外,二叉树期权定价模型还能够用来估算期权的损失或收益,并对复杂的期权进行定价。
总的来说,二叉树期权定价模型是一种简单的,有效的,能够捕获市场变化的定价模型,为投资者提供了更多的信息和选择。
该模型比较早出现于二十世纪九十年代,自此后逐渐普及,并得到广泛应用。
期权二叉树定价模型期权二叉树定价模型是一种常用的金融衍生品定价模型,用于计算期权合约的公平价格。
该模型基于二叉树的数据结构,将时间分为离散的步长,在每个步长上模拟期权的价格变化。
在期权二叉树定价模型中,二叉树的每个节点表示期权的一个可能价格,树的每一层表示时间的一个步长。
从根节点开始,根据期权的流动性和到期前可执行的次数,构建二叉树模型。
在每个节点上,计算期权的价值,以确定其合理价格。
在构建二叉树模型时,需要考虑期权的标的价格、波动率、到期时间和无风险利率等因素。
这些因素将被用来计算每个节点上的期权价格。
在每个步长上,通过向上或向下移动树的节点,模拟标的价格的波动,从而更新节点上的期权价格。
在二叉树的叶子节点上,期权的价值是已知的,可以直接计算。
在其他节点上,通过对未来价格的概率分布进行加权,计算期权的合理价格。
树的最后一层即为到期时间,即期权到期时的状态。
根据到期状态计算出期权的现值,并通过向根节点回溯,确定期权的公平价格。
期权二叉树定价模型的优点在于能够在离散时间步长上快速确定期权的价格,并且可以灵活地应用于不同类型的期权合约。
此外,该模型对于包含多个期权合约的复杂结构,如欧洲期权、美式期权和亚洲期权等,也具有较高的适用性。
然而,期权二叉树定价模型也存在一些局限性。
首先,该模型假设标的价格的波动服从几何布朗运动,这在实际市场中并不成立,因此模型的有效性有一定的限制。
其次,通过选择适当的步长数和树的深度来平衡精确度和计算效率是一个挑战。
总的来说,期权二叉树定价模型是一个常用且有效的金融工具,可以用于估计期权合约的公平价格。
该模型基于二叉树的数据结构,通过离散时间步长模拟期权的价格变化,并通过回溯计算确定期权的公平价格。
虽然该模型存在一定的局限性,但在实际应用中仍被广泛应用。
期权二叉树定价模型是一种基于离散时间步长和二叉树结构的金融衍生品定价模型。
它是Black-Scholes模型的一种改进方法,通过模拟期权价格的变化来计算期权的公平价格。
期权定价的二叉树模型Cox、Ross和Rubinstein提出了期权定价的另一种常用方法二叉树(binomial tree)模型,它假设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。
本章只讨论股票期权定价的二叉树模型,基于其它标的资产如债券、货币、股票指数和期货的期权定价的二叉树方法,请参考有关的书籍和资料。
8.1 一步二叉树模型我们首先通过一个简单的例子介绍二叉树模型。
例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。
在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。
由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。
这是最简单的二叉树模型。
一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。
经过一个时间步(至到期日T)后该股票价格有可能上升到相应的期权价格为;也有可能下降到相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。
我们的问题是根据这个二叉树对该欧式股票期权定价。
为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。
构造一个该股票和期权的组合(portfolio),组合中有股的多头股票和1股空头期权。
如果该股票价格上升到,则该组合在期权到期日的价值为;如果该股票价格下降到,则该组合在期权到期日的价值为。
根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有由此可得(8.1)上式意味着是两个节点之间的期权价格增量与股价增量之比率。
在这种情况下,该组合是无风险的。
以表示无风险利率,则该组合的现值(the present value)为,又注意到该组合的当前价值是,故有即将(8.1)代入上式,可得基于一步二叉树模型的期权定价公式为(8.2)(8.3)需要指出的是,由于我们是在无套利(no arbitrage)假设下讨论欧式股票期权的定价,因此无风险利率应该满足: .现在回到前面的例子中,假设相应的期权是一个敲定价为$21,到期日为三个月的欧式看涨权,无风险的年利率为12%,求该期权的当前价值。
期权定价的二叉树模型期权定价是金融领域中的重要问题之一,而二叉树模型是一种经典的期权定价工具。
二叉树模型的主要思想是将期权到期日之间的时间划分为多个等长的时间段,并根据每个时间段内的股价变动情况来计算期权的价值。
下面将介绍二叉树模型的构建过程以及期权定价的基本原理。
首先,我们需要确定二叉树模型的参数。
主要包括股票价格的初始值、期权到期日、无风险利率、每个时间段的长度等。
其中,股票价格的初始值可以通过市场价格获取,期权到期日通常由合约确定,无风险利率可以参考国债收益率,而每个时间段的长度可以根据需要自行设置。
接下来,根据二叉树模型的思想,我们构建一个二叉树。
树的每个节点表示一个时间段,而每个节点下方的两个子节点分别表示股票价格在该时间段内上涨和下跌的情况。
具体构建二叉树的方式有很多种,常见的有Cox-Ross-Rubinstein模型和Jarrow-Rudd模型。
其中,Cox-Ross-Rubinstein模型是一种离散时间模型,每个时间段内股价上涨或下跌的幅度是固定的;而Jarrow-Rudd模型是一种连续时间模型,股价的变动是连续的。
在构建好二叉树之后,我们需要从期权到期日开始反向计算每个节点的期权价值。
通过回溯法,我们可以计算出每个节点的期权价值。
具体计算的方式是,对于期权到期日的节点,其价值等于股价与行权价格的差值(对于欧式期权而言)或者最大值(对于美式期权而言)。
而对于其他节点,其价值等于期权在上涨和下跌情况下的期望值,即其左右子节点的价值经过贴现后得到的值。
通过不断回溯,最终我们可以得到二叉树的根节点即为期权的实际价值。
需要注意的是,期权定价的准确性与二叉树模型的参数设定和树的构建方法有关。
参数的选择需基于市场数据和合理的假设,而构建二叉树的方法应能很好地反映实际股价的变动规律。
此外,二叉树模型也有一定的局限性,特别是在处理股价波动较为剧烈的情况下,可能无法准确地定价。
总之,二叉树模型是一种常用的期权定价工具,可以通过构建二叉树和回溯计算的方式来估计期权的价值。
(二)二叉树期权定价模型1.单期二叉树定价模型期权价格=×+×U:上行乘数=1+上升百分比d:下行乘数=1-下降百分比【理解】风险中性原理的应用其中:上行概率=(1+r-d)/(u-d)下行概率=(u-1-r)/(u-d)期权价格=上行概率×C u/(1+r)+下行概率×C d/(1+r)【教材例7-10】假设ABC公司的股票现在的市价为50元。
有1股以该股票为标的资产的看涨期权,执行价格为52.08元,到期时间是6个月。
6个月以后股价有两种可能:上升33.33%,或者降低25%。
无风险利率为每年4%。
【答案】U=1+33.33%=1.3333d=1-25%=0.75=6.62(元)【例题•计算题】假设甲公司的股票现在的市价为20元。
有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。
1年以后股价有两种可能:上升40%,或者降低30%。
无风险利率为每年4%。
要求:利用单期二叉树定价模型确定期权的价值。
【答案】期权价格=(1+r-d)/(u-d)×C u/(1+r)=(1+4%-0.7)/(1.4-0.7)×7/(1+4%)=3.27(元)2.两期二叉树模型(1)基本原理:由单期模型向两期模型的扩展,不过是单期模型的两次应用。
【教材例7-11】继续采用[例7-10]中的数据,把6个月的时间分为两期,每期3个月。
变动以后的数据如下:ABC公司的股票现在的市价为50元,看涨期权的执行价格为52.08元,每期股价有两种可能:上升22.56%或下降18.4%;无风险利率为每3个月1%。
【解析】P=(1+1%-0.816)/(1.2256-0.816)=0.47363C U=23.02×0.47363/(1+1%)=10.80C d=0C0=10.80×0.47363/(1+1%)=5.06(2)方法:先利用单期定价模型,根据C uu和C ud计算节点C u的价值,利用C ud和C dd计算C d的价值;然后,再次利用单期定价模型,根据C u和C d计算C0的价值。
期权定价-二叉树模型期权定价是金融市场中的重要内容,它是根据期权的特点和市场条件来确定期权价格的过程。
二叉树模型是一种常用的期权定价方法之一,其基本思想是将时间离散化,并通过构建一个二叉树来模拟标的资产价格的变动。
在二叉树模型中,每个节点代表了一个特定的时刻,而每个节点之间的关系是通过上涨和下跌两种情况进行连接的。
通过调整上涨和下跌的幅度,可以模拟出不同标的资产的价格变动情况。
期权的定价在二叉树模型中可以通过回溯法进行计算。
首先,在最后一个节点上,根据期权的特点以及市场条件来确定期权的价值。
然后,逐步向前回溯,通过考虑不同的路径来计算每个节点上的期权价值。
在回溯过程中,需要考虑每个节点的两个子节点的权重,即上涨和下跌的概率。
这可以根据市场条件来确定,通常是基于历史数据进行估计。
然后,在回溯过程中,可以根据节点上的期权价值和子节点的权重来计算每个节点的期权价格。
通过不断回溯,最终可以得到期权的初始价值,即在当前市场条件下,期权价格应该是多少。
这个初始价值可以用作参考,帮助投资者做出合理的投资决策。
需要注意的是,二叉树模型是一个简化的模型,它有一些假设和限制。
首先,它假设标的资产的价格只有上涨和下跌两种情况,而忽略了其他可能的情况。
其次,它假设市场条件在整个期权有效期内保持不变,而实际情况可能是变化的。
因此,在使用二叉树模型进行期权定价时,需要注意这些假设和限制。
总而言之,期权定价是金融市场中的重要内容,二叉树模型是一种常用的定价方法。
通过构建二叉树模型,并根据回溯法计算每个节点上的期权价值,可以得到期权的初始价格。
然而,需要注意二叉树模型的假设和限制,并结合实际情况进行综合分析和判断。
期权定价是金融市场中的重要内容,其旨在确定期权的合理价格。
期权是一种金融工具,赋予购买者在期权到期时以约定价格购买或出售标的资产的权利。
很多投资者都希望能够在市场上买入或者卖出期权,以便于在未来某个时刻获得利润。
因此,了解期权的合理价格对投资者来说至关重要。