金融工程第11章二叉树模型介绍
- 格式:ppt
- 大小:3.74 MB
- 文档页数:44
二叉树定价模型期权定价的二叉树模型Cox、Ross和Rubinstein提出了期权定价的另一种常用方法二叉树(binomial tree)模型,它假设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。
本章只讨论股票期权定价的二叉树模型,基于其它标的资产如债券、货币、股票指数和期货的期权定价的二叉树方法,请参考有关的书籍和资料。
8.1一步二叉树模型我们首先通过一个简单的例子介绍二叉树模型。
例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。
在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。
由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。
这是最简单的二叉树模型。
一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。
经过一个时间步(至到期日T)后该股票价格有可能上升到相应的期权价格为;也有可能下降到相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。
我们的问题是根据这个二叉树对该欧式股票期权定价。
为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。
构造一个该股票和期权的组合(portfolio),组合中有股的多头股票和1股空头期权。
如果该股票价格上升到,则该组合在期权到期日的价值为;如果该股票价格下降到,则该组合在期权到期日的价值为。
根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有由此可得(8.1)上式意味着是两个节点之间的期权价格增量与股价增量之比率。
在这种情况下,该组合是无风险的。
以表示无风险利率,则该组合的现值(the present value)为 ,又注意到该组合的当前价值是,故有即将(8.1)代入上式,可得基于一步二叉树模型的期权定价公式为(8.2)(8.3)需要指出的是,由于我们是在无套利(no arbitrage)假设下讨论欧式股票期权的定价,因此无风险利率应该满足: .现在回到前面的例子中,假设相应的期权是一个敲定价为$21,到期日为三个月的欧式看涨权,无风险的年利率为12%,求该期权的当前价值。
二叉树定价模型期权定价的二叉树模型Cox、Ross和Rubinstein提出了期权定价的另一种常用方法二叉树(binomial tree)模型,它假设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。
本章只讨论股票期权定价的二叉树模型,基于其它标的资产如债券、货币、股票指数和期货的期权定价的二叉树方法,请参考有关的书籍和资料。
8.1一步二叉树模型我们首先通过一个简单的例子介绍二叉树模型。
例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。
在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。
由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。
这是最简单的二叉树模型。
一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。
经过一个时间步(至到期日T)后该股票价格有可能上升到相应的期权价格为;也有可能下降到相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。
我们的问题是根据这个二叉树对该欧式股票期权定价。
为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。
构造一个该股票和期权的组合(portfolio),组合中有股的多头股票和1股空头期权。
如果该股票价格上升到,则该组合在期权到期日的价值为;如果该股票价格下降到,则该组合在期权到期日的价值为。
根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有由此可得(8.1)上式意味着是两个节点之间的期权价格增量与股价增量之比率。
在这种情况下,该组合是无风险的。
以表示无风险利率,则该组合的现值(the present value)为 ,又注意到该组合的当前价值是,故有即将(8.1)代入上式,可得基于一步二叉树模型的期权定价公式为(8.2)(8.3)需要指出的是,由于我们是在无套利(no arbitrage)假设下讨论欧式股票期权的定价,因此无风险利率应该满足: .现在回到前面的例子中,假设相应的期权是一个敲定价为$21,到期日为三个月的欧式看涨权,无风险的年利率为12%,求该期权的当前价值。
金融工程二叉树模型概念一、引言金融工程是指将数学、统计学、计算机科学等方面的知识应用于金融领域,以解决金融市场中的问题。
而二叉树模型则是其中的一个重要工具,在金融工程领域有着广泛的应用。
本文将详细介绍金融工程中二叉树模型的概念及其应用。
二、二叉树模型概述1. 什么是二叉树?二叉树是一种数据结构,由节点和连接它们的边组成。
每个节点最多有两个子节点,一个称为左子节点,一个称为右子节点。
如果一个节点没有子节点,则称该节点为叶子节点。
2. 什么是二叉树模型?在金融工程中,我们可以利用二叉树来建立模型,以便对金融市场进行分析和预测。
这种利用二叉树建立模型的方法就被称为“二叉树模型”。
三、基本原理1. 二叉树模型的构建在构建二叉树模型时,我们需要确定以下几个参数:(1)时间步数:即我们需要将时间划分成多少个步骤;(2)上涨幅度:即在每个时间步骤中,股票价格上涨的幅度;(3)下跌幅度:即在每个时间步骤中,股票价格下跌的幅度;(4)无风险利率:即在每个时间步骤中,我们所假设的无风险利率。
2. 二叉树模型的计算在确定了以上参数后,我们可以利用二叉树模型来计算股票价格在未来某个时刻的可能取值。
具体方法如下:(1)将当前时刻的股票价格作为二叉树模型的根节点;(2)对于每个节点,分别计算其左子节点和右子节点所对应的股票价格;(3)不断重复上述步骤,直到达到所设定的时间步数为止。
四、应用案例1. 期权定价期权是一种金融衍生品,其价值取决于标的资产价格变化。
利用二叉树模型可以对期权进行定价,并且可以通过调整各种参数来预测未来期权价格。
2. 风险管理利用二叉树模型可以对投资组合进行风险管理。
我们可以通过建立多个二叉树模型来分析不同情况下投资组合可能出现的收益和风险,并且可以根据分析结果进行调整,以达到最优的风险收益比。
3. 股票价格预测利用二叉树模型可以对股票价格进行预测。
我们可以通过建立多个二叉树模型来分析不同情况下股票价格可能出现的变化,并且可以根据分析结果进行调整,以达到最优的投资策略。
金融工程二叉树模型概念一. 概述金融工程是将金融理论、数学和计算技术应用于金融市场、金融产品和金融机构的实践领域。
金融工程的一个重要模型是二叉树模型,它是一种对金融市场价格和风险进行建模和评估的数学工具。
本文将对金融工程二叉树模型的概念进行全面、详细、完整且深入地探讨。
二. 二叉树模型的原理二叉树模型是一种离散时间的、离散状态的模型,它将金融市场的演化过程划分为若干个时间步长,并假设每个时间步长内市场处于两种状态之一。
每个时间步长内,根据给定的概率,市场可能上涨或下跌。
根据这种二叉树结构,可以模拟金融产品的价格和风险变化。
1. 二叉树结构二叉树是一种树形结构,它由根节点、左子树和右子树构成。
在金融工程中,根节点表示当前时刻的市场价格,左子树和右子树分别表示市场可能上涨和下跌的价格。
每个节点都有一个概率与之关联,表示市场在下一个时间步长内上涨或下跌的概率。
2. 风险中性概率在二叉树模型中,风险中性概率是一个关键的概念。
它是指在不考虑利率的情况下,市场上涨和下跌的概率之比。
通过计算风险中性概率,可以确定期权等金融衍生品的价格。
3. 价格的演化在二叉树模型中,价格的演化是通过计算每个节点的价格得到的。
从根节点开始,根据给定的概率,计算出左子节点和右子节点的价格。
递归地进行这个过程,直到达到最后一层节点。
通过这种方式,可以得到整个期权或衍生品的价格变化路径。
三. 二叉树模型的应用二叉树模型在金融工程领域有着广泛的应用。
它可以用于定价期权、衍生品和其他金融产品,进行风险管理和投资决策。
1. 期权定价二叉树模型可以用于定价欧式期权和美式期权。
通过构建二叉树,计算每个节点的价格,可以得到期权的合理价格。
对于美式期权,可以在每个节点上比较立即行权和持有到下一个时间步长行权的收益,选择较高的收益。
2. 风险管理二叉树模型可以用于评估金融产品的风险。
通过计算每个节点的价格,可以得到金融产品价格的分布。
通过分析这个分布,可以评估产品在不同市场状态下的风险水平,为风险管理提供参考。
期权定价的二叉树模型期权定价是金融领域中的重要问题之一,而二叉树模型是一种经典的期权定价工具。
二叉树模型的主要思想是将期权到期日之间的时间划分为多个等长的时间段,并根据每个时间段内的股价变动情况来计算期权的价值。
下面将介绍二叉树模型的构建过程以及期权定价的基本原理。
首先,我们需要确定二叉树模型的参数。
主要包括股票价格的初始值、期权到期日、无风险利率、每个时间段的长度等。
其中,股票价格的初始值可以通过市场价格获取,期权到期日通常由合约确定,无风险利率可以参考国债收益率,而每个时间段的长度可以根据需要自行设置。
接下来,根据二叉树模型的思想,我们构建一个二叉树。
树的每个节点表示一个时间段,而每个节点下方的两个子节点分别表示股票价格在该时间段内上涨和下跌的情况。
具体构建二叉树的方式有很多种,常见的有Cox-Ross-Rubinstein模型和Jarrow-Rudd模型。
其中,Cox-Ross-Rubinstein模型是一种离散时间模型,每个时间段内股价上涨或下跌的幅度是固定的;而Jarrow-Rudd模型是一种连续时间模型,股价的变动是连续的。
在构建好二叉树之后,我们需要从期权到期日开始反向计算每个节点的期权价值。
通过回溯法,我们可以计算出每个节点的期权价值。
具体计算的方式是,对于期权到期日的节点,其价值等于股价与行权价格的差值(对于欧式期权而言)或者最大值(对于美式期权而言)。
而对于其他节点,其价值等于期权在上涨和下跌情况下的期望值,即其左右子节点的价值经过贴现后得到的值。
通过不断回溯,最终我们可以得到二叉树的根节点即为期权的实际价值。
需要注意的是,期权定价的准确性与二叉树模型的参数设定和树的构建方法有关。
参数的选择需基于市场数据和合理的假设,而构建二叉树的方法应能很好地反映实际股价的变动规律。
此外,二叉树模型也有一定的局限性,特别是在处理股价波动较为剧烈的情况下,可能无法准确地定价。
总之,二叉树模型是一种常用的期权定价工具,可以通过构建二叉树和回溯计算的方式来估计期权的价值。
金融工程学金融衍生工具知识点总结金融衍生工具在现代金融市场中扮演着至关重要的角色,它们为投资者和金融机构提供了多样化的风险管理和投资策略选择。
金融工程学作为一门将金融理论、数学方法和计算机技术相结合的学科,对于深入理解和运用金融衍生工具具有重要的指导意义。
接下来,让我们一同深入探讨金融工程学中金融衍生工具的相关知识点。
一、金融衍生工具的定义与分类金融衍生工具是基于基础金融资产(如股票、债券、货币、商品等)的价值而衍生出来的金融合约。
其价值取决于基础资产的价格、利率、汇率等变量的变化。
常见的金融衍生工具主要包括以下几类:1、远期合约远期合约是指交易双方约定在未来某一特定日期,按照事先确定的价格买卖一定数量的某种资产的合约。
由于远期合约是在场外交易市场(OTC)进行的非标准化合约,因此其流动性相对较差,违约风险也较高。
2、期货合约期货合约与远期合约类似,也是在未来某一特定日期按照约定价格买卖一定数量资产的合约。
但期货合约是在交易所内进行交易的标准化合约,具有较高的流动性和较低的违约风险。
期货合约实行每日结算制度,通过保证金制度来控制风险。
3、期权合约期权合约赋予持有者在未来某一特定日期或之前,以约定价格买入或卖出一定数量资产的权利,但持有者并不负有必须买卖的义务。
期权合约分为看涨期权和看跌期权。
4、互换合约互换合约是指交易双方约定在未来一定期限内,按照约定的条件相互交换一系列现金流的合约。
常见的互换合约包括利率互换和货币互换。
二、金融衍生工具的特点1、杠杆性金融衍生工具通常只需要支付少量的保证金或权利金,就可以控制较大金额的基础资产。
这种杠杆效应在放大收益的同时,也放大了风险。
2、高风险性由于金融衍生工具的价值取决于基础资产价格的波动,其价格变化往往较为剧烈,加之杠杆效应的存在,使得金融衍生工具具有较高的风险。
3、复杂性金融衍生工具的设计和交易涉及到复杂的数学模型和金融理论,对于投资者的专业知识和风险承受能力要求较高。
期权定价-二叉树模型期权定价是金融市场中的重要内容,它是根据期权的特点和市场条件来确定期权价格的过程。
二叉树模型是一种常用的期权定价方法之一,其基本思想是将时间离散化,并通过构建一个二叉树来模拟标的资产价格的变动。
在二叉树模型中,每个节点代表了一个特定的时刻,而每个节点之间的关系是通过上涨和下跌两种情况进行连接的。
通过调整上涨和下跌的幅度,可以模拟出不同标的资产的价格变动情况。
期权的定价在二叉树模型中可以通过回溯法进行计算。
首先,在最后一个节点上,根据期权的特点以及市场条件来确定期权的价值。
然后,逐步向前回溯,通过考虑不同的路径来计算每个节点上的期权价值。
在回溯过程中,需要考虑每个节点的两个子节点的权重,即上涨和下跌的概率。
这可以根据市场条件来确定,通常是基于历史数据进行估计。
然后,在回溯过程中,可以根据节点上的期权价值和子节点的权重来计算每个节点的期权价格。
通过不断回溯,最终可以得到期权的初始价值,即在当前市场条件下,期权价格应该是多少。
这个初始价值可以用作参考,帮助投资者做出合理的投资决策。
需要注意的是,二叉树模型是一个简化的模型,它有一些假设和限制。
首先,它假设标的资产的价格只有上涨和下跌两种情况,而忽略了其他可能的情况。
其次,它假设市场条件在整个期权有效期内保持不变,而实际情况可能是变化的。
因此,在使用二叉树模型进行期权定价时,需要注意这些假设和限制。
总而言之,期权定价是金融市场中的重要内容,二叉树模型是一种常用的定价方法。
通过构建二叉树模型,并根据回溯法计算每个节点上的期权价值,可以得到期权的初始价格。
然而,需要注意二叉树模型的假设和限制,并结合实际情况进行综合分析和判断。
期权定价是金融市场中的重要内容,其旨在确定期权的合理价格。
期权是一种金融工具,赋予购买者在期权到期时以约定价格购买或出售标的资产的权利。
很多投资者都希望能够在市场上买入或者卖出期权,以便于在未来某个时刻获得利润。
因此,了解期权的合理价格对投资者来说至关重要。