第四讲判别分析
- 格式:pdf
- 大小:358.46 KB
- 文档页数:25
判别分析导言判别分析是统计学中一种常用的数据分析方法,用于区分不同群体或类别之间的差异。
它通过寻找最佳的分类边界,帮助我们预测或判定未知样本的分类。
判别分析常用于模式识别、数据挖掘、生物学、医学等领域。
本文将介绍判别分析的基本概念、应用领域和算法。
一、判别分析的基本概念判别分析旨在通过构造合适的判别函数,将不同群体或类别的样本区分开来。
判别函数的建立是判别分析的核心任务,而判别函数的类型通常根据问题的特点来选择。
常见的判别函数有线性判别函数、二次判别函数、贝叶斯判别函数等。
判别分析的目标是使得样本在不同类别的判别函数值有较大差异。
二、判别分析的应用领域1. 模式识别判别分析在模式识别中的应用非常广泛。
通过判别分析,我们可以建立能够识别不同模式的模型。
例如,在人脸识别任务中,我们可以使用判别分析来建立一个分类器,能够将不同人脸的图像正确分类。
2. 数据挖掘在数据挖掘领域,判别分析可以帮助我们发现变量之间的关系,并进行预测。
通过对已有数据进行判别分析,我们可以预测未知样本的分类。
例如,在市场营销中,通过对消费者进行判别分析,我们可以预测消费者的购买行为,从而制定更精准的营销策略。
3. 生物学和医学判别分析在生物学和医学领域中也有广泛的应用。
例如,在癌症诊断中,通过对患者的临床数据进行判别分析,我们可以建立一个分类器,能够判断该患者是否患有癌症。
三、判别分析的算法判别分析的算法根据问题的特点和要求选择。
下面介绍两种常见的判别分析算法:1. 线性判别分析(LDA)线性判别分析是一种常见且简单的判别分析算法。
它的核心思想是通过将高维数据映射到低维空间中,使得不同类别的样本在投影空间中有较大的差异。
在LDA算法中,我们需要计算类内散度矩阵和类间散度矩阵,并求解其特征值和特征向量,从而确定投影向量。
2. 二次判别分析(QDA)二次判别分析是一种更为复杂的判别分析算法。
它假设不同类别的样本的协方差矩阵不相等,即每个类别内部的变化程度不同。
判别分析1.判别分析的适用条件(1)自变量和因变量间的关系符合线性假设。
(2)因变量的取值是独立的,且必须是事先就己经确定。
(3)自变量服从多元正态分布。
(4)所有自变量在各组间方差齐,协方差矩阵也相等。
(5)自变量间不存在多重共线性。
2.违背条件时的处理方法(1)当样本的多元正态分布假设不能满足的时候采取的措施和方法如下:<>如果数据的超平面是若干分段结构的话,采用分段判别分析。
<>如果数据满足方差和协方差的齐次性可以采用距离判别分析、经典判别分析、贝叶斯判别分析中的任何一种,因为此时三者是等价的,建议使用经典判别分析。
<>如果数据不满足方差和协方差的齐次性,则采用经典判别分析、非参数判别分析、距离判别分析,这些方法无此适用条件。
<>进行变量变换。
(2)方差和协方差的齐次性不能满足的时候可以采取的措施如下:<>增加样本,这有时可以使其影响减小。
<>慎重的进行变量变换。
<>采用经典判别分析、非参数判别分析、距离判别分析,这些方法无此适用条件。
<>在合乎总体实际情况的前提下,保证各个分组的样本量一样,判别分析中分组之间样本量一样可以带来以下几个好处:使得结果与方差齐次性假设不会偏离得太大;F检验时第二类错误(实际上为虚假的条件下正确的拒绝了原假设的概率)得到减小;使得均值更加容易比较和检验。
<>要是样本服从多元正态分布,采用二次判别,但是应该注意到二次判别分析没有计算判错率和统计检验的公式。
(3)存在多重共线性时可以采取的措施如下:<>增加样本量。
<>使用逐步判别分析。
<>采用岭判别分析。
<>对自变量进行主成分分析,用因子代替自变量进行判别分析。
<>通过相关矩阵结合实际的理论知识删去某些产生共线性的自变量。
显然,上述措施和线性回归中对共线性的处理方式是非常类似的。
判别分析判别分析是一种统计学方法,用于区分并分析不同组别之间的差异性。
它被广泛应用于各个领域,如医学、社会科学、运营管理等,以提供有关数据背后潜在关系的洞察。
判别分析的主要目标是通过输入变量对观测结果进行分类。
输入变量也被称为预测变量或自变量,而观测结果则被称为响应变量或因变量。
判别分析试图确定一组输入变量,这些变量在不同组别之间具有最大的差异性,并能够最好地将观测结果分类。
判别分析的基本原理是将观测结果(例如两个或多个不同的组别)映射到一个或多个输入变量的函数空间。
这个函数空间可以是线性的,也可以是非线性的。
通过对函数空间进行合理的选择和优化,判别分析能够实现对不同组别之间差异性的最大化。
判别分析的常见方法包括线性判别分析(LDA)、二元判别分析(BDA)和多元判别分析(MDA)。
线性判别分析试图找到一个线性函数,将不同组别之间的距离最大化,并将观测结果正确地分类。
而二元判别分析和多元判别分析则扩展了线性判别分析的范围,使其适用于更复杂的多类别问题。
判别分析在实践中有许多应用。
例如,在医学领域,判别分析可以用于将患者分为不同的疾病组别,以便更好地进行诊断和治疗。
在社会科学领域,判别分析可以帮助研究人员了解不同人群之间的差异,并对这些差异进行解释。
在运营管理领域,判别分析可以用于预测客户行为、市场细分等。
判别分析有其局限性和假设前提。
例如,判别分析假设输入变量是独立分布的,并且对方差具有相同的协方差矩阵。
此外,判别分析对异常值敏感,对于噪声和离群值的处理需要额外的注意。
总之,判别分析是一种强大的统计学方法,可用于识别和解释不同组别之间的差异性。
它在科学研究、医学诊断、市场调研等领域具有广泛的应用前景。
虽然判别分析有其限制和假设前提,但通过合理的数据处理和解释,可以充分利用判别分析的优势,提供有关数据背后潜在关系的深刻洞察。
判别分析判别分析(discriminant analysis)是一种分类技术。
它通过一个已知类别的“训练样本”来建立判别准则,并通过预测变量来为未知类别的数据进行分类。
判别分析的方法大体上有三类,即Fisher判别(线性判别)、Bayes判别和距离判别。
Fisher判别思想是投影降维,使多维问题简化为一维问题来处理。
选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。
对这个投影轴的方向的要求是:使每一组内的投影值所形成的组内离差尽可能小,而不同组间的投影值所形成的类间离差尽可能大。
Bayes判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。
距离判别思想是根据已知分类的数据计算各类别的重心,对未知分类的数据,计算它与各类重心的距离,与某个重心距离最近则归于该类。
接下来将通过例题展示不同的判别方法。
例1:在某市场抽取20种牌子的电视机中,5种畅销,8种平销,另外7种滞销。
按电视质量评分、功能评分和销售价格三项指标衡量,销售状态:1为畅销,2为平销,3为滞销。
数据集:d6.3> X=read.table("clipboard",header=T) #读取数据存入X中> plot(X$Q, X$C); #做横坐标为Q,纵坐标为C的散点图> text(X$Q, X$C, X$G,adj=-0.8,cex=0.75) #在上一句的散点图中为每个点加文本;Q,C,G表示依据Q和C加上G的文本名字;adj为调整文字与点距离的选项,+为向左,-为向右;cex为调整文字的大小;>plot(X$Q, X$P);text(X$Q, X$P, X$G,adj=-0.8,cex=0.75) #同上> plot(X$C, X$P);text(X$C, X$P, X$G,adj=-0.8,cex=0.75) #同上1.线性判别(等方差)R中线性判别和贝叶斯判别的函数为lda()。
判别分析discriminant analysis什么是判别分析)某些昆虫的性别只有通过解剖才能够判别)但雄性和雌性昆虫在若干体表度量上有些综合的差异。
人们就根据已知雌雄的昆虫体表度量(这些用作度量的变量亦称为预测变量)得到一个标准,并以此标准来判别其他未知性别的昆虫。
)这样虽非100%准确的判别至少大部分是对的,而且用不着杀生。
这就是判别分析判别分析利用已知类别的样本培训模型,为未知样本判类的一种统计方法。
它产生于本世纪30年代。
近年来,在自然科学、社会学及经济管理学科中都有广泛的应用。
判别分析的特点是根据已掌握的、历史上每个类别的若干样本的数据信息,总结出客观事物分类的规律性,建立判别公式和判别准则。
然后,当遇到新的样本点时,只要根据总结出来的判别公式和判别准则,就能判别该样本点所属的类别。
判别分析与聚类的区别)判别分析和聚类分析都是分类.)在聚类分析中,人们一般事先并不知道应该分成几类及哪几类,全根据数据确定。
)但在判别分析中,至少有一个已经明确知道类别的“训练样本”,并利用该样本来建立判别准则,并通过预测变量来为未知类别的观测值进行判别了。
)可以先聚类以得知类型,再进行判别.判别分析的前提假设)多元正态分布¾才可以精确计算显著性检验和分组归属的概率)各组案例的协方差阵相等¾这样就可以简单方便地计算判别函数并进行显著性检验)各组间均值有显著差异)不存在病态矩阵问题¾即每一个判别变量不能是其他变量的线性组合,变量间无高度相关无多重共线性问题)可通过判别前的描述统计量来分析判别分析的方法)距离判别法)典型判别(Fisher判别)法)逐步判别法)贝叶斯判别法(略)1. 根据距离判别的思想)示例数据有4个用来建立判别标准(或判别函数)的(预测)变量,另一个(group)是类别)每一个企业的打分在这4个变量所构成的4维空间中是一个点。
这个数据在4维空间有39个点已知其类别,可以用这些求得每个类型的中心。