粉煤灰检测报告
- 格式:doc
- 大小:106.50 KB
- 文档页数:6
粉煤灰检测报告粉煤灰检测报告(一)一、检测样品信息1.样品名称:粉煤灰2.样品来源:某电厂3.检测项目:水分、热值、挥发分、固定碳、灰分、全硫、Fe、As、Hg、Cd、Pb、Cr、Ni4.检测标准:GB/T 212-2008、GB/T 213-2008、GB/T 214-2007、GB/T 215-2008、GB/T 478-2002、GB/T 20139-2006、GB/T 20140-2006、GB/T 20141-2017、GB/T 20142-2006、GB/T 20143-2006、GB/T 20145-2006二、检测结果1.水分:2.6%2.热值:4800kcal/kg3.挥发分:26.8%4.固定碳:51.4%5.灰分:19.2%6.全硫:0.44%7.Fe:0.0085%8.As:0.0005%9.Hg:0.0003%10.Cd:0.0009%11.Pb:0.0005%12.Cr:0.0006%三、结果分析根据检测结果,本批次粉煤灰水分、热值、挥发分、固定碳、灰分、全硫、Fe、As、Hg、Cd、Pb、Cr、Ni等指标均符合相关标准的要求,可用于工业生产及相关领域。
粉煤灰检测报告(二)一、检测样品信息1.样品名称:粉煤灰2.样品来源:某水泥厂3.检测项目:水分、热值、挥发分、固定碳、灰分、粒度、SO3、Na2O、K2O、MgO、CaO、SiO2、Al2O3、Fe2O3、TiO24.检测标准:GB/T 212-2008、GB/T 213-2008、GB/T214-2007、GB/T 215-2008、GB/T 478-2002、GB/T 5497-1985、GB/T 10695-2012、GB/T 10696-2012、GB/T 10697-2012、GB/T 24438-2009、GB/T 8170-2008、GB/T 8171-2008、GB/T 20135-2006、GB/T 8177-2008、GB/T 20137-2006二、检测结果1.水分:2.8%2.热值:4550kcal/kg3.挥发分:24.5%4.固定碳:47.5%5.灰分:25.2%6.粒度:80%通过筛孔0.063mm7.SO3:2.24%8.Na2O:0.1%9.K2O:1.6%10.MgO:1.0%12.SiO2:34.7%13.Al2O3:7.8%14.Fe2O3:3.6%15.TiO2:0.2%三、结果分析根据检测结果,本批次粉煤灰水分、热值、挥发分、固定碳、灰分、粒度、SO3、Na2O、K2O、MgO、CaO、SiO2、Al2O3、Fe2O3、TiO2等指标均符合相关标准的要求,可用于水泥生产及相关领域。
粉煤灰试验报告范文一、引言粉煤灰是煤炭燃烧产生的废弃物,在建筑材料、环境工程、农业和能源领域有广泛的应用前景。
本试验报告通过对粉煤灰进行一系列的实验,探究其特性和性能,为其应用提供科学依据。
二、实验方法1.粉煤灰样品的制备:将粉煤灰经过筛分和烘干,制备成符合实验要求的粉末状样品。
2.物理性能测试:对粉煤灰的比重、密度、流动性等物理性能进行测定。
3.化学性能测试:对粉煤灰中的主要化学成分进行分析,包括氧化物和硅酸盐的含量。
4.水化性能测试:使用浸泡法和热法测试粉煤灰的水化活性和水化产物。
三、实验结果1.物理性能测试结果:通过比重测试,粉煤灰的比重为2.04 g/cm³,密度为1.2 g/cm³,具有较低的密度和比重,适合作为建筑材料的添加剂。
流动性测试结果表明,粉煤灰具有一定的流动性,适合进行混凝土的搅拌工作。
2.化学性能测试结果:粉煤灰中主要含有二氧化硅、氧化铝、氧化铁等氧化物,其中二氧化硅含量最高,达到60.2%,氧化铝和氧化铁的含量分别为20.5%和5.7%。
硅酸盐的含量为85.4%,具有较高的硅酸盐含量,表明其在硅酸盐材料的应用领域有较大的潜力。
3.水化性能测试结果:通过浸泡法测试,粉煤灰的水化活性较高,可以与水充分反应生成水化产物。
通过热法测试,粉煤灰的水化反应是一个放热反应,并且放热量较大,表明其在混凝土的强度发展中具有良好的水化活性。
四、结论通过本次试验,我们得出以下结论:1.粉煤灰具有较低的密度和比重,适合用作建筑材料的添加剂。
2.粉煤灰主要成分为氧化物和硅酸盐,具有较高的硅酸盐含量,适合在硅酸盐材料的应用领域。
3.粉煤灰具有较高的水化活性,可以与水充分反应生成水化产物,并且具有较大的放热量,适合在混凝土的强度发展中应用。
综上所述,粉煤灰具有广泛的应用前景,在建筑材料、环境工程、农业和能源领域有着良好的应用潜力。
同时,需要进一步研究和开发,挖掘其更多的应用价值。
粉煤灰试验报告一、粉煤灰烧失量检测1、试验目的:测定粉煤灰中的未燃碳是有害成分(烧失量越大,含碳量越高,混凝土的需水量就越大,从而导致水胶比提高,严重影响了粉煤灰效用的充分发挥,同时粉煤灰烧失量过高会严重影响对混凝土中含气量的控制)。
2、取样标准及数量粉煤灰样品按GB12573-2008进行取样(每批散装水泥不大于120T同厂家、同品种、同批号、同出场日期的水泥)为一批,(任何新选货源或同厂家、同批号、同品种、同生产日期的水泥出厂日期达到6个月进行全检)。
自检取样数量为:采用四分法缩分至约100g。
3、试验仪器:(1)、箱式电磁炉,最高温度:1200℃。
(2)、瓷坩埚:带盖,容量15-30mL。
(3)、精密天平,不低于四级,精确度至0.0001。
(4)、干燥器。
4、试验注意事项:试样在950-1000℃的箱式电磁炉中,驱除水分和二氧化碳,同时将存在的一氧化元素碳化。
由硫化物的氧化引起的烧失量误差必须进行校正,而其他元素存在引起的误差一般忽略不计。
5、试验步骤:称取一个试验,精确至0.0001g,置于已灼热恒量的瓷坩埚中,将盖斜至于坩埚上,放在电磁炉内从低温开始逐渐升高温度,在950-1000℃下灼烧15-20min,取出坩埚置于干燥器中冷却至室温,称量。
反复灼烧,直至恒量。
6、试验结果:烧失量的质量按百分数计算二、粉煤灰细度检测1、试验目的:粉煤灰的细度(对和易性的影响主要体现在粘聚性方面,另外掺量过高对强度也有影响。
对耐久性也有影响,细度大的粉煤灰耐久性差,实体混凝土碳化较大)。
2、试验仪器:负压筛析仪、天平:量程不小于50g,最小分度不大于0.01g。
3、试验注意事项:检测仪器是否运行。
筛子是否符合要求。
4、试验步骤:(1)、将粉煤灰样品置于温度为105-110℃烘干箱内置恒重,取出放在干燥器中冷却至室温。
(2)、称取试样约10g,准确至0.01g倒入45μm方孔筛筛网上,将筛子置于筛座上,盖上筛盖。
粉煤灰检测报告目录1. 前言1.1 研究背景1.2 研究目的1.3 研究方法2. 检测样本采集2.1 样本来源2.2 采集过程3. 粉煤灰检测方法3.1 化学成分分析3.2 粒度分析3.3 重金属检测4. 检测结果分析4.1 化学成分结果4.2 粒度分析结果4.3 重金属含量分析5. 结论与展望5.1 结论总结5.2 研究展望1. 前言1.1 研究背景粉煤灰作为一种重要的工业废弃物,在环境保护和资源循环利用方面具有重要意义。
因此,对粉煤灰的化学成分、粒度以及重金属含量进行检测分析,对其合理利用具有重要意义。
1.2 研究目的本文旨在通过对粉煤灰进行检测分析,了解其具体的化学成分、粒度分布以及重金属含量,为粉煤灰的资源化利用提供科学依据。
1.3 研究方法本研究采用化学分析、粒度分析以及重金属检测等方法,对粉煤灰样本进行全面检测,并对检测结果进行分析。
2. 检测样本采集2.1 样本来源粉煤灰样本来源于工业生产过程中产生的废弃物,并经过严格筛选和采集。
2.2 采集过程样本采集过程中严格遵循相关标准操作流程,避免外界因素对样本的影响。
3. 粉煤灰检测方法3.1 化学成分分析采用化学分析方法,对粉煤灰样本中的主要化学成分进行定量分析,包括SiO2、Al2O3、Fe2O3等成分的含量。
3.2 粒度分析通过粒度分析仪对粉煤灰进行颗粒大小和分布的测试,了解其物理性质。
3.3 重金属检测采用重金属检测仪器,对粉煤灰样本中重金属元素的含量进行检测,如铅、汞等。
4. 检测结果分析4.1 化学成分结果根据化学成分分析的结果,得出粉煤灰样本中各主要成分的含量,为下一步的资源化利用提供参考。
4.2 粒度分析结果通过粒度分析结果,分析粉煤灰的颗粒大小和分布情况,为工程应用提供依据。
4.3 重金属含量分析重金属检测结果分析,了解粉煤灰中重金属元素的含量,为环境安全评估提供数据支持。
5. 结论与展望5.1 结论总结综合化学成分、粒度分析以及重金属检测结果,得出对粉煤灰的结论,并提出相应建议。
E13
贵阳市道路工程
粉煤灰检验报告
技术负责人: 校核人: 检验人:
粉煤灰检验试验样品送样注意事项
粉煤灰的技术指标应符合《粉煤灰石灰类道路基层施工及验收规程》CJJ 4-97和《用于水泥和混凝土中的粉煤灰》GB 1596-2005的规定。
以连续供应200t相同等级、同厂家的粉煤灰为一批, 不足200t时亦为一验收批, 粉煤灰的计量按干灰(含水率小于1%)的重量计算。
散装灰取样: 从运输工具、贮灰库或对场中的不同部位取15份试样, 每份试样1~3kg, 混拌均匀, 按四分法缩取比试验所需量大一倍的试样(称为平均样)。
袋装灰取样:从每批任抽10袋, 从每袋中分取试样不少于1kg, 按2.4.3的第2条的方法混合缩取平均试样。
样品标识必须填清楚工程名称、委托单位、使用部位、粉煤灰等级、生产厂家、出厂编号、代表批量、委托检验项目等信息。
粉煤灰试验检测报告一、实验目的:本实验旨在通过对粉煤灰进行一系列的试验检测,评估其在建筑材料中的应用性能,为粉煤灰在建筑工程中的推广提供科学依据。
二、实验方法:2.物理性能测试:包括比表面积、体积密度、颗粒大小分布等参数的测试。
3.化学性能测试:包括主要化学成分、矿物组成以及氧化物含量的测试。
4.力学性能测试:包括抗压强度、抗拉强度和抗冻融性等参数的测试。
三、实验结果:1.物理性能:通过测试,得到粉煤灰的比表面积为XXXm²/g,可以发现其细度适中,有利于提高混凝土的流动性;体积密度为XXXg/cm³,低于水泥,有助于提高混凝土轻度;颗粒大小分布均匀,满足了粉煤灰在混凝土中的填充要求。
2.化学性能:通过检测,得到粉煤灰的主要化学成分为SiO₂、Al₂O₃、Fe₂O₃等。
其中,SiO₂和Al₂O₃含量较高,具有良好的硅铝活性,有利于增强混凝土的强度和耐久性。
矿物组成主要为无机玻璃体和结晶物质,无机玻璃体有助于提高混凝土的早期强度,结晶物质有助于提高混凝土的长期强度。
氧化物含量均低于标准要求,满足了混凝土添加剂的要求。
3.力学性能:抗压强度测试结果显示,混凝土中添加不同比例的粉煤灰后,抗压强度呈现不同程度的提高,其中添加比例为XX%时,混凝土抗压强度达到最大值。
抗拉强度测试结果显示,混凝土中添加粉煤灰后,抗拉强度有所提高。
抗冻融性测试结果显示,添加粉煤灰的混凝土在经历多次冻融循环后,出现较低的质量损失和抗压强度降低。
四、实验结论:根据以上试验结果,可以得出以下结论:1.粉煤灰具有较好的物理性能,适合作为混凝土添加剂使用,能够改善混凝土的流动性和轻度。
2.粉煤灰的主要化学成分和矿物组成有利于提高混凝土的强度和耐久性。
3.适当添加粉煤灰可以显著提高混凝土的抗压强度和抗拉强度,同时能够提高混凝土的抗冻融性。
综上所述,粉煤灰作为建筑材料的一种添加剂,在混凝土工程中具有广阔的应用前景,能够提高混凝土的性能和降低环境污染。
检测报告委托单位:肥城通盛混凝土有限公司工程名称:/
样品名称:混凝土用粉煤灰
规格型号:I级
检验类别:抽样检测
肥城通盛混凝土有限公司
2017年04月30日
粉煤灰检验报告
委托单位
肥城通盛混凝土有限公司报告编号FA17025
工程名称/ 试验编号2017FA025
样品名称
粉煤灰工程部位/
生产厂家
肥城石横电厂规格等级I级
检测掺量
/ 送样时间2017.04.30
检测依据GB/T176-2008 GB/T1596-2005
GB/T2419-2005
检验日期2017.05.02
检验地点
肥城通盛混凝土有限公司注册商标/
实验室地址肥城市桃园镇米山岭
检测项目性能指标检测结果单项结论
细度% ≤12.0 12 合格
需水量比% ≤95 92 合格烧矢量% ≤5.0 3.8 合格
含水量% ≤1.0 0.1 合格安定性(雷氏夹法)% C类≤5.0 合格合格强度活性指数% 28d≤70.0 / /
游离氧化钙% F类≤1.0 / / C类≤4.0 / /
综合结论依据标准GB/T1596-2005,所检项目符合要求。
批准:校验:试验:检测单位(盖章)
签发日期:2017年05月02日
混凝土用粉煤灰物理性能检测原始记录
校核:主检:检测日期:
抽样通知单
抽样负责人:抽样人:。