第六章 几种纤维增强树脂复合材料表面与界面
- 格式:ppt
- 大小:5.81 MB
- 文档页数:112
碳纤维增强树脂基复合材料碳纤维增强树脂基复合材料是一种具有高强度、高模量、耐腐蚀性和轻质化等优良性能的新型材料,广泛应用于航空航天、汽车、船舶、体育器材等领域。
本文将对碳纤维增强树脂基复合材料的制备工艺、性能特点及应用前景进行介绍。
首先,碳纤维增强树脂基复合材料的制备工艺包括原材料选取、预处理、成型、固化等多个环节。
在原材料选取方面,需要选择优质的碳纤维和树脂,并对其进行表面处理以提高其界面粘合性。
在成型过程中,可以采用手工层叠、自动纺织、注塑成型等方法,根据不同的产品要求进行选择。
固化工艺则是利用热固化或者光固化技术,使得树脂基复合材料达到预期的性能指标。
其次,碳纤维增强树脂基复合材料具有优异的性能特点。
首先是高强度和高模量,碳纤维本身具有很高的强度和模量,与树脂复合后可以进一步提高材料的整体性能。
其次是耐腐蚀性,碳纤维不易受到化学腐蚀,使得复合材料在恶劣环境下依然能够保持稳定的性能。
此外,碳纤维增强树脂基复合材料还具有轻质化的特点,可以大幅减轻产品重量,提高使用效率。
最后,碳纤维增强树脂基复合材料在航空航天、汽车、船舶、体育器材等领域有着广阔的应用前景。
在航空航天领域,碳纤维增强树脂基复合材料可以用于制造飞机机身、发动机零部件等,以提高飞行器的整体性能。
在汽车领域,该材料可以用于制造车身结构、悬挂系统等,以提高汽车的安全性和燃油经济性。
在船舶领域,碳纤维增强树脂基复合材料可以用于制造船体、桅杆等,以提高船舶的耐久性和航行性能。
在体育器材领域,该材料可以用于制造高性能的运动器材,如高尔夫球杆、网球拍等,以提高运动员的比赛水平。
综上所述,碳纤维增强树脂基复合材料具有广泛的应用前景,制备工艺成熟,性能优异,是一种具有发展潜力的新型材料。
随着技术的不断进步和应用领域的不断拓展,相信碳纤维增强树脂基复合材料将会在更多领域展现出其独特的优势和价值。
文章编号:100622793(2004)0320224205几种高性能纤维的表面性能及其对界面粘接的影响①王 斌1,金志浩1,丘哲明2,刘爱华2(1.西安交通大学材料科学与工程学院,西安 710049;2.中国航天科技集团公司四院四十三所,西安 710025)摘要:分别使用扫描电镜和X 射线光电子能谱仪,对T 2800炭纤维、F 212有机纤维及新型超高强度PBO 纤维(聚对苯撑苯并双 唑)进行了物理与化学表征和分析,用SEM 观察得出这三种纤维表面物理形态差别清晰可见,T 2800纤维表面沟槽深且直径小,PBO 纤维表面极光滑且直径中等,F 212纤维直径最大且表面有微小沟槽。
XPS 定量分析表明,这三种纤维表面活性也不一样,T 2800纤维表面活性较多,PBO 纤维表面活性最差。
纤维表面状态的差异体现在它们与树脂复合后的材料界面粘接性能上,T 2800纤维的界面剪切强度(IFSS )高,F 212纤维次之,PBO 纤维最差。
关键词:高性能纤维;表面状态;表征;界面粘接中图分类号:TB332 文献标识码:ASurface performance and effects on interfacial adhesion of several high performance f ibersWAN G Bin 1,J IN Zhi 2hao 1,Q IU Zhe 2ming 2,L IU Ai 2hua 2//1.School of Materials Science Technology &Engineering ,Xi ’an Jiaotong University ,Xi ’an 710049,China ;2.The 43rd Institute of the Fourth Academy of CASC ,Xi ’an 710025,China.Abstract :Using scanning electron microscopy (SEM )and X 2rayphotoelectron spectroscopy (XPS ),the surface physical and chem 2ical characterization of T 2800carbon fiber ,F 212aramid fiber and the new poly (p 2phenylene benzobisoxazole )fiber (PBO )were con 2duicted.SEM observation reveals their different physical surface distinctly.S ome deep grooves exist on surface of T 2800fiber with the smallest diameter ,surface of PBO fiber with medium diameter is very slippery ,and shallow grooves exist on surface of F 212fiber with the biggest diameter.XPS quantitative analysis shows that three kinds of fiber surface activity are different evidently.There are more active groups on T 2800fiber surface ,but few active groups on PBO fiber surface ,so its surface is inactive.These dis 2crepancies in fiber surface activity of T 2800,F 212and PBO lead to the differences in the mechanical adhesive property of composite in 2terface.The interfacial shear strength (IFSS )of T 2800fiber is higher than that of F 212fiber and IFSS of PBO fiber is the lowest.K ey w ords :high performance fiber ;surface state ;characteriza 2tion ;interfacial adhesion1 引言随着航空航天领域对材料性能要求的不断提高,轻质高强复合材料的应用越来越广泛。
玻璃纤维增强环氧树脂基复合材料各项性能的研究齐齐哈尔大学摘要:玻璃纤维是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差,并不适于作为结构用材,但若抽成丝后,则其强度大为增加且具有柔软性,配合树脂赋予其形状以后可以成为优良之结构用材。
本文将对玻璃纤维增强环氧树脂基复合材料的的研究现状及研究方向进行分析,为新的研究方向探索道路。
关键词:玻璃纤维环氧树脂复合材料研究现状研究方向1、前言玻璃纤维增强树脂基复合材料具有轻质高强,疲劳性能、耐久性能和电绝缘性能好等特点,在各个领域都有着广泛的应用,用玻璃纤维和环氧树脂可以制造层合制品,是一类性能优良的绝缘材料,广泛用于电力、电器、电子等领域,玻璃纤维增强树脂基复合材料由于具有高比强度、比模量,而且耐疲劳、耐腐蚀。
最早用于飞机、火箭等,近年来在民用方面发展也很迅猛,在舰船、建筑和体育器械等领域得到应用,并且用量不断增加。
其中,环氧树脂是先进复合材料中应用最广泛的树脂体系,它适用于多种成型工艺,可配制成不同配方,调节粘度范围大,以便适应不同的生产工艺。
它的贮存寿命长,固化时不释放挥发物,同化收缩率低,固化后的制品具有极佳的尺寸稳定性、良好的耐热、耐湿性能和高的绝缘性,因此,环氧树脂“统治”着高性能复合材料的市场目前,复合材料输电杆塔已在欧美和日本得到应用,其中以美国的研究开发和应用最为成熟。
我国在20世纪50年代对复合材料电杆进行过研究,鉴于当时材料性能和制造工艺的限制,复合材料电杆未能得到推广使用。
近年来,随着复合材料技术的飞速发展和传统输电杆塔的缺陷逐步显露,电力行业开始重视复合材料杆塔的应用研究。
随着电网建设的快速发展,出现了全国联网、西电东送、南北互供的建设格局,输电线路工程口益增多,对钢材的需求越来越大,消耗了大量的矿产资源和能源,在一定程度上加剧了生态环境破坏。
并且,线路杆塔采用全钢制结构,存在质量大、施工运输和运行维护困难等问题。
碳纤维增强树脂基复合材料
复合材料:指由两种或两种以上独立组分材料经复合工艺制得的一种多组分材料。
分散相为增强体,连续相为基地。
在复合材料中,各组分仍保持原有性质,但它们彼此取长补短,相得益彰,使其综合性能更加完善,构成新一代先进复合材料(Advanced Composite Material,ACM).
ACM与传统的金属材料比较具有质量轻、高强度、高刚性、耐疲劳和热膨胀系数小等一系列优异性能。
目前一般将比强度(强度/密度)在4×106 cm以上,比模量(模量/密度)在4×108cm以上的复合材料称为先进复合材料。
五类增强纤维主要有碳纤维(CF)、硼纤维(BF)、凯鞭拉纤维(KF)、碳化硅纤维(SF)、氧化铝纤维(AF)。
基中碳纤维居五大增强纤维之首。
复合材料界面理论简介摘要:纤维复合材料作为先进材料,质量轻,强度高等特点使其在航空、航天、船舶、汽车等工程领域应用越来越发挥其重要性。
随着复合材料应用领域的扩展,对材料性能提出了更高的要求。
复合材料的性能取决于增强体纤维、树脂基体和界面性能,其中纤维和树脂之间的界面粘结力是一个重要因素。
界面粘结强度,即纤维断裂处通过基体向纤维传递应力的能力,直接影响到复合材料的强度、韧性和破坏模式等宏观力学行为。
因此,研究界面之间的相互作用,对于界面的设计、预测有非常重要的作用。
本文介绍了几种常见的几面之间的相互作用理论。
关键词:界面;形成;相互作用理论;1界面简介复合材料是由两种或两种以上化学和物理性质不同的材料复合而成的,那么必然存在着异种材料的接触面,这个接触面就是界面。
一般人们对复合材料界面的定义是,指基体与增强物之间化学成分有显著变化的、构成彼此结合的、能起载荷传递作用的微小区域。
聚合物基复合材料界面的形成可以分成两个阶段:第一阶段是基体与增强纤维的接触与浸润过程。
增强纤维优先吸附能较多降低其表面能的组分,因此界面聚合物在结构上与聚合物基体是不同的。
第二阶段是聚合物的固化阶段。
聚合物通过物理的或化学的变化而固化,形成固定的界面层。
2界面作用理论2.1浸润性理论1963年,Zisman提出浸润性理论,认为浸润是形成界面的基本条件之一,若两相物质能实现完全浸润,则表面能较高的一相物体表面的物理吸附将大大超过另一相物体的内聚能强度,从而使两相物体具有良好的粘合强度。
这种理论认为两相物体间的结合模式属于机械互锁和浸润吸附。
其中机械粘合是一种机械互锁现象,即在形成复合材料的两相相互接触过程中,若浸润性差,两相接触的只是一些点,接触面有限(见图1(a))。
若浸润性好,液相可扩展到另一相表面的坑凹中,因而两相接触面积大,结合紧密,产生机械锚合作用(见图1(b))。
而物理吸附主要为范德华力的作用。
图1浸润与不浸润的界面显然,聚合物基体对增强材料良好的浸润性将有利于提高界面的复合强度,但浸润性不是界面粘接的唯一条件。
论文题目:复合材料的界面问题研究学院:材料科学与工程学院专业:材料学任课老师:霍冀川姓名:夏松钦学号:2011000148复合材料的界面问题研究摘要:界面问题,在复合材料制备中起很大的作用,界面结合的好坏,直接影响复合材料的整体性能,现针对国内外增强树脂用玻璃纤维、碳纤维及芳纶纤维的表面处理方法,强调界面问题的重要性关键词:界面问题;玻璃纤维;碳纤维;芳纶纤维1 前言界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有重要的影响。
随着对复合材料界面结构及优化设计研究的不断深入。
研究材料的界面力学行为与破坏机理是当代材料科学、力学、物理学的前沿课题之一。
复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,各自都有其独特的结构、性能与作用,增强相主要起承载作用;基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递。
对增强相和基体相的研究已取得了许多成果,而对作为复合材料3大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,其理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。
界面的性质直接影响着复合材料的各项力学性能,尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为越来越受到重视。
热塑性复合材料不仅有优越的力学性能、耐腐蚀、无毒性和低价格指数,还由于具有热固性复合材料所不具备的可重复加工和使用的特点,避免产生三废,有利于环保,因而倍受人们的重视,发展很迅速。
对于增强热塑性复合材料来说,由于基体本身缺乏可反应的活性官能团,很难与纤维产生良好化学键结合,因而界面结合的问题就显得更为重要。
2玻璃纤维的表面处理方法玻璃纤维在复合材料中主要起承载作用。
为了充分发挥玻璃纤维的承载作用,减少玻璃纤维和树脂基体差异对复合材料界面的影响,提高与树脂基体的粘合能力,因此有必要对玻璃纤维的表面进行处理[1],使之能够很好地与树脂粘合,形成性能优异的界面层,从而提高复合材料的综合性能。
复合材料的复合原则及界面复合材料是由两个或多个不同性质的材料组合而成的材料,通过将各种材料的优点相互结合,可以得到具有更好性能和更广泛应用的材料。
复合材料的复合原则和界面是影响复合材料性能的重要因素,下面将详细介绍。
机械复合是指通过力的作用将两种或多种材料结合在一起。
例如,在纤维增强复合材料中,纤维和基体通过力的作用使其结合在一起,形成复合材料。
机械复合适用于强度要求高、耐磨性强的产品。
机械复合的优点是简单易行,但界面结合力较弱。
化学复合是指通过化学反应使两种或多种材料结合在一起。
例如,在聚酯树脂和玻璃纤维布中,通过涂布树脂、固化反应将其结合在一起。
化学复合适用于要求强度高、界面粘结力强的产品。
化学复合的优点是界面结合力强,但复合过程所需的材料和设备较多。
物理复合是指通过物理吸附、静电作用等力的作用将两种或多种材料结合在一起。
例如,在橡胶和金属复合材料中,通过物理吸附力将橡胶和金属结合在一起。
物理复合适用于要求柔软、耐热性好的产品。
物理复合的优点是操作简便,但界面结合力较弱。
表面改性是指通过处理材料表面使其与其他材料更好地结合在一起。
例如,通过表面改性处理,改善材料的亲水性或增加表面粗糙度,从而提高与其他材料的粘结力。
表面改性适用于要求界面粘结力强的产品。
表面改性的优点是简单易行,但只是针对材料表面的改性,界面结合力可能不如其他复合方式。
物理界面是指两种材料之间的物理结合,如吸附、机械咬合等。
物理界面的结合力较弱,容易发生剥离或剪切现象。
为了提高物理界面的结合力,可以采用增加界面接触面积、增加纳米级界面过渡层等方法。
化学界面是指两种材料之间的化学结合,如共价键、离子键等。
化学界面的结合力较强,具有较好的界面粘附性。
为了提高化学界面的结合力,可以采用表面改性、界面交联等方法。
综上所述,复合材料的复合原则和界面对于复合材料性能的影响是不可忽视的。
在设计和制备复合材料时,需要根据产品的要求和应用环境选择合适的复合方法和优化界面结构,以提高复合材料的性能和应用价值。
碳纤维表面处理及其增强环氧树脂复合材料界面性能研究摘要:碳纤维(CF)增强树脂基复合材料(CFRP)是先进复合材料的典型代表,具有密度小、力学性能优异、耐热、耐低温等优点,在航空航天、军事、汽车、体育等领域具有重要的应用前景,但是碳纤维表面光滑呈惰性,与树脂基体的界面粘结性差,限制了CFRP复合材料性能的发挥。
针对这一问题,本文采用PAN基碳纤维和双酚A型环氧树脂作为复合材料的增强相和树脂基体,展开CF的表面处理及其CFRP复合材料界面性能的研究。
本文采用氨水处理和浓HNO3处理碳纤维表面,通过单丝拔出实验测试复合材料的界面结合强度来表征复合材料的界面粘结性能,并分析了机械锚定和化学键合两种作用共同出现并对复合材料界面性能起改善作用时,两个因素之间的关系,以及起主导作用的因素,对碳纤维与树脂间相容性机理的研究具有知道作用。
关键词:碳纤维;环氧树脂;复合材料;表面处理;界面性能1、引言1.1碳纤维概述碳纤维是有机纤维在惰性气氛中经高温碳化和石墨化制成的纤维状碳,是一种高性能的先进非金属材料。
根据原料不同,碳纤维可分为聚丙烯腈(PAN)系碳纤维、沥青系碳纤维、黏胶系碳纤维、人造丝系碳纤维等。
其中聚丙烯腈基碳纤维综合性能最好,产量占碳纤维总产量的90%以上。
由于原料及制法不同,所得碳纤维的性能也不一样。
根据力学性能的不同,碳纤维可分为超高强度碳纤维(UHS)、高强度碳纤维(HS)、超高模量碳纤维(UHM)、高模量碳纤维(HM)、中等模量碳纤维(MM)、普通碳纤维等等。
我国对碳纤维的研究始于20世纪60年代,80年代开始研究高强型碳纤维。
目前,利用自主技术研制的少数国产T300、T700碳纤维产品已经达到国际同类产品水品。
但是与国际水平相比,国产碳纤维强度低、平均稳定性差、毛丝多、品种单一且价格昂贵,而且国内碳纤维总生产能力较小,不能满足国内的需要,仍需大量进口。
这些都严重影响了我国高新技术的发展,尤其制约了航空航天及国防军工事业的发展,与我国的经济发展进程不相称。
复合材料至少具有增强体和基体两种不同性质的组分,界面就是在这些组分复合的过程中产生的。
在纤维增强复合材料中,纤维和基体都保持着它们自己的物理和化学特性,但是因为二者之间界面的存在,使得复合材料产生组合的崭新的独特的力学性能。
对于复合材料,界面是一种极为重要的微结构,是复合材料的“心脏”,是联系增强体和基体的“纽带”,对各组分性能的发挥程度和复合材料的总算性能都具有举足轻重的影响。
复合材料之所以比单一材料具有优异的性能,就是因为其各组分间的协同效应,而复合材料的界面就是产生这种效应的根本缘故。
图1 纤维-树脂复合材料界面暗示图复合材料的界面不是零厚度的二维“假想面”,而是具有一定厚度的极为复杂多变的“界面相”或者“界面层”。
界面相的成分、结构、形态和能量均与本体相很不相同,同时,不同的复合材料体系界面相也是不同的。
总之界面具有异常复杂而奥秘的结构,鼓励着人们去探索,去发现。
通过对复合材料的深入研究,人们已经提出了多种复合材料界面理论,比较有代表性的有浸润理论、蔓延理论、化学键理论、啮合理论等。
每一种理论都有一定的实验根据作为支撑,但是因为界面的复杂性,每一种理论都不能完美地解释一切界面现象。
任何事物都不是不可认知的,随着科学技术的发展和界面表征技术的长进,界面理论将会发展和完美,蒙在“界面相”上的奥秘面纱必将在不久的未来被人们揭开。
下面向几种重要的界面理论作容易的推荐:(1)浸润理论:由Zisman于1963年提出。
界面的粘结强度受浸润作用影响,良好的浸润是形成良好界面的基本条件之一。
润湿良好对两相界面的接触有第1 页/共 3 页益,可以减少缺陷的发生,增多机械锚合的接触点,也可以提高断裂能。
因此,增大纤维表面的自由能,提高纤维的浸润性能对增强纤维和树脂间的界面粘结性能有很大协助。
然而,粘结毕竟是异常复杂的过程,不能单纯从浸润性解释所有的界面现象,偶尔候处理后的纤维浸润性变差界面粘结性却浮上了很大的提高。