岩石的强度理论及破坏判据[详细]
- 格式:ppt
- 大小:587.50 KB
- 文档页数:23
2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。
一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。
对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。
图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。
图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。
本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。
2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。
它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。
朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。
考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。
当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。
土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。
根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。
因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。
2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。
一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。
对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。
图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。
图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。
本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。
2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。
它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。
朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。
考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。
当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。
土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。
根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。
因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。
第二章 岩石破坏机制及强度理论第一节 岩石破坏的现象在不同的应力状态下,岩石的破坏机制不同,常见的岩石破坏形式有以下几种一、拉破坏:岩石试件单向抗压的纵向裂纹,矿柱,采面片帮。
特点出现与最大应力方向平行的裂隙。
二、剪切破坏:岩石试件单向抗压的X 形破坏。
从应力分析可知,单向压缩下某一剪切面上的切向应力达到最大引起的破坏。
(a ) (b )三、重剪破坏:即沿原有的结构面的滑动、重剪破坏主要的机制:岩体受剪切作用或者受拉应力的作用、三向受压情况下多数为剪切应力的作用,侧向压力较小时可能是拉神破坏,实际工程中可能是不同机制的组合,但侧向应力较大时,可以认为剪切应力是岩石重剪破坏的主要破坏机制。
从岩石破坏的现象看,从小到几厘米的岩块到大的工程岩体,破坏形式雷同,并可归纳为两种,拉断与剪坏,因此有一定的规律可寻。
对岩石破坏的研究:在单向条件下可以从实验得到破坏的经验关系。
但是三向受力条件下,不同应力的组合有无穷多种,因此无法仅仅依靠实验得到破坏的经验关系,因此在一般应力状态,对岩石破坏的研究需要结合理论分析和试验研究两个方面。
现代关于岩石破坏的理论分析一般归结为、寻求破坏时的主应力之间的关系123(,)f σσσ=研究的方法有:理论分析;2、试验研究;3、理论研究结合试验研究。
第二节 岩石拉伸破坏的强度条件一、最大线应变理论该理论的主要观点是,岩石中某个面上的拉应变达到临界值时破坏,而与所处的应力状态无关。
强度条件为c εε≤ (2-1)c ε—拉应变的极限值,ε—拉应变。
若岩石在破坏之前可看作是弹性体,在受压条件下σ1>σ2>σ3下, 3ε是最小主应力。
按弹性力学有33E Eσμεσσ=-12(+),即33E εσμσσ=-12(+)。
若3ε<0则产生拉应变。
由于E >0,因此产生拉应变的条件是3σμσσ-12(+)<0,3μσσσ12(+)>若3ε=0ε<0则产生拉破坏,此时抗拉强度为0t Eσε=⇒0t E σε=。
3.5.岩石的强度准则3.5.1概述岩石中任一点的应力、应变增长到某一极限时,该点就要发生破坏。
用以表征岩石破坏条件的应力状态与岩石强度参数间的函数关系,称为岩石的强度准则(又称强度条件、破坏判据、强度判据)。
由于岩石的成因不同和矿物成分的不同,使岩石的破坏特性会存在着许多差别。
此外,不同的受力状态也将影响其强度特性。
人们根据岩石的不同破坏机理,在大量的试验基础上,加以归纳、分析描述,建立了多种强度准则。
本节将着重介绍在岩石力学中最常用的强度准则。
3.5.2库仑准则3.5.2.1基本思想库仑准则是一个最简单、最重要的准则,属于压剪准则。
库仑(C.A.Couloumb )于1773年提出最大剪应力强度理论,纳维尔()在库仑理论的基础上,对包括岩石在内的脆性材料进行了大量的试验研究后,于1883年完善了该准则,所以又被称为库仑—纳维尔准则。
该准则认为,固体内任一点发生剪切破坏时,破坏面上的剪应力(τ)等于或大于材料本身的抗切强度(C)和作用于该面上由法向应力引起的摩擦阻力(ϕσtan )之和,即:tan C f C τσσϕ=+=+ (3.29)这就是库仑准则的基本表达式。
3.4.2.2库仑准则参数的几何与物理意义在στ-平面上式(3.29)的几何图,如图3.36所示,库仑准则是一条直线。
由图可见:图3.36库仑准则的几何图(1)当0σ=时,C τ=,C 为纵轴(σ轴)截距;物理意义为:岩石试件无正压力时的抗剪强度,通常称为岩石的内粘聚力。
(2)当0C =时,ϕσσtan =,通常称ϕ为岩石的内摩擦角,ϕtan 为岩石的内摩擦系数。
C ,ϕ是表征岩石抗剪强度的两个重要参数。
3.5.2.3库仑准则的确定方法岩石强度准则反映岩石固有的属性,因此一定要求来源于试验。
常用于确定库仑准则的试验有两种,角模压剪试验和三轴压缩试验。
(1)角模压剪试验 如图3.10所示,作一系列不同倾角α的压剪试验,并由式(3.7)计算出不同倾角的破坏面上的正应力σ和剪应力τ;再在στ-平面描点作出强度准则曲线,或用数理统计方法确定其方程。