的等腰三角形BDE,则∠EBC的度数为
.
答案 45°或105°
解析 根据题意,知点E所在位置有2种可能,如图.
∵四边形ABCD是菱形,且∠A=30°, ∴∠ABC=150°,BD平分∠ABC, ∴∠CBD=75°, 又∵以DB为底边的等腰三角形DBE的顶角∠DEB=120°, ∴∠EDB=∠EBD=30°,∴∠EBC=75°-30°=45°或∠EBC=30°+75°=105°. 解题关键 解题的关键是画出草图,并对点E所处位置进行分类讨论. 评析 本题考查菱形和等腰三角形的性质,以及分类讨论思想.
7.(2015嘉兴、舟山,14,4分)已知一张三角形纸片ABC,AB=AC=5.如图,折叠该纸片,使点A落在
BC的中点上,折痕交AC、AB分别于点E、F,则AE的长为
.
答案 2.5
解析 连接AA',设AA'与EF交于点O.折叠问题就是轴对称问题,所以EF所在直线是AA'的中垂 线,又由等腰三角形的性质可知AA'⊥BC,所以EF∥BC,又AO=A'O,所以EF是△ABC的中位线.
中考数学 (浙江专用)
第四章 图形的认识
§4.3 等腰三角形与直角三角形
五年中考 A组 2014-2018年浙江中考题组
考点一 等腰三角形
1.(2017湖州,6,4分)如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点 P到AB所在直线的距离等于 ( )
a2 b2
解方程x2+2ax-b2=0,得x= 2a=± 4-a2, 4b2
a2 b2
2
∴线段AD的长是方程x2+2ax-b2=0的一个根.
②∵AD=AE,AD=EC,