第4讲-第三章 空间弹性问题的基本变量及方程_436907486
- 格式:pptx
- 大小:835.70 KB
- 文档页数:30
弹性力学讲课文档contents •弹性力学基本概念与原理•弹性力学分析方法•一维问题求解方法与应用•二维问题求解方法与应用•三维问题求解方法与应用•弹性力学在工程中应用案例目录01弹性力学基本概念与原理弹性力学定义及研究对象定义弹性力学是研究弹性体在外力作用下产生变形和内部应力分布规律的科学。
研究对象主要研究弹性体(如金属、岩石、橡胶等)在小变形条件下的力学行为。
弹性体基本假设与约束条件基本假设连续性假设、完全弹性假设、小变形假设、无初始应力假设。
约束条件弹性体在变形过程中,必须满足几何约束(如位移连续、无重叠等)和物理约束(如应力平衡、应变协调等)。
应力单位面积上的内力,表示物体内部各部分之间的相互挤压或拉伸作用。
应变物体在外力作用下产生的形状和尺寸的变化,反映物体变形的程度。
位移物体上某一点在变形前后位置的变化,描述物体的整体移动。
关系应力与应变之间存在线性关系(胡克定律),位移是应变的积分结果。
应力、应变及位移关系弹性力学中能量原理能量守恒原理弹性体在变形过程中,外力所做的功等于弹性体内部应变能的增加。
最小势能原理在所有可能的位移场中,真实位移场使系统总势能取最小值。
虚功原理外力在虚位移上所做的虚功等于内力在相应虚应变上所做的虚功。
02弹性力学分析方法解析法分离变量法通过分离偏微分方程的变量,将其转化为常微分方程进行求解。
积分变换法利用积分变换(如傅里叶变换、拉普拉斯变换等)将偏微分方程转化为常微分方程或代数方程进行求解。
复变函数法引入复变函数,将弹性力学问题转化为复平面上的问题,利用复变函数的性质进行求解。
将连续问题离散化,用差分方程近似代替微分方程进行求解。
有限差分法有限元法边界元法将连续体划分为有限个单元,对每个单元进行分析并建立单元刚度矩阵,然后组装成整体刚度矩阵进行求解。
将边界划分为有限个单元,利用边界积分方程进行求解,适用于处理无限域和复杂边界问题。
半解析法有限体积法将计算区域划分为一系列控制体积,将待解的微分方程对每一个控制体积积分得出离散方程进行求解。
弹性定理知识点总结1. 弹性定理的基本概念弹性定理是固体力学中的一个基本原理,描述了弹性体在受力时的变形规律。
弹性体是指在外力作用下发生变形,但在去除外力后能够完全恢复原状的物质。
弹性定理认为,当一个弹性体受到力F时,它的变形量x与力F成正比,即弹性体的变形量是力的函数。
这种描述可以用数学公式表示为F=kx,其中F是受力,k是弹性系数,x是变形量。
弹性定理的基本概念可以用一个简单的例子来说明。
当我们拉动一个弹簧时,弹簧的长度会发生变化,而这种变化的大小与我们施加的力的大小成正比。
这种变化的规律可以用弹性定理来描述,即拉伸力F与弹簧的伸长量x成正比,其比例系数就是弹簧的弹性系数k。
2. 弹性定理的数学表示弹性定理可以用数学公式F=kx来表示,其中F是受力,k是弹性系数,x是变形量。
这个数学公式揭示了弹性体的变形规律,即受力与变形量成正比。
F=kx的数学表示也可以通过微积分的方法推导出来,在初等数学中我们学到了弹性势能函数的求导和积分,这就是用来解释弹性定理的数学工具。
弹性定理的数学表示可以进一步扩展到三维空间中,即一个弹性体受到外力时,在各个方向上的变形与受力也成正比。
这时公式可以表示为F=K∆L,其中K是弹性系数矩阵,∆L是位置矢量的变化量。
弹性系数矩阵K描述了弹性体在各个方向上的变形规律,它是一个对称矩阵,反映了弹性体的各向同性。
弹性系数矩阵K的具体含义可以通过广义胡克定律来解释,这是根据矩阵代数的理论推导出来的。
3. 弹性定理的应用范围弹性定理的应用范围非常广泛,包括弹簧、橡胶、金属等材料的弹性变形,以及地震波的传播等。
弹性定理可以用来解释各种物体受力时的变形规律,也可以用来计算物体在受力时的变形量。
在工程领域中,弹性定理的应用非常普遍,例如在建筑结构设计、材料强度分析、机械设计等方面都会用到弹性定理。
弹性定理还可以用来解释弹性体在受力时的振动特性。
当一个弹性体受到外力时,它会产生振动,这种振动的频率和幅度可以通过弹性定理来计算。