用配方法解一元二次方程
- 格式:docx
- 大小:18.09 KB
- 文档页数:4
用配方法解一元二次方程
1.解方程:x2+4x﹣1=0.
【思路点拨】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.
【答案与解析】
解:∵x2+4x﹣1=0
∴x2+4x=1
∴x2+4x+4=1+4
∴(x+2)2=5
∴x=﹣2±
∴x 1=﹣2+,x2=﹣2﹣.
【总结升华】配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
举一反三:
【变式】用配方法解方程.
(1)x2-4x-2=0; (2)x2+6x+8=0. 【答案】(1)方程变形为x2-4x=2.
两边都加4,得x2-4x+4=2+4.
利用完全平方公式,就得到形如(x+m)2=n的方程,即有(x-2)2=6.
解这个方程,得x-2=或x-2=-.
于是,原方程的根为x=2+或x=2-.
(2)将常数项移到方程右边x2+6x=-8.
两边都加“一次项系数一半的平方”=32,得x2+6x+32=-8+32,
∴ (x+3)2=1.
用直接开平方法,得x+3=±1,
∴ x=-2或x=-4.。
配方法解一元二次方程的步骤
一元二次方程在日常学习中一般用"齐次二次方程ax^2+bx+c=0"的形式表示,是数学中的一类典型方程,它是一类非常重要的方程,在几何、物理等学科中有着广泛的应用。
想要求解一元二次方程,必须遵循以下几个步骤:
第一步:计算方程的判别式。
对于一元二次方程的判别式的计算公式为:
D=b2-4ac。
将此式中的a,b,c的值代入判别式,可以确定此一元二次方程拥有的根的特性。
其中,若D=0,说明此一元二次方程有两个相等的实数根;若D>0,说明此一元二次方程有两个不等的实数根;若D<0,说明此一元二次方程没有实数根。
第二步:根据上一步计算出的D,计算一元二次方程的根。
若D=0,则该方程有两个相等的实数根,这时候需要用一元二次方程的根的计算公式:x=-b/2a 求解出该方程的两个实数根。
若D>0,则该方程有两个不等的实数根,这时候需要用一元二次方程根的计算公式:x1=(-b+√D)/2a 以及 x2=(-b-√D)/2a 求解出该方程的两个实数根。
若D<0,则该方程没有实数根,但是可以在复数域解出根。
经过以上两步,就可以求解出一元二次方程的所有实数根或复数根。
一元二次方程的求解可以通过上面的方法解出,且是此类方程中求根最常用的求解方法。
它的灵活求解的技巧,使其在实际应用中得到广泛的应用,并取得了较好的效果。
配方法求解一元二次方程(原创实用版4篇)目录(篇1)1.一元二次方程的一般形式2.配方法的原理3.配方法的步骤4.配方法的应用举例5.结论正文(篇1)一元二次方程的一般形式为 ax + bx + c = 0,其中 a、b、c 为常数,且 a ≠ 0。
一元二次方程的求解方法有很多,其中配方法是一种比较常见的方法。
配方法的原理是将一元二次方程的二次项与一次项通过配方转化成完全平方的形式,从而将一元二次方程转化为一元一次方程,进而求解。
配方法的步骤如下:1.将常数项移到等式右边,得到 ax + bx = -c。
2.计算一次项系数 b 的一半,即 b/2,然后将其平方加到等式两边,得到 ax + bx + (b/2) = -c + (b/2)。
3.将等式左边化简成完全平方的形式,即 (x + b/2) = c - (b/2)。
接下来,我们可以通过开平方的方法求解 x 的值。
如果 c - (b/2) 是一个完全平方数,那么方程有实数解;如果 c - (b/2) 不是完全平方数,那么方程无实数解。
配方法的应用举例:求解方程 x - 3x + 2 = 0。
1.将常数项移到等式右边,得到 x - 3x = -2。
2.计算一次项系数 -3 的一半,即 -3/2,然后将其平方加到等式两边,得到 x - 3x + ( -3/2 ) = -2 + ( -3/2 )。
3.将等式左边化简成完全平方的形式,即 (x - 3/2) = 1/4。
对方程两边开平方,得到 x - 3/2 = ±1/2,解得 x1 = 2,x2 = 1。
因此,方程 x - 3x + 2 = 0 的解为 x1 = 2,x2 = 1。
总之,配方法是一种有效的求解一元二次方程的方法,适用于各种形式的一元二次方程。
目录(篇2)1.配方法求解一元二次方程的概述2.一元二次方程的标准形式3.配方法的具体步骤4.配方法求解一元二次方程的实例5.结论正文(篇2)一、配方法求解一元二次方程的概述配方法是一种求解一元二次方程的数值方法。
一元二次方程配方法公式一元二次方程是我们在学习数学的过程中经常遇到的一个重要内容,它在数学中有着广泛的应用。
解一元二次方程的方法有很多种,其中配方法是一种常用且有效的解法。
本文将介绍一元二次方程配方法的公式及其应用。
首先,我们来回顾一下一元二次方程的一般形式,ax^2 + bx + c = 0,其中a、b、c分别为方程的系数,x为未知数。
解一元二次方程的一般步骤是先利用配方法将方程化为完全平方的形式,然后再进行求解。
下面我们将详细介绍一元二次方程配方法的公式及其应用。
一元二次方程配方法的公式如下:1. 将方程化为完全平方的形式,ax^2 + bx + c = a(x^2 + (b/a)x) + c = a[(x +b/(2a))^2 (b/(2a))^2] + c。
2. 化简方程,ax^2 + bx + c = a(x + b/(2a))^2 (b^2 4ac)/(4a)。
3. 令u = x + b/(2a),则方程化为,au^2 (b^2 4ac)/(4a) + c = 0。
通过以上公式,我们可以将一元二次方程化为完全平方的形式,从而更容易求解。
接下来,我们将通过一个具体的例子来演示一元二次方程配方法的应用。
例题,解方程x^2 + 6x + 9 = 0。
解:首先,根据配方法的公式,我们可以将方程化为完全平方的形式:x^2 + 6x + 9 = (x + 3)^2。
因此,方程化为,(x + 3)^2 = 0。
接着,我们可以通过开平方的方法求解方程:x + 3 = 0。
x = -3。
所以,方程x^2 + 6x + 9 = 0的解为x = -3。
通过以上例子,我们可以看到一元二次方程配方法的应用非常简便,通过将方程化为完全平方的形式,我们可以更加直观地求解方程,避免了繁琐的计算过程。
总结一元二次方程配方法的公式及其应用,可以帮助我们更好地理解和掌握解一元二次方程的方法。
在实际问题中,我们可以通过配方法来快速求解一元二次方程,为数学建模和实际应用提供了便利。
教案教学内容一元二次方程——配方法一、学习目标:1.掌握用配方法解一元二次方程的一般步骤;2.学会利用配方法解一元二次方程.二、知识回顾:1.形如2+=(n≥0)的一元二次方程,利用求平方根的方法,立即可得x+m= ,从而解x m n()出方程的根,这种解一元二次方程的方法叫“直接开平方法”.2.如果方程能化成x2=p或(mx+n)2=p(p≥0)的形式,那么利用直接开平方法可得x=或mx+n= .三、知识梳理:1.配方法配方法解一元二次方程的依据是完全平方公式222a ab b a b±+=±及直接开平方法.2()通过配成完全平方形式来解医院为次方程的方法,叫做配方法。
配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
2.对结构形如2+=≠≥的一元二次方程来说,()(0,0)ax b c a c当c>0时,根据平方根的意义,方程有两个不相等是实数根;当c=0时,方程有两个相等的实数根;当c<0时,方程没有实数根.3.配方法的步骤(1)移——移项(2)化——化二次项系数为1方程的左、右两边同时除以二次项系数(或乘以二次项系数的倒数)(3)配——配方把方程的左、右两边同时加上一次项系数一半的平方,并运用完全平方公式把原方程化为2()x m n +=(n ≥0)的形式.(4)开——开方如果方程右边是一个非负数,那么就用直接开方法求解;如果方程右边是一个负数,那么这个方程无实数根 注意:m 为一次项系数的一半例:解方程:3x 2-8x-6=0四、典例探究基础经典精析1.配方法解一元二次方程【例1】用配方法解下列方程时,配方有错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2t 2﹣7t ﹣4=0化为(t ﹣)2=D .3x 2﹣4x ﹣2=0化为(x ﹣)2=【例2】用配方法解下列方程:(1)2x 2+4x ﹣9=0 (2) 3x 2﹣2x+3=0 (3)3(x-2)2=0变式、用配方法解方程:(1)x2﹣2x﹣24=0;(2)3x2+8x-3=0;(3)x(x+2)=120.拔高创新讲练1.用配方法求多项式的最值【例1】当x,y取何值时,多项式x2+4x+4y2﹣4y+1取得最小值,并求出最小值.变式1、用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.(1)求证:a2﹣b2+c2﹣2ac<0.(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.【例2】代数式x2+2x+3有最大值或最小值吗?若有,求出此值;若没有,请说明理由。
用配方法解一元二次方程
目标
1、理解配方法,会用配方法简单系数的一元二次方程。
2、了解配方法解一元二次方程的基本步骤,即化一元二次方程为一元一次方程
重点
用配方法解形一元二次方程,使一元二次方程转化为(ax+b)2=k 这样的形式。
难点
使用配方法使一元二次方程转换为左边平方右边数的形式。
过程
一、导入
有这么一个方程,x2+2x-3=0,我们怎么解这个方程呢,能使用前面学过的直接开方法解一元二次方程吗?能不能把这个方程转化为左边完全平方式右边数的形式呢?
新知讲解
我们学过完全平方式:a2±2ab+b2=(a±b)2,很明显,这个式子左边是整式,右边是一个完全平方式。
本课开始时我们提到的一元二次方程x2+2x-3=0,如果把x2+2x变成一个完全平方式,使其余的数放在等号的右方。
那就回到了我们上一节课学过的直接开平方法解一元二次方程。
把x2+2x的后面加1得x2+2x+1,这是一个完全平方式,即:x2+2x+1=(x+1)2,于是我们得到了一个关于x的完全平方式。
由
于加了1,后面要减去1,因此,原方程可以转化为x2+2x+1-1-3=0,前三项是一个完全平方式,后两项合并为-4。
原方程转化为:
(x+1)2-4=0。
到这里就把方程转化成了左边平方,右边数字的形式了:(x+1)2=4,这个方程可以用直接开方法求解。
注意,我们添加的数字是x的系数一半的平方。
例1、把下列式子转化成完全平方式。
(1)x2+6x-16= x2+2x___+(____)2-(____)2-16
(2)x2-2x-1= x2-2x___+(____)2-(____)2-1
解:
(1)x2+6x-16= x2+2·x·+()2-()2-16
(2)x2-2x-1= x2-2·x·+()2-()2-1
例2、根据上例解下列方程
(1)x2+6x-16=0 (2)x2-2x-1=0
解:(1)x2+6x-16=0
等号左边加、减x系数的一半的平方得:x2+2·x·+()2-()2-16=0 前三项写成完全平方式:(x+)2-9-16=0
移项得:(x+)2=25
用直接开方法得:x+3=±5
解得:x1=2, x2=-8
解:(2)x2-2x-1=0
等号左边加、减x系数的一半的平方得:x2-2·x·+()2-()2-1=0 前三项写成完全平方式:(x-)2-1-1=0
移项得:(x-1)2=2
用直接开方法得:x-1=±
解得:x1=+1, x2=-+1
例2、解方程2x2+4x-16=0
分析:这个一元二次方程的二次项系数不为“1”,先化为“1”,只需乘以即可,再用配方法解这个一元二次方程。
解:原方程左右两边同时乘以得:x2+2x-8=0
等号方程左边加、减x系数一半的平方得:x2+2x+()2-()2-8=0 前三项写成完全平方的形式:(x+)2-1-8=0
移项得:(x+)2=9
用直接开方法得:x+=±
解得:x1=, x2=-4
二、练习
解下列方程
(1)x2+2x-3=0 (2)x2-2x-99=0
(3)2x2-7x-4=0
四、作业
习题2.1A组
P41 T2、T3。