变频调速恒压供水系统设计方案
- 格式:doc
- 大小:56.50 KB
- 文档页数:7
高层住宅变频调速恒压供水系统设计随着城市化进程的不断加速,高层住宅的数量也不断增加。
在高层住宅中,稳定可靠的供水系统对于居民的日常生活至关重要。
传统的供水系统往往难以满足高层住宅对水压和水量的需求,因此,设计一套高效的变频调速恒压供水系统显得尤为重要。
本文将重点阐述高层住宅变频调速恒压供水系统的设计原则和具体方案。
一、设计原则1.1 提供稳定的水压在高层住宅中,为了满足居民的生活用水需求,供水系统必须能够提供均衡稳定的水压。
通过采用变频调速恒压供水系统,可以根据居民用水量的变化实时调节水泵的运行速度,以保证供水系统能够稳定地提供恒定的水压。
1.2 节约能源传统的供水系统通常采用恒速运行的水泵,这样会导致水泵在低负载时能耗较高。
而变频调速恒压供水系统则可以根据实际需求智能地调节水泵的转速,使水泵的运行始终处于高效工作状态,从而有效降低能耗,实现节能目的。
1.3 保证可靠性高层住宅供水系统的可靠性对于居民的生活质量至关重要。
在设计变频调速恒压供水系统时,应该选择质量可靠的水泵和控制设备,并设置备用设备以应对突发情况。
二、具体方案2.1 变频调速器的选型变频调速器是实现高层住宅变频调速恒压供水系统的核心设备。
在选型时应注意以下几点:首先,应选择具有较高工作效率和稳定性能的变频调速器。
其次,应根据实际需求选择变频调速器的额定功率和转速范围。
另外,还应注意变频调速器的运行噪音和对供水系统的电磁干扰问题。
2.2 水泵的选型水泵是供水系统的核心组成部分。
在选型时应注意以下几点:首先,应选择质量可靠、效率较高的水泵,以保证长期稳定运行。
其次,应根据高层住宅的水压和水量需求选择合适的水泵型号和数量。
另外,还应考虑水泵的噪音和振动情况,避免对住户生活造成不便。
2.3 控制策略的设计控制策略的设计决定了供水系统的运行效果和稳定性。
在设计过程中应注意以下几点:首先,应充分调研高层住宅的居民用水特点和峰谷用水变化情况,以便合理地设计供水系统的供水策略。
摘要:针对药品研发中试企业用水量具有间断性的特征,设计了一种变频恒压供水系统。
该系统利用PLC的逻辑控制与自诊断分析功能,实现了全自动恒压供水,水泵电机根据测量压力均可变频和工频供电,相互备用。
实际运行表明,该系统运行稳定性强,控制灵活,安全可靠。
关键词:节能;变频调速;PID应用宏;PLC控制;逻辑控制引言药品研发中试企业用水量具有间断性特征,有生产需求时用水量大,在药品研发小试阶段用水量较小,因此,离心水泵必须通过调整转速来满足水压稳定性的需求。
变频恒压供水系统集变频技术、电气技术、现代控制技术于一体,可实现对供水系统的集中管理与监控,并具有良好的节能效果。
1水泵变频调速节能原理水泵调速的H-Q曲线如图1所示,水泵运行工况点D是泵的特性曲线与管路阻力曲线的交点。
当用阀门控制流量时,若要减小流量,则需关小阀门开度,使阀门摩擦阻力变大,阻力曲线从R1移到R2,扬程则从H0上升到H1,流量从QN减小到Q1,运行工况点从D点移到A点。
调速控制时,阻力曲线不变,泵的特性取决于转速,如果将转速由nN变为n1,运行工况点从D点移到C点,扬程从H0降到H3,流量从QN减小到Q1,则泵在A点、C点工况运行时的轴功率分别为:式中:PA、PC为泵在工况点A、C的轴功率(kW);Q1为工况点流量(m3/s);H1、H3为工况点扬程(m);ρ为输出介质单位体积质量(kg/m3);η为工况点的泵效率(%)。
将PA与PC相减得出使用调速控制时节省的功率:Q、H、P、n之间的关系为:水泵采用调速控制方式时,若所需流量为额定流量的80%,则轴功率仅为额定轴功率的51.2%,节能效果相当显著。
变频恒压供水系统的优点是节约电能,节能量通常在10%~40%,流量越小,节能效果越明显。
2控制系统组成本系统供水泵采用两用一备方式,泵功率15 kW,Q=162 m3/s,H=42 m,泵前装有9.5 m×3 m×2.5 m的生产水箱,企业用水量经常出现间断性、阶梯性特征,且市政供水压力偏高,为保证生产用水的安全性,避免系统管网压力过高,本设计采用变频器一拖三运行方式,每台泵电机均可工作在变频/工频模式下,在主回路控制中,每台电机分别通过接触器与工频电源和变频器输出电源连接,工频回路装有过热继电器,工频和变频控制回路在硬件和软件方面互锁,当任意一台电机出现故障,PLC系统经过逻辑分析自动投入备用供电回路,确保管网供水压力稳定,安全供水。
OCCUPATION 2012 12132研究R ESEARCH 变频恒压供水系统方案设计赵 毅摘 要:变频恒压供水系统由PLC、传感器、变频器及水泵机组组成闭环控制系统,经变频器内置PID进行运算,通过PLC控制变频与工频切换,实现闭环自动调节变频恒压供水,代替了传统的水塔供水控制方案。
关键词:恒压供水 变频调速 变频器 PLC一、系统总体方案的设计1.供水控制系统的结构供水控制系统的设计主要包括两方面:一方面是机械结构的设计;另一方面是PLC和变频器电气控制方面的设计。
(1)主要组成部分。
①压力传感器:作为系统的控制输入量,能否准确采集该信号决定控制系统的精度及可靠性。
②控制器:是整个控制系统的核心,通过对外界输入状态进行检测,输出控制量;对外界输入的数据进行运算处理后,输出相应的控制量。
例如单片机、可编程逻辑控制器、计算机等。
本系统采用西门子的SIMATIC S7-200系列。
CPU226具有24个输入点和16个输出点,共40个I/O点。
③变频器:作为核心控制器的后续控制单元,对终端设备进行控制,最终达到控制要求。
本系统主要采用全新一代标准变频器中的风机和泵类变转矩负载专用MM430型变频器。
功率范围7.5kW至250kW。
具有高度可靠性和灵活性。
④水泵:供水系统的执行机构,通过变频器控制电动机的转速,最后达到控制水泵流量大小的要求。
(2)电气控制系统。
电气控制系统主要包括操作面板、电气控制柜等单元。
在该系统中需要检测较多的数字输入量,并且还要检测模拟量的输入,然后根据设定的程序进行数据处理,供水系统的监控主要包括水泵的自动启停控制、供水压力的测量与调节、系统水处理设备运转的监视及控制、故障及异常状况的报警等。
电气控制系统安装在电气控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。
2.恒压供水系统的工作原理变频恒压供水系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。
也许您不在意多耗一度电,但我们关注您白花的每一分钱一、恒压变频自动供水设备设计施工方案一、工程基本资料以上资料非常重要,请客户配合填好,传真到:0938-二、简介随着社会经济技术的发展进步,市政供水系统水质标准逐步提高,供水能力不断增强。
为适应社会发展要求,自动给水设备必然要朝着一定的目标发展,这个目标就是高效节能、无稳流污染、低噪音、操作方便、运行可靠。
我们的恒压(无吸程)供水设备就是按此目标设计的新型给水设备。
恒压(无吸程)自动供水设备设计了全变频控制系统,可更好的适应于水泵大幅变工况运行。
采用部分(单台)水泵变频调速的技术方案时,专门选配了上海名优合金钢密封水泵。
特别配套设计了各种缓冲罐、稳流罐,对稳流具有很好的缓冲作用。
系列产品设计充分考虑了应用的灵活性,可满足不同用户具体工程应用要求的差异。
三、恒压变频恒压供水运行原理1.变频恒压供水系统节能原理供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1所示。
图1-1供水系统的基本特征由图可以看出,流量Q越大,扬程H越小。
由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。
而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H 与流量Q之间的关系H J (Qu )。
管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。
由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。
由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。
因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。
扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。
在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。
某小区高楼变频恒压供水控制系统设计摘要随着我国社会经济的发展,城市建设发展十分迅速,同时也对基础设施建设提出了更高的要求。
城市供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到用户的正常工作和生活。
随着人们对供水质量和供水系统可靠性要求的不断提高,利用先进的自动化技术、控制技术以及通讯技术,设计出高性能、高节能、能适应供水厂复杂环境的恒压供水系统成为必然趋势。
本文首先根据管网和水泵的运行特性曲线,阐明了供水系统的变频调速节能原理;具体分析了变频恒水压供水的原理及系统的组成结构,通过研究和比较,得出结论:变频调速是当今国际上一项效益最高、性能最好、应用最广、最有发展前途的电机调速技术。
因此本文以采用变频器和PLC 组合构成系统的方式,以某居民小区水泵电动机控制系统为对象,逐步阐明如何实现水压恒定供水。
进行了控制系统的主电路设计,控制电路设计。
对输入输出点进行了统计,共有13个输入输出点,根据PLC的选型原则,设备选用了在生产中应用最为广泛的西门子公司生产的S7-200系列(CPU222)的PLC和MM430泵类专用的变频器,利用变频器的本身自有的软启动功能实现水泵电机的启动。
在控制过程中,电控系统由S7-200完成,PID控制由变频器的内置PID控制方式完成,根据控制系统软硬件设计和控制要求,结合变频器的功能参数表预置了相关的参数。
在介绍了PLC的编程方法的基础上,选用了适合初学者的逻辑代数编程,写出了恒压变频供水的逻辑代数,并设计了梯形图,利用PLCSIM仿真软件进行了仿真,仿真的结果表明了设计程序的正确性。
利用了WinCC组态软件设计了高楼变频恒压供水控制系统的界面,界面可动态反映水泵变频供水的工作状态。
最后对恒压供水进行了经济效益分析,分析的结果表明具有明显的节能效益。
关键词:恒压供水,变频调速,PLC,设计,仿真ABSTRACTAs China's social and economic development, urban construction and development very quickly, but also the construction of infrastructure facilities has put forward higher requirements. City water supply system construction is one of the important aspects of the water supply reliability and stability, the economy of a direct impact on the user's normal work and life. As people on the water quality and water supply systems in the continuous improvement of reliability requirements, the use of advanced automation technology, control technology and communication technology, design a high-performance, high-energy, water supply plants to adapt to the complex environment of constant pressure water supply Systems become an inevitable trendIn this paper, pipe network and pumps under the operation of the curve, clarify the water supply system for energy-saving Frequency Control Principle; specific analysis of the frequency of the principle of constant pressure water supply system and the composition of the structure, through research and comparison, concluded: Frequency Control is the highest international one-effectiveness, performance, the best and most widely, the most The future development of the Motor technology. Therefore this paper to adopt the PLC and inverter combination of a systematic approach to a small residential area pump motor control system for the target, and gradually clarified how to achieve a constant supply pressure.A control system for the main circuit design, control circuit design. The input and output points to the statistics, a total of 13 input and output, the PLC in accordance with the principle of selection, equipment selection in the production of the most widely produced by Siemens S7-200 series (CPU222) of the PLC and pumps for MM430 The converter, using its own frequency converter itself to achieve the soft-start the pump motor launch. In the control process, the electronic control system completed by the S7-200, PID control by the converter built-in PID control manner, in accordance with control system software and hardware design and control requirements, combining the functions of converter table preset parameters of the relevant parameters . After the introduction of the PLC programming methods, based on the choice of the logic of algebra for beginners programming, the constant pressure to write the logic of algebra frequency of water supply and design of the ladder, use of simulation software PLCSIM the simulation, simulation The results show thatthe correctness of the design process. WinCC use of the configuration software designed high frequency constant pressure water supply control system interface, dynamic interface may reflect the work of pumping frequency of water supply status. Finally, the constant pressure of water supply for the economic benefit analysis, analysis of the results showed that a significant energy efficiency.Keywords:Constant pressure Water Supply ,Variable velocity Variable frequency,PLC,Design,Simulation目录第一章绪论 (7)1.1引言 (7)1.2本课题产生的背景和意义 (8)1.3变频恒压供水的现况 (8)1.3.1 国内外变频供水系统现状 (8)1.3.2 变频供水系统应用范围 (9)1.4本人的主要工作 (9)第二章变频恒压供水的理论分析 (11)2.1水泵的工作原理 (11)2.2供水电机的搭配 (11)2.3水泵的调节方式 (12)2.4恒压供水系统的能耗分析 (13)2.5供水系统的安全性问题 (15)2.5.1 水锤效应 (15)2.5.3 水锤效应的消除 (16)2.5.4 延长水泵寿命的其他因素 (16)第三章变频恒压供水控制系统硬件的设计 (17)3.1变频恒压供水控制系统的构成方案 (17)3.2变频恒压供水系统的控制方案 (18)3.3供水设备的选择原则 (19)3.4参数的计算与供水设备选型 (21)3.4.1 水泵的参数计算与型号的选择 (21)3.4.2 变频器的选择 (21)3.4.3 压力传感器的选择 (23)3.4.4 水位传感器的选择 (23)3.4.5 其他低压电器的选择 (23)3.5PLC的选型 (24)3.5.1 I/O点的统计 (24)3.5.2 PLC选型的基本原则 (25)3.5.3 I/O的分配 (25)3.6系统硬件线路设计 (26)3.7PID参数的预置 (27)第四章变频恒压供水控制系统软件的设计 (29)4.1常用编程方法 (29)4.1.1 经验设计法 (29)4.1.2 翻译设计法 (29)4.1.3 逻辑代数设计法 (30)4.2编程软件的简单介绍 (32)4.3恒压供水系统梯形图的设计 (33)4.4程序的仿真与调试 (37)4.4.1 仿真软件的简介 (37)4.4.2 恒压供水系统程序的仿真调试 (38)4.5恒压变频供水系统的W IN CC界面设计 (40)4.5.1 WinCC软件简介 (40)4.5.2 恒压供水系统的WinCC界面设计 (41)4.6经济效益分析 (44)第五章总结与期望 (47)5.1总结 (47)5.2展望 (47)参考文献 (48)致谢 (49)附录语句表 (50)第一章绪论1.1 引言水是生命之源,人类生存和发展都离不开水。
基于PLC的变频调速恒压供水系统设计与实现一、本文概述随着工业自动化的发展,变频调速技术在供水系统中的应用越来越广泛。
基于PLC(可编程逻辑控制器)的变频调速恒压供水系统,以其高效、稳定、节能的特点,成为当前供水系统设计的重要趋势。
本文旨在探讨基于PLC的变频调速恒压供水系统的设计与实现方法,以期为相关领域的工程应用提供有益的参考。
文章首先介绍了供水系统的基本构成和功能需求,包括恒压供水的重要性以及变频调速技术在供水系统中的应用优势。
随后,详细阐述了基于PLC的变频调速恒压供水系统的总体设计方案,包括硬件选型、软件编程、系统控制策略等方面。
在此基础上,文章重点探讨了系统实现过程中的关键技术问题,如PLC编程实现、变频器的选择与配置、压力传感器信号的采集与处理等。
通过本文的研究,期望能够为供水系统的设计与实现提供一种有效、可靠的解决方案,同时推动变频调速技术在供水领域的应用和发展。
二、系统需求分析和设计目标随着现代工业技术的快速发展,供水系统的稳定性和效率成为了评价一个城市或企业基础设施水平的重要指标。
传统的供水系统往往存在能耗高、调节性差、压力不稳定等问题,无法满足现代供水系统的要求。
为了解决这些问题,本文提出了一种基于PLC的变频调速恒压供水系统设计方案。
稳定性需求:供水系统需要保持长时间的稳定运行,确保供水压力的稳定性,避免因压力波动对供水质量造成影响。
节能性需求:传统的供水系统往往存在能耗高的问题,新的供水系统需要采用先进的控制技术,降低能耗,提高能源利用效率。
调节性需求:供水系统需要能够根据实际需求,自动调节供水流量和压力,以满足不同时段、不同区域的供水需求。
实现供水系统的恒压供水:通过PLC控制系统,实时监测供水压力,根据压力变化自动调节变频器的输出频率,从而控制水泵的转速,实现恒压供水。
提高供水系统的稳定性:采用先进的控制算法,确保供水系统在各种工况下都能保持稳定的运行状态,避免因压力波动对供水质量造成影响。
变频调速恒压供水控制系统的方案本文根据传统供水中存在的不足和缺点,将PID控制技术应用于小区供水系统中,实现恒压供水。
本文详细阐述了该系统中变频调速的实现方法、系统的各种控制原理及工作过程。
关键字:恒压给水;变频器;PID调节1.1 变频器的控制方式变频器的发展已有数十年的历史,在变频器的发展过程中也曾经出现过多种类型的变频器,但目前成为市场主流的变频器基本上有着图2-1所示的基本结构。
图2-1变频器的基本结构变频调速的控制方式经历了V/F控制、转差频率控制、矢量控制的发展,前者属于开环控制,后两者属于闭环控制,正在发展的是直接转矩控制。
1、V/F控制异步电动机的转速与定子电源频率和极对数有关,改变f 就可以平滑的调节同步转速,但是频率f的上升或者下降可能会引起磁路饱和转矩不足的现象,所以在改变f的同时,还需要调节定子的电压,使气隙磁通保持不变,电动机的效率不下降,这就是V/F控制。
V/F控制简单,通用性优良。
2、转差频率控制由电机学的基础知识可知,异步电动机转矩M与气隙磁通Φ、转差频率f2的关系为:(2-1)只要保持气隙中磁通Φ一定,控制转差频率f2就可以控制电动机的转矩,这就是转差频率控制。
3、矢量控制矢量控制是在交流电动机上模拟直流电动机控制转矩的规律,将定子电流分解成相应于直流电动机的电枢电流的量和励磁电流的量,并分别进行任意控制。
1.2变频调速的节能、调速原理一、水泵工况点的确定以及变化水泵工作点(工况点)是指水泵在确定的管路系统中,实际运行时所具有的扬程、流量以及相应的效率、功率等参数。
如果把某一水泵的性能曲线(即H-Q曲线)和管路性能曲线画在同一坐标系中(图2-2),则这两条曲线的交点A,就是水泵的工作点。
工作点A是水泵运行的理想工作点,实际运行时水泵的工作点并非总是固定在A点。
若把水泵的效率曲线-Q也画在同一坐标系中,在图2-2中可以找出A点的扬程HA、流量QA以及效率A。
图2-2 水泵工作点的确定图2-3水泵工况点的变化从图2-2中可以看出,水泵在工作点A点提供的扬程和管路所需的水头相等,水泵抽送的流量等于管路所需的流量,从而达到能量和流量的平衡,这个平衡点是有条件的,平衡也是相对的。
1 绪论 (2)1.1引言 (5)1.2变频恒压供水产生的背景和意义 (7)1.3变频恒压供水的现况 (8)1.3.1国内外变频供水系统现状........................................................................................... .81.3.2变频供水系统应用范围 (10)1.3.3变频供水系统的发展趋势 (10)2 变频恒压供水的理论分析 (10)2.1水泵的工作原理 (11)2.2供水压力和变频器输出频率的关系 (11)3 变频恒压供水系统的构成及控制原理 (11)3.1 通用变频器+PLC (12)3.2变频恒压供水系统的结构 (13)3.2.1执行机构 (14)3.2.2信号检测 (14)3.2.3控制系统 (15)3.2.4人机界面 (16)3.2.5通讯接口 (16)3.2.6报警装置 (17)3.3变频恒压供水系统的控制方案 (176)3.4变频恒压供水系统的水压恒定控制 (17)3.5变频供水水泵加减的控制 (18)4 变频恒压供水系统的设计 (19)4.1理论可行性 (20)4.2技术可行性 (21)4.3硬件设计 (21)4.3.1变频供水主电路设计 (22)4.3.2控制系统硬件设计 (23)4.4软件设计 (24)4.4.1系统初始化程序设计 (25)4.4.3电机增减控制程序设计 (26)4.5本章小节 (27)参考文献 (29)摘要随着我国社会经济的发展,住房制度改革的不断深入,人们生活水平的不断提高,城市建设发展十分迅速,同时也对基础设施建设提出了更高的要求。
城市供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到用户的正常工作和生活,也直接体现了供水管理水平的高低。
传统供水厂,特别是中小供水厂所普遍采用的恒速泵加压供水方式存在效率较低、可靠性不高、自动化程度低等缺点,难以满足当前经济生活的需要。
摘要本论文根据中国城市小区的供水要求,设计了一套基于PLC的变频调速恒压供水系统,并利用组态软件开发良好的运行管理界面。
变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器、工控机等构成。
本系统包含三台水泵电机,它们组成变频循环运行方式。
采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则。
压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。
通过工控机与PLC的连接,采用组态软件完成系统监控,实现了运行状态动态显示及数据、报警的查询。
关键词:变频调速,恒压供水,PLC,组态软1 绪论1.1 课题的提出水和电是人类生活、生产中不可缺少的重要物质,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能源短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度较低,而随着我国社会经济的发展,人们生活水平的不断提高,以及住房制度改革的不断深入,城市中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。
小区供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到小区住户的正常工作和生活,也直接体现了小区物业管理水平的高低。
传统的小区供水方式有:恒速泵加压供水、气压罐供水、水塔高位水箱供水、液力耦合器和电池滑差离合器调速的供水方式、单片机变频调速供水系统等方式,其优、缺点如下[1]:(1) 恒速泵加压供水方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,破坏性大,目前较少采用。
(2) 气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求较高、系统维护工作量大,而且为减少水泵起动次数,停泵压力往往比较高,致使水泵在低效段工作,而出水压力无谓的增高,也使浪费加大,从而限制了其发展。
变频器恒压供水方案1. 引言变频器恒压供水方案是一种应用于供水系统中的控制方案,通过使用变频器控制水泵的运行速度,实现供水系统中恒定的水压。
该方案广泛应用于城市建设、工业生产等领域,在提高供水系统效率、降低能耗方面具有重要意义。
本文将详细介绍变频器恒压供水方案的工作原理、特点以及实施步骤。
2. 工作原理变频器恒压供水方案的核心在于使用变频器控制水泵的转速,从而调整供水系统中的水流量和水压。
其工作原理如下:1)传感器检测水压信号:在供水系统的出口处安装压力传感器,用于监测当前的水压情况。
2)变频器感知信号并调整频率:压力传感器监测到的水压信号经过变频器转换为电信号,并通过内置的算法进行分析和处理。
变频器根据水压信号的变化调整水泵的转速,使得供水系统中的水压保持在设定的恒定水压范围内。
3)控制水泵运行状态:根据变频器调整的水泵转速,控制水泵的启停和运行,以及水泵的工作时间。
4)实时监测和反馈:通过变频器的显示屏或远程监控系统,实时监测供水系统的运行状态,包括水泵的转速、水压情况等,并可通过网络等方式将监测数据反馈给相关人员。
3. 特点和优势变频器恒压供水方案相比传统的供水系统,具有以下特点和优势:•省能节能:通过变频器控制水泵的转速,减少水泵的运行时间和功率消耗,降低能源消耗和运行成本。
•精确控制供水压力:采用恒压控制方法,可精确控制供水系统的水压,避免水压过高或过低对供水系统和设备造成的损坏。
•减少水泵启停次数:通过变频器调整水泵转速,使得水泵运行平稳,减少启停频繁,延长水泵的使用寿命。
•自动调节:当供水系统的水压发生变化时,变频器能够及时感知并调整水泵的运行状态,保持恒定的水压。
•实时监测:变频器可实时监测供水系统的运行状态,通过显示屏或远程监控系统提供供水系统的数据和报警信息,方便运维人员进行管理和维护。
4. 实施步骤实施变频器恒压供水方案的步骤如下:1)系统设计:根据实际需求,确定供水系统的流量要求、所需水压范围等参数,进行系统设计。
变频恒压供水控制系统设计一、系统设计概述变频恒压供水控制系统是一种用于城市供水系统和建筑物水供系统的先进控制系统。
通过使用变频控制器和压力传感器,系统能够监测并调节系统的运行,实现水压恒定,避免因为供水系统压力不足或者过高而导致的浪费和损坏。
本文将阐述变频恒压供水控制系统的设计原理和技术要点。
二、变频恒压供水控制系统的工作原理1. 压力传感器检测变频恒压供水控制系统首先通过安装在管道上的压力传感器实时检测供水管道内的水压情况。
压力传感器将检测到的水压情况反馈给控制系统。
2. 控制器调节控制系统根据压力传感器反馈的水压情况,利用变频器调节水泵的转速,以使得供水管道内的压力始终维持在设定的恒定值之上。
当管道内的水压低于设定值时,控制系统将增加水泵的转速以增加供水量;当管道内的水压超过设定值时,控制系统将降低水泵的转速以减少供水量。
3. 故障自诊断系统还具有故障自诊断功能,当传感器或控制器出现故障时,系统能够自动诊断并给出报警信号,指示维修人员前往修复。
1. 变频器的选型变频器是变频恒压供水控制系统中的关键组件,它能够根据控制系统的指令调节水泵的转速。
在选型时,需要考虑控制系统对变频器的精度和稳定性的要求,以及水泵的功率和额定转速。
一般情况下,应选择具有较高性能和较高精度的变频器,以保证控制系统的准确性和稳定性。
压力传感器是变频恒压供水控制系统中用于检测管道内水压情况的装置,因此其精度和可靠性对系统的性能至关重要。
在选型时,需要考虑管道内水压的测量范围和精度要求,以及传感器的耐压能力和抗干扰能力。
3. 控制系统的程序设计控制系统的程序设计需要考虑到系统运行的稳定性和响应速度。
程序设计应充分考虑水泵和变频器的控制逻辑,并充分考虑各种工况下的供水量和供水压力的变化趋势,以实现系统的准确控制和稳定运行。
4. 系统的安全保护设计变频恒压供水控制系统需要具备完善的安全保护功能,以防止水泵和管道的损坏。
安全保护设计应考虑到水泵的过流、过载和短路等故障情况,并配备相应的保护装置,及时停止水泵的运行以避免对设备和管道的损坏。
第四章变频调速恒压供水系统的硬件部分设计4.1变频器的工作原理与选择变频器是采用交一直一交电源变换技术、电力电子技术、微电脑控制等技术于一身的综合性电气产品,它通过改变电动机工作电源频率从而达到改变电动机转速的目的。
它在变频调速恒压供水系统中起着非常重要作用,是水泵电机调速的执行者。
4.1.1变频调速基本原理变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s)/p(4-1)式中,n表示电机转速;f表示电源频率;s表示电机转差率:p表示电机磁极对数。
通过改变电动机工作电源频率达到改变电机转速的目的。
变频器就是基于上述原理采用交一直一交电源变换技术、电力电子、微电脑控制等技术于一身的综合性电气产品。
实际上,若仅改变电源的频率则不能获得异步电动机满意的调整性能。
因此,必须在调节石的同时,对定子相电压u1也进行调节,使关与u,之间存在一定的比例关系。
故变频电源实际上是变频变压电源,而变频调速准确的称呼应是变频变压调速,其英文术语为VariableVoltageVariableFrequency,又简称为VVVF调速器.根据人与ut的关系,变频调速原则上主要有以下两种:1.恒转矩变频调速(恒磁通变频调速)由异步电动机的电势方程知:电动机定子相电压ut近似与电源五、磁通。
的乘积成正比。
故若u,一定时,则。
必将随着石的变化而变。
若石从额定值(我国通常为50HZ)往下调节时,小就增大。
而电动机在设计时,为了充分利用铁芯材料,一般都把中值选在接近磁饱与与数值附近。
因此,中的增大,就会导致磁路过饱与,励磁电流大大增加,这将使电动机带负载的能力降低,功率因数值变小,铁损增加,电动机过热,这是不允许的.反之,若石从额定值往上调节时,。
就减小,这在一定的负载下又有过电流的危险.为此通常要求磁通恒定,即f,与ul 成正比关系,即(4-2)式(4一中u2,几为电动机在非额定工况时的定子电压与电源频率。
恒压供水设计方案恒压供水是指在管网压力条件下,通过调整和控制供水泵的运行,使用户所用水压力保持稳定的一种供水方式。
它能够有效解决供水过程中压力不稳定的问题,给用户提供更加舒适的用水环境。
1.系统结构设计:恒压供水系统由恒压供水设备、主管道、分支管道和用户终端组成。
设备包括水泵、调速器、压力传感器、控制系统等。
主管道要选择适当的材料,保证输水流量和压力的稳定性。
分支管道要合理布局,避免压力损失和水质变化。
2.泵选型设计:根据用户的用水需求和压力要求,选择合适的水泵。
一般情况下,恒压供水系统中采用多台水泵并联运行,根据需求进行启停或变频调速控制,以保持恒定的供水压力。
水泵的选型需要考虑到用户用水周期性的变化,以及管网输水容量的要求。
3.控制系统设计:恒压供水系统中的控制系统起到起停和调速的功能,主要包括开关控制、流量调整和压力调整。
开关控制可以手动或自动实现,流量调整可以通过启停水泵或调节水泵扬程实现,压力调整可以通过调节水泵的出口压力来实现。
控制系统的设计需要考虑到用户的需求和供水的稳定性。
4.安全措施设计:恒压供水系统在设计中需要考虑到各种可能出现的故障情况,并做好相应的安全措施。
例如,设置过压保护和低压保护装置,以防止系统超压或低压情况发生。
另外,还需要设置液压保护和液位控制装置,对阀门和水泵进行监测和控制,防止设备损坏和供水中断。
5.经济性分析:恒压供水系统的设计要考虑到经济效益,综合考虑设备投资、运行成本和维护费用等因素,进行经济性分析。
通过优化设计和选择合适的设备,使系统达到性价比最优化。
综上所述,恒压供水设计方案需要综合考虑用户需求、管网设计、设备选型和控制系统等多个方面。
只有通过合理的设计和选择,才能实现恒定的供水压力,提供舒适和稳定的用水环境。
同时,还需要注重安全性和经济性的考虑,以确保系统的正常运行和经济效益的实现。
变频恒压供水控制系统设计一、引言在城市的供水系统中,常常会遇到供水压力不稳定的情况,特别是在高层建筑中,由于楼层的高度差异,给供水系统的设计和运行带来了很大的挑战。
为了解决这个问题,需借助变频技术和恒压控制系统的结合,通过控制泵的转速来保持供水系统的稳定压力。
本文将从变频恒压供水控制系统的原理、设计和实施等方面展开介绍。
二、变频恒压供水控制系统原理1. 变频技术变频技术是利用变频器控制电机的转速,从而实现对供水系统流量的调节和控制。
变频器是一种电子设备,能够通过改变电源频率来控制电机的转速,从而调节泵的流量输出。
通过控制变频器的输出频率、电压和电流,可以实现对泵的精确控制,达到节能和稳定供水压力的目的。
2. 恒压控制系统恒压控制系统是利用传感器监测供水管网的压力变化,通过控制电机的转速来实时调节泵的流量,从而保持管网中的压力稳定。
当供水管网的压力低于设定值时,控制系统会提高泵的转速,增加供水流量;而当压力高于设定值时,系统则会降低泵的转速,减少供水流量。
通过这种方式,可以有效地保持供水系统的稳定压力,提高系统的可靠性和节能性。
变频恒压供水控制系统是将变频技术和恒压控制系统相结合,通过控制变频器和恒压控制系统来实现对供水系统的全面控制。
系统首先通过传感器实时监测管网的压力情况,将监测到的数据传输给恒压控制系统;恒压控制系统根据设定的压力值,通过控制变频器来调节泵的转速,使得供水系统的压力始终保持在设定的范围内。
当管网中的压力发生变化时,控制系统会及时调整泵的运行状态,保证供水系统的稳定性和可靠性。
1. 系统结构设计变频恒压供水控制系统的设计包括主要的硬件结构和软件控制部分。
硬件方面需要包括变频器、传感器、控制器和电机等设备,这些设备需要能够实现对供水系统的全面监测和控制。
软件控制部分需要编写相应的程序,能够实现对传感器数据的采集和分析,以及对控制系统的调节和优化。
2. 设备选型和布置在设计变频恒压供水控制系统时,需要选择合适的设备和材料,以满足供水系统的实际需求。
变频调速恒压供水系统设计方案
2.1 住宅小区给水系统的要求
多层住宅小区已取消屋顶水箱,逐渐采用变频恒压供水设备给水系统,而对于十二层及十二层以下的"小高层",《民用建筑水灭火系统设计规程》中规定"当采用小区集中给水泵房的生活消防共用给水系统时,可不设高位水箱。
但应符合下列规定:①泵房的给水服务半径不宜大于150m;②消防泵和生活泵的电源应不低于按二级负荷的要求供电或自备柴油发电机;③消防泵的流量应满足生活和消防同时给水的流量;④泵房的出水压力平时不应大于0.45MPa,且应保证室内消火栓给水系统充满水;在灭火时应满足室内消防给水系统的压力;⑤室内消火栓给水系统竖管的顶部应设自动排气阀"。
2.2 用水量计算及水泵的选型
(1)用水量计算
设计流量的大小直接关系到水泵的选型、管网的口径及给水的安全保证性。
目前,一般住宅小区的设计流量主要包括以下几方面;
①居民生活用水;②公共建筑用水;③消防用水;④绿化用水;⑤浇洒道路用水;⑥未预见水量及管网漏失水量。
其中,公共建筑用水可按现行《建筑给水排水设计规范》给水当量计算;浇洒道路和绿地用水量应根据路面、绿化、气候和土壤等条件确定,草本植物可选
2.0L/(m2·d);木本植物可选1.0L/(m2·d);未预见水量及管网漏损量,可按最高日用水量的10%-15%合并计算。
而最难确定的是小区居民生活用水,这主要是住宅小区大小不一,幢数不同。
这就决定了住宅小区居民生活用水量的确定,既不同于城市市政给水设计,也不同于建筑物室内给水设计。
平时我们进行设计时,通常采用经验做法;小区生活用水干管按最高日最大时流量公式进行计算,宅前支管和进户管按当量以设计秒流量公式进行计量。
如表1为某设计院设计的某住宅小区的生活用水量计算结果。
表1 某住宅小区用水量计算表
用水地点户数
或面积用水量
标准用水量(m3)系数备注
最大日平均时最大时2.23.5人/户
住宅楼1647300L/人.d173072159
洗车52183L/m2.d1655
绿化370201.5L/m2.d1111111每日二次
未预见 186918按10%计
合计 204397193
按照城市自来水公司的给水安全性要求,每座水泵房的给水服务面积不允许超过50000m2,约450户居民,按每户3.5人计算,则总用水人数1575,按照城市住宅标准规定“住宅每人最高日生活用水定额不应小于230L”,可取300L/(人·d)。
又根据《建筑给水排水设计规范》(GBJ15-88)第1.6.1中的方法,有以下的公式:
Qh = KhQd/T
式中 Qh-最大小时生活用水量(m3/h);
Qd-最高日用水量(m3/d);
T-每日(或最大班)使用时间(h/d);
Kh-小时变化系数,本市可取2.2。
则:
(2)水泵选型
目前,住宅小区的室外埋管均采用UPVC塑料给水管。
根据上述计算结果及GBJ15-88规定,选择室外管管径为DN100。
按照服务半径150m及十二层建筑(2.8m层高)计算,取住宅分户表前的静水压力70kPa(或十一跃十二层时为100kPa),水表安装距楼面高度1.0m,水泵扬程估算:
H = 18.48×0.15×1.3+2.8×11+1.0+7.0 = 42.4m
或H = 18.48×0.15×1.3+2.8×10+1.0+10.0 = 42.6m
根据流量及扬程,即可选择水泵。
由于市政常压管网可直接提供绿化等其它常压用水,故不考虑应用水泵。
变频恒压供水管网图如图1所示。
图1中1#、2#水泵为生活水泵,一用一备。
3#、4#为消防水泵。
传感器的任务是检测管网水压,输出信号为4~20mA。
2.3电气控制原理图设计
变频调速恒压供水设备主要采用变频调速器、可编程控制器(PLC)和PID调节器等器件构成。
消防水泵不需要调速,有火警信号时,由
PLC控制直接启动消防水泵即可,这里从略。
下面主要介绍1#和2#生活水泵变频恒压供水控制部分的设计。
其电气主回路图如图2所示。
图中变频器VF的作用是实现电机的无级调速,从而使管网水压连续变化。
1M~2M为生活给水泵电机,KM1~KM4为电机起停,互相切换的交流接触器。
压力设定在PID回路调节器上进行,可以为系统提供满足用户需要的水压期望值。
其实现方法是将压力设定信号(通过面板设定)和压力反馈信号(传感器信号)送入PID回路调节器,由PID回路调节器在其内部进行运算后,输出给变频器一个转速调节信号(4~20mA)。
正常工作时,生活给水泵1台工作,1台备用。
并由PLC控制实现定时轮换。
当给水设备开始工作时,先起动工作泵,管网水压达到设定值时,变频器的输出频率则稳定在一定的数值上。
而当用水量增加,管网水压降低时,传感器将
这一信号送入PID回路调节器,PID回路调节器增大输出信号,使变频器的输出频率上升,水泵的转速提高,水压上升。
如果用水量增加很多,使变频器的输出频率达到最大值,仍不能使管网水压达到设定值时,PLC就发出控制信号,将刚才运行的水泵切换为工频状态,用变频器起动备用泵。
由PLC控制两台泵同时工作,一台变频运行,一台工频运行。
反之,当用水量减少,变频器的输出频率达到最小值时,PLC则发出信号,停备用泵。
由于变频器的转速控制信号是由PID回路调节器给出的,所以对PLC来讲,不需要有模拟量输入接口和模拟量输出接口。
减少了连线和附加设备,降低了给水设备的成本,增加了整套设备的可靠性。
由于采用的PID回路调节器可以安装在控制柜的面板上,且PID回路调节器可以进行量纲的变换,因而可以进行供水压力的直接设定,直观
可靠。
由于PID调节器内部自带了优化算法,所以水压的调节十分平滑,稳定。
当接到火灾信号时,PLC控制消防泵启动,管网由低压转到高压,每单元的入户管道的紧急关闭阀在压力上限值时关闭,将生活管路断开;火灾信号撤除时,系统自动恢复至恒压供水状态。
为了保证水压反馈信号值的准确,可对该信号设置滤波时间常数。