2019高考试题汇编文科数学---概率统计.doc
- 格式:doc
- 大小:323.63 KB
- 文档页数:10
2019年全国高考文科数学分类汇编---概率统计1(2019北京文科).改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额支付方式不大于(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(Ⅰ)400人;(Ⅱ)1 25;(Ⅲ)见解析.【解析】【分析】(Ⅰ)由题意利用频率近似概率可得满足题意的人数;(Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率;(Ⅲ)结合概率统计相关定义给出结论即可.【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人,所以样本中两种支付方式都使用的有1003025540---=,所以全校学生中两种支付方式都使用的有401000400100⨯=(人). (Ⅱ)因为样本中仅使用B 的学生共有25人,只有1人支付金额大于2000元,所以该学生上个月支付金额大于2000元的概率为125. (Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为125,因为从仅使用B 的学生中随机调查1人,发现他本月的支付金额大于2000元,依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B 的学生中本月支付金额大于2000元的人数有变化,且比上个月多.【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力.2.(2019全国1卷文科)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生C. 616号学生D. 815号学生【答案】C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到, 所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.3.(2019全国1卷文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)43 ,55;(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】【分析】(1)从题中所给的22⨯列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异. 【详解】(1)由题中表格可知,50名男顾客对商场服务满意的有40人,所以男顾客对商场服务满意率估计为1404 505P==, 50名女顾客对商场满意的有30人,所以女顾客对商场服务满意率估计为2303 505P==,(2)由列联表可知22100(40203010)1004.762 3.8417030505021K⨯-⨯==≈>⨯⨯⨯,所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.【点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算2K 的值,独立性检验,属于简单题目.4.(2019全国2卷文科)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标概率为A. 23B.35 C. 25D. 15【答案】B 【解析】 【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.5.(2019全国2卷文科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.(2019全国2卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.的(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【答案】(1) 增长率超过0400的企业比例为21100,产值负增长的企业比例为2110050=;(2)平均数0.3;标准差0.17. 【解析】 【分析】(1)本题首先可以通过题意确定100个企业中增长率超过0400的企业以及产值负增长的企业的个数,然后通过增长率超过0400的企业以及产值负增长的企业的个数除随机调查的企业总数即可得出结果;(2)可通过平均值以及标准差的计算公式得出结果。
一、选择题:1.为评估一种农作物的种植效果,选了n 块地作试验田,这n 块地的亩产量(单位:kg )分别为1x ,2x ,⋅⋅⋅,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,⋅⋅⋅,n x 的平均数B .1x ,2x ,⋅⋅⋅,n x 的标准差C .1x ,2x ,⋅⋅⋅,n x 的最大值D .1x ,2x ,⋅⋅⋅,n x 的中位数2.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( ) A .3,5 B .5,5 C .3,7 D .5,74.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .8π C .12D .4π 5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A .45 B .35 C .25 D .156.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110 B .15 C .310 D .25二、解答题:7.(新课标1)为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,1621(8.5)18.439i i =-≈∑,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i )从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii )在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑,0.0080.09≈.8.(新课标2)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较22()()()()()n ad bc K a b c d a c b d -=++++9.(新课标3)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C ︒)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率。
2019年高考---概率与统计(文科)过关试卷一、填空题(共6小题,每小题10分,共60分)1、、某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是_____________2、、为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.2 8.6 10.0 11.3 11.9支出y(万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆy bx a=+,其中ˆˆˆ0.76,b a y bx==-,据此估计,该社区一户收入为15万元家庭年支出为万元3、、从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为_____________4、、从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为_____________5、我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为石6、在区间[0,2]上随机地取一个数x,则事件“121-1log2x≤+≤()1”发生的概率为二、解答题(共2小题,每小题20分,共40分)7、海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率; (2)填写下面列联表,学*科网并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50 kg 箱产量≥50 kg旧养殖法新养殖法(3P () 0.050 0.010 0.001k3.841 6.635 10.82822()()()()()n ad bc K a b c d a c b d -=++++.8、某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数 012345≥保费0.85aa1.25a 1.5a 1.75a 2a出险次数 0 1 2 3 4 5≥频数605030302010(1(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”. 求()P B 的估计值;(3)求续保人本年度的平均保费估计值.。
(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.方差:反映一组数据偏离平均数的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一组数据的离散程度.考向三频率分布直方图的应用样题3 (2017新课标全国Ⅱ文科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量<50 kg箱产量≥50 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.附:P()0.050 0.010 0.001k 3.841 6.635 10.828.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.【名师点睛】(1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为1.(2)频率分布直方图中均值等于组中值与对应概率乘积的和.理由如下:(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:超过m不超过m第一种生产方式155第二种生产方式515。
2019年高考数学真题——概率统计专题整理1.(2019年全国卷1,文数6题,满分5分)某学校为了解1 000名新生的身体素 质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽 取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A . 8号学生B . 200号学生C .616号学生D .815号学生【答案】C .【解析】依题意可知组距间隔为100010100d ==,各组间被抽到号码的绝对值差应为间隔d 的倍数,即能被10整除.只有C 项:616465710-=能被10整除,故选C . 2.(2019年全国卷1,文数17题,满分12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.【答案解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾 客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯. ∵4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.3.(2019年全国卷1,理数6题,满分5分)我国古代典籍《周易》 用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在 所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516 B . 1132 C . 2132D . 1116 【答案】A .【解析】易知出现阳爻的概率服从二项分布16,2B ⎛⎫ ⎪⎝⎭,∴每卦6爻中恰好有3个阳爻的概率333611512216P C ⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭,故选A . 4.(2019年全国卷1,理数21题,满分12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案解析】(1)X 的所有可能取值为1,0,1-.(1)(1)(0)(1)(1)(1)(1)P X P X P X αβαβαβαβ=-=-==+--==-,,,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此11=0.4+0.5 +0.1i i i i p p p p -+,故()()110.10.4i i i i p p p p +--=-,即()114i i i i p p p p +--=-.又因为1010p p p -=≠,所以{}1(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列. (ii )由(i )可得88776100p p p p p p p p =-+-++-+()()()88776101413p p p p p p p -=-+-++-=.由于8=1p ,故18341p =-,所以 ()()()()44433221101411.325 7p p p p p p p p p p -=-+-+-+=-=4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.5.(2019年全国卷2,文数4题,满分5分)生物实验室有5只兔子,其中只有3 只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标 的概率为A .23 B . 35 C . 25 D . 15【答案】B .【解析】“恰有2只测量过该指标”指的是事件“两只通过指标且另外一只没有通过指标”,∴21323535C C P C ==,故选B .6.(2019年全国卷2,文数14、理数13题,满分5分)我国高铁发展迅速,技术 先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有2 0个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车 所有车次的平均正点率的估计值为 . 【答案】0.98.【解析】依题意共有10201040++=个车次,∴经停该站高铁列车所有车次的平均正点率的估计值为1020100.970.980.990.98404040⨯+⨯+⨯=. 7.(2019年全国卷2,文数19题,满分12分)某行业主管部门为了解本行业中小。
2019年高考数学试题分项版——统计概率(原卷版)一、选择题1.(2019·全国Ⅰ文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生2.(2019·全国Ⅱ文,4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.3.(2019·全国Ⅱ文,5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙4.(2019·全国Ⅲ文,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.5.(2019·全国Ⅲ文,4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.86.(2019·浙江,7)设0<a<1.随机变量X的分布列是()则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大7.(2019·全国Ⅰ理,6)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.8.(2019·全国Ⅱ理,5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差9.(2019·全国Ⅲ理,3)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.810.(2019·全国Ⅲ理,4)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.24二、填空题1.(2019·全国Ⅱ文,14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.2.(2019·浙江,13)在二项式(+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.3.(2019·江苏,5)已知一组数据6,7,8,8,9,10,则该组数据的方差是_____________.4.(2019·江苏,6)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.5.(2019·全国Ⅰ理,15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.6.(2019·全国Ⅱ理,13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.7.(2019·天津理,10)8的展开式中的常数项为________.三、解答题1.(2019·全国Ⅰ文,17)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=.2.(2019·全国Ⅱ文,19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.3.(2019·全国Ⅲ文,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).4.(2019·北京文,17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生中上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.5.(2019·天津文,15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.6.(2019·江苏,22)(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2-3b2的值.7.(2019·江苏,23)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},C n={(0,2),(1,2),(2,2),…,(n,2)},n∈N*.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).8.(2019·全国Ⅰ理,21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.9.(2019·全国Ⅱ理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.10.(2019·全国Ⅲ理,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).11.(2019·北京理,17)(13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.12.(2019·天津理,16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.。
专题对点练216.1~6.2组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.某高校共有学生3 000人,新进大一学生有800人.现对大学生社团活动情况进行抽样调查,用分层抽样方法在全校抽取300人,则应在大一抽取的人数为()A.200B.100C.80D.752.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,73.已知在数轴上0和3之间任取一个实数x,则使“log2x<1”的概率为()A.B.C.D.4.为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有效果的图形是()5.在区间[-3,3]内随机取出一个数a,使得1∈{x|2x2+ax-a2>0}的概率为()A.B.C.D.6.现采用随机模拟的方法估计某运动员射击4次至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1,2表示没有击中目标,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数: 75270293714098570347437386366947141746980371623326168045 601136619597742476104281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.55B.0.6C.0.65D.0.77.设样本数据x1,x2,…,x10的平均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的平均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a8.(2018广东深圳调研)某食品研究部门为了解一种酒品的储藏年份与芳香度之间的相关关系,在市场由最小二乘法得到回归方程=1.03x+1.13,但不小心在检测后滴到表格上一滴检测液,污损了一个数据,请你推断该数据为()A.6.1B.6.28C.6.5D.6.89.已知半径为r的圆内切于某等边三角形,若在该三角形内任取一点,则该点到圆心的距离大于半径r 的概率为()A.B.1-C.D.1-二、填空题(共3小题,满分15分)10.(2018江苏,3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.11.(2018上海,9)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是.(结果用最简分数表示)12.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请200名同学每人随机写下一个都小于1的正实数对(x,y);再统计两数能与1构成钝角三角形三边的数对(x,y)的个数m;最后再根据统计数m来估计π的值.假如统计结果是m=56,那么可以估计π≈.(用分数表示)三、解答题(共3个题,满分分别为13分,13分,14分)13.如图所示,茎叶图记录了甲、乙两组5名工人制造某种零件的个数.(1)求甲组工人制造零件的平均数和方差;(2)分别从甲、乙两组中随机选取一名工人,求这两名工人制造的零件总数不超过20的概率.14.全世界人们越来越关注环境保护问题,某监测站点于2018年8月某日起连续n天监测空气质量指(1)根据所给统计表和频率分布直方图中的信息求出n,m的值,并完成频率分布直方图;(2)由频率分布直方图求该组数据的平均数与中位数;(3)在空气质量指数分别属于[50,100)和[150,200)的监测数据中,用分层抽样的方法抽取5天,再从中任意选取2天,求事件A“两天空气都为良”发生的概率.15.某种新产品投放市场一段时间后,经过调研获得了时间x(单位:天)与销售单价y(单位:元)的一组数据,(x i-)2(w i-)2(x i-)(y i-) (w i-)·(y i-)表中w i=w i.(1)根据散点图判断x与哪一个更适宜作价格y关于时间x的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y关于x的回归方程.(3)若该产品的日销售量g(x)(单位:件)与时间x的函数关系为g(x)=+120(x∈N*),求该产品投放市场第几天的销售额最高?最高为多少元?附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为.专题对点练21答案1.C解析设大一抽取的人数为x,则用分层抽样的方法可得,解得x=80.故选C.2.A解析甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.若两组数据的中位数相等,则65=60+y,所以y=5.又两组数据的平均值相等,所以56+62+65+70+x+74=59+61+67+65+78,解得x=3.3.C解析由log2x<1,得0<x<2,区间长度为2,区间[0,3]长度为3,所以所求概率为.故选C.4.D解析根据四个列联表中的等高条形图知,图形D中不服药与服药时患禽流感的差异最大,它最能体现该药物对预防禽流感有效果.故选D.5.D解析由1∈{x|2x2+ax-a2>0},得2+a-a2>0,解得-1<a<2.由几何概型的知识知,总的测度区间[-3,3]的长度为6,随机地取出一个数a,使得1∈{x|2x2+ax-a2>0}这个事件的测度为3,故区间[-3,3]内随机地取出一个数a,使得1∈{x|2x2+ax-a2>0}的概率为,故选D.6.B解析由题意知模拟射击4次的结果,经随机模拟产生了20组随机数,在20组随机数中表示射击4次至少击中3次的有:7527,9857,0347,4373,8636,6947,4698,6233,8045,3661,9597,7424,共12组随机数,故所求概率P≈=0.6.故选B.7.A解析由题意知y i=x i+a(i=1,2,…,10),则(x1+x2+…+x10+10a)=(x1+x2+…+x10)+a=+a=1+a,方差s2=[(x1+a--a)2+(x2+a--a)2+…+(x10+a--a)2]=[(x1-)2+(x2-)2+…+(x10-)2]=s2=4.故选A.8.A解析=4,因为样本中心点在回归直线=1.03x+1.13上,所以将x=4代入回归方程=1.03x+1.13,可得=5.25.设该数据的值为m,由5.25=,解得m=6.1,即该数据为6.1.故选A.9.B解析已知半径为r的圆内切于某等边三角形,则等边三角形的边长为2r,故该点到圆心的距离大于半径r的概率为1-=1-.10.90解析由题中茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为=90.11.解析从编号互不相同的五个砝码中随机选取三个,总的结果数为10,其中选取的三个砝码的总质量为9克的有两种,所以所求概率为.12.解析由题意,得200对都小于1的正实数对(x,y),对应区域的面积为1,两个数能与1构成钝角三角形三边的数对(x,y),满足x2+y2<1且x,y都小于1,x+y>1,面积为.因为统计两数能与1构成钝角三角形三边的数对(x,y)的个数m=56,所以,所以π≈.故答案为.13.解(1)甲组工人制造零件数为9,9,10,10,12,故甲组工人制造零件的平均数(9+9+10+10+12)=10,方差为s2= [(9-10)2+(9-10)2+(10-10)2+(10-10)2+(12-10)2]=.(2)由题意,得甲、乙两组工人制造零件的个数分别是:甲:9,9,10,10,12;乙:8,9,9,10,11,甲组中5名工人分别记为a,b,c,d,e,乙组中5名工人分别记为A,B,C,D,E,分别从甲、乙两组中随机选取1名工人,共有25种方法,制造零件总数超过20的有:eB,eC,eD,eE,dE,cE,共6种,故这两名工人制造的零件总数不超过20的概率P=1-.14.解(1)0.004×50=,解得n=100.20+40+m+10+5=100,解得m=25,=0.008,=0.005,=0.002,=0.001.完成频率分布直方图如下图:(2)由频率分布直方图知该组数据的平均数为=25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95.∵[0,50)的频率为0.004×50=0.2,[50,100)的频率为0.008×50=0.4,∴该组数据的中位数为50+×50=87.5.(3)在空气质量指数为[50,100)和[150,200)的监测天数中分布抽取4天和1天,在所抽取的5天中,将空气质量指数为[50,100)的4天分别记为a,b,c,d,将空气质量指数为[150,200)的1天记为e.从中任取2天的基本事件分别为:(a,b),(a,c),(a,d),(a,e),(b, c),(b,d),(b,e),(c,d),(c,e),(d,e),共10个,其中事件A“两天空气都为良”包含的基本事件为:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6个,∴事件A“两天空气都为良”发生的概率P(A)=.15.解(1)由散点图可以判断适合作价格y关于时间x的回归方程类型.(2)令w=,先建立y关于w的线性回归方程.∵=20,∴=37.8-20×0.89=20,∴y关于w的线性方程为=20+20w,∴y关于x的线性方程为=20+.(3)日销售额h(x)=g(x)=-200=-2 000,故x=10时,h(x)有最大值2 420元,即该产品投放市场第10天的销售额最高,最高为2 420元.。
2019高考全国各地数学卷文科解答题分类汇编-概率与统计1、〔天津文〕15、〔本小题总分值13分〕编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下:〔Ⅰ〕将得分在对应区间内的人数填入相应的空格;〔Ⅱ〕从得分在区间[)20,30内的运动员中随机抽取2人,〔i 〕用运动员的编号列出所有可能的抽取结果;〔ii 〕求这2人得分之和大于50的概率、【解析】〔15〕本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式的等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力,总分值13分。
〔Ⅰ〕解:4,6,6〔Ⅱ〕〔i 〕解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种。
〔ii 〕解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”〔记为事件B 〕的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种。
所以51().153P B ==2.〔北京文〕16、〔本小题共13分〕以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.〔1〕如果X=8,求乙组同学植树棵树的平均数和方差;〔2〕如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. 〔注:方差],)()()[(1222212x x x ns n -+-+-= 其中为nx x x ,,,21 的平均数〕 【解析】〔16〕〔共13分〕解〔1〕当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为;435410988=+++=方差为.1611])43510()4359()4358[(412222=-+-+-=s 〔Ⅱ〕记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:〔A 1,B 1〕,〔A 1,B 2〕,〔A 1,B 3〕,〔A 1,B 4〕, 〔A 2,B 1〕,〔A 2,B 2〕,〔A 2,B 3〕,〔A 2,B 4〕, 〔A 3,B 1〕,〔A 2,B 2〕,〔A 3,B 3〕,〔A 1,B 4〕, 〔A 4,B 1〕,〔A 4,B 2〕,〔A 4,B 3〕,〔A 4,B 4〕,用C 表示:“选出的两名同学的植树总棵数为19”这一事件,那么C 中的结果有4个,它们是:〔A 1,B 4〕,〔A 2,B 4〕,〔A 3,B 2〕,〔A 4,B 2〕,故所求概率为.41164)(==C P3.〔全国新文〕19、〔本小题总分值12分〕 某种产品的质量以其质量指标值衡量,质量指标越大说明质量越好,且质量指标值大于或等于102的产品为优质品、现用两种新配方〔分别称为A 配方和B 配方〕做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表〔I 〕分别估计用A 配方,B 配方生产的产品的优质品率;〔II 〕用B 配方生产的一种产品利润y 〔单位:元〕与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润、 【解析】〔19〕解〔Ⅰ〕由试验结果知,用A 配方生产的产品中优质的频率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3。
2019高考全国一卷为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.解析:(1)首先根据题意,随机试验一轮试验共4个结果,我们用符号+-分别表示治愈和未治愈。
则甲+乙+,甲+乙-,甲-乙+,甲-乙-。
p甲乙=(1-)p(X=0)= 甲乙+甲乙=p甲乙=(1-)所以的分布列为:(2)当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效。
假设四轮试验都是甲+乙—,则甲药比乙药多四只,认为甲药更有效。
此时甲药得分为4分,乙药得分为-4分,所以甲药、乙药在试验开始时都赋予4分。
(0,1,,8)ip i=表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则00p=表示四轮试验都是甲-乙+,乙药有效,81p=表示四轮试验都是甲+乙-,甲药有效。
( 2019全国 1 文) 6. 某学校为认识1000名重生的身体素质,将这些学生编号为1,2,3,L,1000 ,从这些重生中用系统抽样方法等距抽取100名学生进行体质测试,若 46号学生被抽到,则下边 4 名学生中被抽到的是().A. 8号学生B. 200号学生C. 616号学生D. 815号学生答案:C解答:从 1000名学生中抽取 100名,每10人抽一个, 46 号学生被抽到,则抽取的号数就为 10n6(0 n 99,n N ) ,可得出616 号学生被抽到.( 2019全国 1 文) 17. 某商场为提升服务质量,随机检查了50 名男顾客和 50名女顾客,每位顾客对该商场的服务给出满意或不满意的评论,获得下边列联表:满意不满意男顾客女顾客4010 3020(1)分别预计男、女顾客对该商场服务满意的概率;(2)可否有95%的掌握以为男、女顾客对该商场服务的评论有差别?附:2n(ad bc) 2 ( a b)(c d )(a c)(b d )P( 2k )0.0500.0100.001 k 3.841 6.63510.828答案:(1) 男顾客的的满意概率为P 404 505女顾客的的满意概率为P 303 505(2)有 95%的掌握以为男、女顾客对该商场服务的评论有差别.解答:( 1)男顾客的的满意概率为P 404 505女顾客的的满意概率为P 303. 505(2)2100(40201030)2 4.762(4010)(3020)(4030)(1020)4.762 3.84195%有的掌握以为男、女顾客对该商场服务的评论有差别.(2019 全国 2 文 ) 4.生物实验室有5只兔子,此中只有3只丈量过某项指标.若从这5只兔子中随机拿出3只,则恰有 2 只丈量过该指标的概率为()2321A. B. C. D.3555答案: B解答:计丈量过的 3 只兔子为1、、,设丈量过的2只兔子为、则 3 只兔子的种类有(1,2,3) (1,2, A) (1,2, B) 23 A B(1,3, A) (1,3, B) (1,A, B) 2,3, A2,3, B2, A,B3,A,B,则恰巧有两只丈量过的有 6 种,所以其概率为3.5 (2019 全国 2 文) 5. 在“一带一路”知识测试后,甲、乙、丙三人对成绩进行展望.甲:我的成绩比乙高 .乙:丙的成绩比我和甲的都高 .丙:我的成绩比乙高 .成绩宣布后,三人成绩互不同样且只有一个人展望正确,那么三人按成绩由高到低的序次为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案:A解答:依据已知逻辑关系可知,甲的展望正确,乙丙的展望错误,从而可得结果.(2019 全国 2 文) 14.我国高铁发展快速,技术先进. 经统计,在经停某站的高铁列车中,有10 个车次的正点率为 0.97 ,有 20 个车次的正点率为0.98 ,有 10 个车次的正点率为0.99 ,则经停该站的高铁列车全部车次的均匀正点率的预计值为.答案:0.98解答:均匀正点率的预计值0.97100.98200.9910400.98 .(2019 全国 2 文 ) 19. 某行业主管部门为认识本行业中小公司的生产状况,随机检查了100 个公司,获得这些企业第一季度有关于前一年第一季度产值增加率y 的频数散布表.y 的分组0.20,00,0.200.20,0.400.40,0.600.60,0.80公司数22453147( 1)分别预计这种公司中产值增加率不低于40%的公司比率、产值负增加的公司比率;( 2)求这种公司产值增加率的均匀数与标准差的预计值(同一组中的数据用该组区间的中点值为代表). (精准到 0.01 )附:74 8.602.答案:详看法析解答 :( 1)这种公司中产值增加率不低于40%的公司比率是14 721 ,2100100这种公司中产值负增加的公司比率是.100( 2)这种公司产值增加率的均匀数是0.10 2 0.10 240.30530.50140.70 7 100 0.30这种公司产值增加率的方差是0.100.3020.100.30240.300.30530.500.30140.700.3071000.0296 所以这种公司产值22222增加率的标准差是0.029627428.6020.172040.17 .100100( 20193.)全国 3 文)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是(A.1B.111 64C. D.32【答案】 D【分析】男女生人数同样可利用整体发剖析出两位女生相邻的概率,从而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数同样,所以两位女生相邻与不相邻的概率均是1.应选 D.2【点睛】此题考察常有背景中的古典概型,浸透了数学建模和数学运算修养.采纳等同法,利用等价转变的思想解题.( 2019 全国 3 文) 4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学珍宝,并称为中国古典小说四大名著. 某中学为认识本校学生阅读四大名著的状况,随机检查了100 学生,此中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该检阅读过《西游记》的学生人数与该校学生总数比值的预计值为()A.0.5B.0.6C.0.7D.0.8【答案】C【分析】【剖析】依据题先求出阅读过西游记的人数,从而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70 ,则其与该校学生人数之比为70÷100=0.7.故选 C.【点睛】此题考察抽样数据的统计,浸透了数据办理和数学运算修养.采纳去重法,利用转变与化归思想解题.( 2019全国3 文)17.为认识甲、乙两种离子在小鼠体内的残留程度,进行以下试验:将200 只小鼠随机分红A, B 两组,每组100 只,此中 A 组小鼠给服甲离子溶液, B 组小鼠给服乙离子溶液. 每只小鼠给服的溶液体积同样、摩尔浓度同样. 经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比. 依据试验数据分别获得如下直方图:记 C 为事件:“乙离子残留在体内的百分比不低于 5.5 ”,依据直方图获得P C的预计值为0.70 .( 1)求乙离子残留百分比直方图中a, b的值;( 2)分别预计甲、乙离子残留百分比的均匀值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a 0.35 , b 0.10 ;(2) 4.05, 6 .【分析】【剖析】(1)由P(C)0.70可解得a和 b 的值;(2) 依据公式求均匀数 .【详解】(1)由题得 a 0.20 0.150.70 ,解得 a0.35 ,由 0.05 b 0.15 1 P(C) 1 0.70 ,解得b 0.10 .(2)由甲离子的直方图可得,甲离子残留百分比的均匀值为0.1520.2030.3040.2050.1060.057 4.05,乙离子残留百分比的均匀值为0.0530.1040.1550.3560.2070.1586【点睛】此题考察频次散布直方图和均匀数,属于基础题.( 2019 北京文) 17.改革开放以来,人们的支付方式发生了巨大转变.最近几年来,挪动支付已成为主要支付方式之一.为认识某校学生上个月 A , B 两种挪动支付方式的使用状况,从全校全部的1000 名学生中随机抽取了 100人,发现样本中 A ,B 两种支付方式都不使用的有 5 人,样本中仅使用 A 和仅使用 B 的学生的支付金额散布状况以下:2000 元大于 2000 元支付不大于2019高考试题汇编文科数学---概率统计.doc金额支付方式仅使用 A27 人 3 人仅使用 B24 人 1 人(Ⅰ)预计该校学生中上个月 A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用 B 的学生中随机抽取 1 人,求该学生上个月支付金额大于2000 元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用 B 的学生中随机抽查的支付金额大于2000 元.联合(Ⅱ)的结果,可否定为样本仅使用 B 的学生中本月支付金额大于有变化?说明原因.1 人,发现他本月2000 元的人数【答案】(Ⅰ) 400 人;(Ⅱ)1;25(Ⅲ)看法析.【分析】剖析】( Ⅰ)由题意利用频次近似概率可得知足题意的人数;( Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000 元的概率;( Ⅲ)联合概率统计有关定义给出结论即可.【详解】(Ⅰ)由图表可知仅使用 A 的人数有 30 人,仅使用 B 的人数有25 人,由题意知 A,B 两种支付方式都不使用的有 5 人,【40 ,所以样本中两种支付方式都使用的有10030255所以全校学生中两种支付方式都使用的有401000400 (人). 100(Ⅱ)因为样本中仅使用 B 的学生共有 25 人,只有1 人支付金额大于2000 元,所以该学生上个月支付金额大于2000 元的概率为1.25(Ⅲ)由(Ⅱ)知支付金额大于2000 元的概率为1,25因为从仅使用 B 的学生中随机检查 1 人,发现他本月的支付金额大于2000 元,依照小概率事件它在一次试验中是几乎不行能发生的,所以能够以为仅使用 B 的学生中本月支付金额大于2000元的人数有变化,且比上个月多.【点睛】此题主要考察古典概型概率公式及其应用,概率的定义与应用等知识,意在考察学生的转变能力和计算求解能力 .( 2019 天津文)15.2019 年,我国实行个人所得税专项附带扣除方法,波及儿女教育、持续教育、重病医疗、住房贷款利息或许住宅租金、奉养老人等六项专项附带扣除. 某单位老、中、青职工分别有72,108,120人,现采纳分层抽样的方法,从该单位上述职工中抽取25 人检查专项附带扣除的享受状况.(Ⅰ)应从老、中、青职工中分别抽取多少人?(Ⅱ)抽取的 25人中,享受起码两项专项附带扣除的职工有 6 人,分别记为A, B, C, D, E, F . 享受状况如右表,此中“ d ”表示享受,“×”表示不享受. 现从这 6 人中随机抽取 2 人接受采访 .职工A B C D E F项目儿女教育○○×○×○持续教育××○×○○重病医疗×××○××住宅贷款利息○○××○○住宅租金××○×××奉养老人○○×××○( i ( ii )试用所给字母列举出全部可能的抽取结果;)设 M 为事件“抽取的 2 人享受的专项附带扣除起码有一项同样”,求事件M发生的概率.【答案】( I) 6 人, 9 人, 10人;( II)( i)看法析;( ii)11.15【分析】【剖析】(I)依据题中所给的老、中、青职工人数,求得人数比,利用分层抽样要求每个个体被抽到的概率是相等的,联合样本容量求得结果;(II)( I)依据 6 人中随机抽取 2 人,将全部的结果一一列出;( ii)依据题意,找出知足条件的基本领件,利用公式求得概率.【详解】( I)由已知,老、中、青职工人数之比为6:9:10,因为采纳分层抽样的方法从中抽取25 位职工,所以应从老、中、青职工中分别抽取 6 人,9 人,10 人.( II)( i)从已知的 6 人中随机抽取2人的全部可能结果为A,B , A,C ,A, D,A,E , A,F,B,C,B,D ,B, E, B,F,C, D,C,E,C, F, D,E , D,F ,E, F,共 15 种;( ii)由表格知,切合题意的全部可能结果为A,B ,A,D ,A,E ,A,F , B,D,B,E ,B,F , C,E , C,F ,D, F, E,F ,共11种,所以,时间 M 发生的概率P( M )11. 15【点睛】本小题主要考察随机抽样、用列举法计算随机事件所含的基本领件数、古典概型即其概率计算公式等基本知识,考察运用概率知识解决简单实质问题的能力.(2019 江苏 )5.已知一组数据6, 7, 8, 8, 9,10,则该组数据的方差是____.【答案】53【分析】【剖析】由题意第一求得均匀数,而后求解方差即可.【详解】由题意,该组数据的均匀数为67889108 ,615所以该组数据的方差是[(68)2(7 8)2(88)2(8 8)2(98)2(108)2 ].63【点睛】此题主要考察方差的计算公式,属于基础题.(2019 江苏 )6.从 3名男同学和 2 名女同学中任选 2 名同学参加志愿者服务,则选出的2名同学中起码有 1 名女同学的概率是 _____.【答案】710【分析】【剖析】先求事件的总数,再求选出的 2 名同学中起码有 1 名女同学的事件数,最后依据古典概型的概率计算公式得出答案 .【详解】从 3 名男同学和2 名女同学中任选2名同学参加志愿服务,共有C5210 种状况.若选出的2名学生恰有1名女生,有 C31C21 6 种状况,若选出的 2 名学生都是女生,有C22 1 种状况,所以所求的概率为61710.10【点睛】计数原理是高考考察的要点内容,考察的形式有两种,一是独立考察,二是与古典概型联合考察,因为古典概型概率的计算比较明确,所以,计算正确基本领件总数是解题的重要一环.在办理问题的过程中,应注意“”“ ”“”“ ”.审清题意,明确分类分步,依据次序有无,明确摆列组合(2019 江苏 )25.在平面直角坐标系 xOy 中,设点集A n{(0,0),(1,0),(2,0),,( n,0)} ,B n (0,1),( n,1)},C n{(0,2),(1 ,2),(2,2), L ,( n,2)}, n N . 令 M n A n U B n U C n.从会合M n中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当 n=1 时,求 X 的概率散布;(2)对给定的正整数 n( n≥3),求概率 P( X≤n)(用 n 表示) .【答案】( 1)看法析;( 2)看法析 .【分析】【剖析】(1)由题意第一确立 X 可能的取值,而后利用古典概型计算公式求得相应的概率值即可确立散布列;(2) 将原问题转变为对峙事件的问题求解P X n的值,据此分类议论① . b d ,②.b0,d 1 ,③. b 0,d 2 ,④ . b1,d 2 四种状况确立X知足X n 的全部可能的取值,而后求解相应的概率值即可确立P X ≤ n 的值 .【详解】( 1)当n 1 时,X的全部可能取值是1, 2,2, 5.X 的概率散布为P( X 1)772)442,P(X215,C615C6P(X 2)22,P(X5)2 2 .C 6215C6215( 2)设A( a,b)和B(c,d )是从M n中拿出的两个点.因为 P(X n)1P( X n) ,所以仅需考虑X n 的状况.①若 b d ,则AB n ,不存在 X n 的取法;②若 b0,d1,则AB( a c)21n21,所以 X n 当且仅当AB n21,此时 a0 ,c n 或a n ,c0 ,有 2 种取法;③若 b0,d2,则AB(a c) 24n2 4 ,因为当 n 3 时,(n1)24n ,所以X n 当且仅当AB n24,此时 a0 ,c n 或 a n ,c0 ,有2种取法;④若 b1,d2,则AB( a c)21n21,所以X n 当且仅当 AB n21,此时 a0 ,c n 或a n ,c0 ,有 2 种取法.综上,当X n 时,X的全部可能取值是n2+1和n2 4 ,且P( X n2 1)4,P( X n24)2.C2n24C2n24所以, P(X n)1P( X n2 1)P( X n24)16.C 2n24【点睛】此题主要考察计数原理、古典概型、随机变量及其概率散布等基础知识,考察逻辑思想能力和推理论证能力.( 2019 浙江) 7.设0 a 1,则随机变量X 的散布列是:则当 a 在0,1 内增大时()A. D X增大B. D X减小C. D X 先增大后减小D. D X先减小后增大【答案】 D【分析】【剖析】研究方差随 a 变化的增大或减小规律,常用方法就是将方差用参数 a 表示,应用函数知识求解.此题依据方差与希望的关系,将方差表示为 a 的二次函数,二测函数的图象和性质解题.题目有必定综合性,着重重要知识、基础知识、运算求解能力的考察 .【详解】方法1:由散布列得E(X )1a,则32222 D(X)1a01 1 a a1 1 a112a11,则当 a 在(0,1)内增大时,333333926 D( X ) 先减小后增大.a2 1 (a 1)22a22方法 2:则D(X) E X2E(X) 02a 2 2a133399924应选 D.【点睛】易出现的错误有,一是数学希望、方差以及两者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确获得二次函数表达式.。
(2010). 有编号为1A ,2A ,…10A 的10个零件,测量其直径(单位:cm ),得到下面数据:其中直径在区间[1.48,1.52]内的零件为一等品。
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率。
(2009). 为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B,C 三个区中抽取7个工厂进行调查,已知A,B ,C 区中分别有18,27,18个工厂(Ⅰ)求从A,B,C 区中分别抽取的工厂个数;(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率。
(2008). 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p,且乙投球2次均未命中的概率为1 16.(Ⅰ)求乙投球的命中率p;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.(2007). 已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为红球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(2006). 甲、乙两台机床相互没有影响地生产某种产品,甲机床产品的正品率是0.9,乙机床产品的正品率是0.95.(I)从甲机床生产的产品中任取3件,求其中恰有2件正品的概率(用数字作答);(II)从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率(用数字作答(2004). 从4名男生和2名女生中任选3人参加演讲比赛(1)求所选3人都是男生的概率;(2)求所选3人中恰有1名女生的概率;(3)求所选3人中至少有1名女生的概率(2003). 在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.(Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率. (精确到0.001)(2002)(2001). 如图,用A、B、C三类不同的无件连接成两个系统N1、N2.当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作.已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90.分别求系统N1、N2正常工作的概率P1、P2.— A — B — C ——A —— B —— C —N1 N2。
2019年高考试题分类汇编(统计与概率)考点1 统计考法1 简单随机抽样1.(2019·全国卷Ⅰ·文科)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生 B.200号学生 C.616号学生 D.815号学生2.(2019·天津卷·文科)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A B C D E F.享受情况如右表,其中“”表示享受,“⨯”表示不享受.现从,,,,,(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.考法2数字特征1.(2019·全国卷Ⅱ·理科)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数 B.平均数 C.方差 D.极差2.(2019·全国卷Ⅱ·文理科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经该站高铁列车所有车次的平均正点率的估计值为 .3.(2019·江苏卷)已知一组数据6,7,8,8,9,10,则该组数据的方差是 .4.(2019·全国卷Ⅰ·文理科)古希腊时期,人们认为最美人体的头顶至肚脐的0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A .165cmB .175cmC .185cmD .195cm9.(2019·全国卷Ⅱ·文科)某行业主管部门为了解本行业中小型企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表:(Ⅰ)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(Ⅱ)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈考点2 概率考法1古典概型1.(2019·全国卷Ⅱ·文科)生物实验室有5只兔子,其中3只测量过某项指标,若从这5只兔子随机取出3只,则恰有2只测量过该项指标概率为A .23B .35C .25D .152.(2019·江苏卷)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .3.(2019·全国卷Ⅲ·文理科)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(2019·全国卷Ⅰ·理科)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“--”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.1116考法2相互独立事件的概率1.(2019·全国卷Ⅰ·理科)甲、乙两队进行篮球决赛,采取七场四胜制(当一对赢得四场胜利时,该队获胜,决赛决赛).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果互相独立,则甲队以4:1获胜的概率为 .2.(2019·全国卷Ⅱ·理科)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(Ⅰ)求(2)P X=;(Ⅱ)事件“4X=且甲获胜”的概率.3.(2019·天津卷·理科)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.考法3 频率分布直方图1.(2019·全国卷Ⅲ·文理科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A 、B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70.(Ⅰ)求乙离子残留百分比直方图中a ,b 的值;(Ⅱ)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).2.(2019·北京卷·文科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本仅使用A 和仅使用B 的学生的支付金额分布(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.甲离子残留百分比直方图 乙离子残留百分比直方图考点3 分布列1.(2019·北京卷·理科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本仅使用A 和仅使用B 的学生的支付金额分布(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两个支付方式都使用的概率; (Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化,现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.则当a 在(0,1)内增大时, A .()D X 增大 B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大3.(2019·全国卷Ⅰ·理科)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮的试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别为α和β,一轮试验中甲药的得分记为X . (Ⅰ)求X 的的分布列;(Ⅱ)若甲药、乙药在试验开始时都赋予4分,i p (0,1,,8i =)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,1i i p ap -= 1i i bp cp +++(1,2,,7i =),其中(1)a p X ==-,(0)b p X ==,(1)c p X ==.假设0.5α=,0.8β=.①证明:1{}i i p p +-(1,2,,7i =)为等比数列;②求4p ,并根据4p 的值解释这种试验方案的合理性. 考点4 独立性检验1.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对(Ⅰ)分别估计男、女顾客对该商场服务满意的概率; (Ⅱ)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.。
概率与统计1.【 2019 年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学珍宝,并称为中国古典小说四大名著.某中学为认识本校学生阅读四大名著的状况,随机检查了100 位学生,此中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该检阅读过《西游记》的学生人数与该校学生总数比值的预计值为A. B .C.D.2.【 2019 年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从 9 个原始评分中去掉 1 个最高分、1 个最低分,获得 7 个有效评分. 7 个有效评分与 9 个原始评分对比,不变的数字特点是A .中位数B .均匀数C.方差D.极差3.【 2019 年高考浙江卷】设0< a< 1,则随机变量X 的散布列是X0a1P 111 333则当 a 在( 0,1)内增大时,A.D(X)增大B.D(X)减小C.D( X )先增大后减小D.D ( X )先减小后增大4.【 2019年高考江苏卷】已知一组数据6, 7, 8, 8,9, 10,则该组数据的方差是______________ .5.【 2019年高考全国Ⅱ卷理数】我国高铁发展快速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为,有 20 个车次的正点率为,有 10 个车次的正点率为,则经停该站高铁列车全部车次的均匀正点率的预计值为______________.6.【 2019 年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采纳七场四胜制(当一队博得四场成功时,该队获胜,决赛结束).依据先期比赛成绩,甲队的主客场安排挨次为“主主客客主客主”.设甲队主场取胜的概率为0.6 ,客场取胜的概率为,且各场比赛结果互相独立,则甲队以 4 ∶ 1 获胜的概率是______________.7.【 2019 年高考全国Ⅲ卷理数】为认识甲、乙两种离子在小鼠体内的残留程度,进行以下试验:将200 只小鼠随机分红 A ,B 两组,每组100 只,此中 A 组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积同样、摩尔浓度同样.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.依据试验数据分别获得以下直方图:记 C 为事件:“乙离子残留在体内的百分比不低于”,依据直方图获得P( C)的预计值为.(1)求乙离子残留百分比直方图中a,b 的值;(2)分别预计甲、乙离子残留百分比的均匀值(同一组中的数据用该组区间的中点值为代表).8.【 2019 年高考全国Ⅱ卷理数】11 分制乒乓球比赛,每赢一球得 1 分,当某局打成10:10 平后,每球互换发球权,先多得 2 分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假定甲发球时甲得分的概率为,乙发球时甲得分的概率为,各球的结果互相独立.在某局两方10:10 平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求 P( X=2);(2)求事件“X=4 且甲获胜”的概率.9.【 2019 年高考天津卷理数】设甲、乙两位同学上学时期,每日7: 30 以前到校的概率均为2.假定甲、3乙两位同学到校状况互不影响,且任一起学每日到校状况互相独立.(1)用 X 表示甲同学上学时期的三天中7: 30以前到校的天数,求随机变量X 的散布列和数学希望;(2)设 M 为事件“上学时期的三天中,甲同学在7: 30 以前到校的天数比乙同学在7: 30 以前到校的天数恰很多 2”,求事件M发生的概率.10.【 2019 年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.最近几年来,挪动支付已成为主要支付方式之一.为认识某校学生上个月 A ,B 两种挪动支付方式的使用状况,从全校学生中随机抽取了 100 人,发现样本中 A , B 两种支付方式都不使用的有5人,样本中仅使用 A 和仅使用 B 的学生的支付金额散布状况以下:支付金额(元)(0, 1000](1000, 2000]大于 2000支付方式仅使用 A18人9人3人仅使用 B10人14人1人( 1)从全校学生中随机抽取 1 人,预计该学生上个月 A , B 两种支付方式都使用的概率;( 2)从样本仅使用 A 和仅使用 B 的学生中各随机抽取1人,以 X 表示这 2 人中上个月支付金额大于1000 元的人数,求X 的散布列和数学希望;( 3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用 A 的学生中,随机抽查 3 人,发现他们本月的支付金额都大于2000元.依据抽查结果,可否定为样本仅使用 A 的学生中本月支付金额大于 2000 元的人数有变化?说明原由.11.【 2019 年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪一种新药更有效,为此进行动物试验.试验方案以下:每一轮选用两只白鼠对药效进行对照试验.关于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当此中一种药治愈的白鼠比另一种药治愈的白鼠多 4 只时,就停止试验,并以为治愈只数多的药更有效.为了方便描绘问题,商定:关于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得 1 分,乙药得1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得 1 分,甲药得1分;若都治愈或都未治愈则两种药均得0 分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.( 1)求X的散布列;( 2)若甲药、乙药在试验开始时都给予 4 分,p i(i0,1,L ,8) 表示“甲药的累计得分为i 时,最后认为甲药比乙药更有效”的概率,则p0 0, p8 1 , p i ap i 1bp i cp i 1 (i1,2,L ,7) ,此中a P( X1) ,b P(X 0),cP( X1).假定,0.8 .(i) 证明:{ p i 1p i } (i0,1,2,L,7)为等比数列;(ii) 求p4,并依据p4的值解说这类试验方案的合理性.优良模拟试题12.【广西桂林市、崇左市2019届高三放学期二模联考】在某项测试中,丈量结果听从正态散布N (1, 2 )(0) ,若 P(01) 0.4 ,则 P(02)A.B.C.D.13.【河南省洛阳市2019 届高三第三次一致考试】已知某地域中小学生人数和近视状况分别如图甲和图乙所示.为了认识该地域中小学生的近视形成原由,用分层抽样的方法抽取2% 的学生进行检查,则样本容量和抽取的高中生近视人数分别为A .100, 10B .100, 20C. 200, 10D. 200, 2014.【陕西省 2019 届高三年级第三次联考】同时投掷 2 枚质地均匀的硬币 4 次,设 2 枚硬币均正面向上的次数为 X ,则 X 的数学希望是A .1B .235C.D.2215.【江西省新八校 2019 届高三第二次联考】某学校高一年级1802 人,高二年级 1600人,高三年级1499人,先采纳分层抽样的方法从中抽取98 名学生参加全国中学生禁毒知识比赛,则在高一、高二、高三三个年级中抽取的人数分别为A .35,33,30B .36,32,30C.36,33,29D.35,32,3116.【浙江省三校2019 年 5 月第二次联考】已知甲口袋中有 3 个红球和 2 个白球,乙口袋中有 2 个红球和 3个白球,现从甲、乙口袋中各随机拿出一个球并互相互换,记互换后甲口袋中红球的个数为,则E( )1413A.B.5578C.D.3317.【福建省泉州市2019 届高三第二次( 5 月 )质检】已知某样本的容量为50,均匀数为70,方差为 75.现发此刻采集这些数据时,此中的两个数据记录有误,一个错将80 记录为 60,另一个错将70 记录为 90.在对错误的数据进行改正后,从头求得样本的均匀数为x ,方差为s2,则A .x70, s275B .x70, s275C.x70, s275D.x70, s27518.【广东省汕头市2019 届高三第二次模拟考试( B 卷 )】在某次高中学科比赛中,4000 名考生的参赛成绩统计以下图,60 分以下视为不及格,若同一组中数据用该组区间中点作代表,则以下说法中有误的是A .成绩在[70,80]分的考生人数最多B.不及格的考生人数为1000 人C.考生比赛成绩的均匀分约70.5 分D .考生比赛成绩的中位数为75 分19.【天津市南开中学2019 届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为主旨的大型文化类比赛节目,邀请全国各个年纪段、各个领域的诗词喜好者共同参加诗词知识比拼.“百人团”由一百多位来自全国各地的选手构成,成员上至古稀老人,下至垂髫小儿,人数依照年纪分组统计以下表:分组(年纪)[7,20)[20,40)[40,80)频数(人)185436者的人数;( 2)在( 1)中抽出的 6 人中,任选 2 人参加一对一的抗衡比赛,求这 2 人来自同一年纪组的概率.20.【 2019 北京市通州区三模】某企业五机器的售状况,企业随机采集了一个月售的相关数据,企业定同一机器售价钱同样,分整理获得下表:机器型第一第二第三第四第五售(万元)10050200200120售量(台)521058利率利率是指:一台机器售价钱减去出厂价钱获得的利与机器售价钱的比.( 1)从企业本月出的机器中随机一台,求台机器利率高于0.2 的概率;(2)从企业本月出的售价 20 万元的机器中随机取2台,求两台机器的利率不一样的概率;(3)假每机器利率不,售一台第一机器利x1万元,售一台第二机器利x2万元,⋯,售一台第五机器利x5,依照上表数据,随机售一台机器利的希望E( x) ,x x1 x2 x3 x4x5,判断 E( x) 与 x 的大小.(不要求明)5(完整版)2019高考分类汇编概率与统计(原卷版)21.【江西省新八校2019 届高三第二次联考】某种水果依照果径大小可分为四类:标准果、优良果、精选果、礼物果.某采买商从采买的一批水果中随机抽取100 个,利用水果的等级分类标准获得的数据如下:等级标准果优良果精选果礼物果个数10304020(1)若将频次是为概率,从这100个水果中有放回地随机抽取4个,求恰巧有2个水果是礼物果的概率;(结果用分数表示)(2)用样本预计整体,果园老板提出两种购销方案给采买商参照,方案1:不分类卖出,单价为20 元/ kg.方案2:分类卖出,分类后的水果售价以下:等级标准果优良果精选果礼物果售价 (元 /kg)16182224从采买单的角度考虑,应当采纳哪一种方案?( 3)用分层抽样的方法从这100 个水果中抽取 10 个,再从抽取的10 个水果中随机抽取 3 个,X表示抽取的是精选果的数目,求X的散布列及数学希望E( X ) .1111 / 11。
2019年高考数学试题分类汇编概率一、选择题.1、(2019年高考全国I 卷文科6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生答案:C解析:组距为10,所以选出号码为等差数列,公差为10,故选C2、(2019年高考全国I 卷理科6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116答案:A解析:一共有6426=种可能,其中满足恰有3个阳爻的有2036=C 种,概率为1656420=故选A 3、(2019年高考全国II 卷文科4)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35 C .25D .15答案:B解析:设5只兔子为A,B,C,D,E,其中A,B,C 为测量过指标的取出3只所有情况:ABC 、ABD 、ABE 、ACD 、ACE 、ADE 、BCD 、BCE 、BDE 、CDE 共10种满足条件的有6种:ABD 、ABE 、ACD 、ACE 、BCD 、BCE 故概率为53=p 故答案选B 4、(2019年高考全国II 卷理科5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差 答案:A解析:9个数的中位数与去掉两个数后的7个数的中位数相同.故答案选A5、(2019年高考全国III 卷文科3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12答案:D解析:两位男生和两位女生排成一列,共有44A 种站法,其中两位女生相邻的站法共有3322A A 种,所以两位女生相邻的概率是21123412312443322=⨯⨯⨯⨯⨯⨯⨯=A A A 。
(2019全国1文)6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,3,,1000L ,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( ). A.8号学生B.200号学生C.616号学生D.815号学生 答案: C解答:从1000名学生中抽取100名,每10人抽一个,46号学生被抽到,则抽取的号数就为106(099,)n n n N +≤≤∈,可得出616号学生被抽到.(2019全国1文)17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服(1) 分别估计男、女顾客对该商场服务满意的概率;(2) 能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc a b c d a c b d κ-=++++(1)男顾客的的满意概率为404505P == 女顾客的的满意概率为303505P == (2) 有95%的把握认为男、女顾客对该商场服务的评价有差异. 解答:(1) 男顾客的的满意概率为404505P == 女顾客的的满意概率为303505P ==. (2) 22100(40201030) 4.762(4010)(3020)(4030)(1020)κ⨯-⨯==++++ 4.762 3.841>有95%的把握认为男、女顾客对该商场服务的评价有差异.(2019全国2文)4. 生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23 B.35 C.25 D.15答案:B解答:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B ,则恰好有两只测量过的有6种,所以其概率为35.(2019全国2文)5. 在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 答案:A解答:根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果.(2019全国2文)14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为 . 答案:0.98解答:平均正点率的估计值0.97100.98200.99100.9840⨯+⨯+⨯==.(2019全国2文)19. 某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈. 答案: 详见解析 解答:(1)这类企业中产值增长率不低于40%的企业比例是14721100100+=, 这类企业中产值负增长的企业比例是2100. (2)这类企业产值增长率的平均数是()0.1020.10240.30530.50140.7071000.30-⨯+⨯+⨯+⨯+⨯÷=⎡⎤⎣⎦ 这类企业产值增长率的方差是()()()()()222220.100.3020.100.30240.300.30530.500.30140.700.3071000.0296⎡⎤--⨯+-⨯+-⨯+-⨯+-⨯÷=⎣⎦所以这类企业产值28.6020.172040.17100==⨯=≈.(2019全国3文)3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16B.14C.13D.12【答案】D【解析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D . 【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.(2019全国3文)4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A. 0.5 B. 0.6C. 0.7D. 0.8【答案】C 【解析】 【分析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.(2019全国3文)17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70. (1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1) 0.35a =,0.10b =;(2) 4.05,6. 【解析】 【分析】(1)由()0.70P C =可解得a 和b 的值;(2)根据公式求平均数.【详解】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=-=-,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯= 【点睛】本题考查频率分布直方图和平均数,属于基础题.(2019北京文)17.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:支付(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(Ⅰ)400人;(Ⅱ)125;(Ⅲ)见解析.【解析】分析】(Ⅰ)由题意利用频率近似概率可得满足题意的人数;(Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率;(Ⅲ)结合概率统计相关定义给出结论即可.【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人,所以样本中两种支付方式都使用的有1003025540---=,所以全校学生中两种支付方式都使用的有401000400100⨯=(人).(Ⅱ)因为样本中仅使用B的学生共有25人,只有1人支付金额大于2000元,所以该学生上个月支付金额大于2000元的概率为1 25.(Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为125,因为从仅使用B的学生中随机调查1人,发现他本月的支付金额大于2000元,依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B的学生中本月支付金额大于2000元的人数有变化,且比上个月多.【【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力.(2019天津文)15.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F.享受情况如右表,其中“d”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【答案】(I)6人,9人,10人;(II)(i)见解析;(ii)11 15.【解析】【分析】(I)根据题中所给的老、中、青员工人数,求得人数比,利用分层抽样要求每个个体被抽到的概率是相等的,结合样本容量求得结果;(II)(I)根据6人中随机抽取2人,将所有的结果一一列出;(ii )根据题意,找出满足条件的基本事件,利用公式求得概率. 【详解】(I )由已知,老、中、青员工人数之比为6:9:10, 由于采取分层抽样的方法从中抽取25位员工, 因此应从老、中、青员工中分别抽取6人,9人,10人. (II )(i )从已知的6人中随机抽取2人的所有可能结果为{}{}{}{}{},,,,,,,,,A B A C A D A E A F ,{}{}{}{},,,,,,,B C B D B E B F ,{}{}{},,,,,C D C E C F ,{}{}{},,,,,D E D F E F ,共15种;(ii )由表格知,符合题意的所有可能结果为{}{}{}{},,,,,,,A B A D A E A F ,{}{}{},,,,,B D B E B F ,{}{},,,C E C F ,{}{},,,D F E F ,共11种,所以,时间M 发生的概率11()15P M =. 【点睛】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型即其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.(2019江苏)5.已知一组数据6,7,8,8,9,10,则该组数据的方差是____. 【答案】53【解析】 【分析】由题意首先求得平均数,然后求解方差即可. 【详解】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 【点睛】本题主要考查方差的计算公式,属于基础题.(2019江苏)6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】710【解析】 【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况, 若选出的2名学生都是女生,有221C =种情况,所以所求的概率为6171010+=. 【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.(2019江苏)25.在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈L 令n n n n M A B C =U U .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当n =1时,求X 的概率分布; (2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示). 【答案】(1)见解析; (2)见解析. 【解析】 【分析】(1)由题意首先确定X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列;(2)将原问题转化为对立事件的问题求解()P X n >的值,据此分类讨论①.b d =,②.0,1b d ==,③.0,2b d ==,④.1,2b d ==四种情况确定X 满足X n >的所有可能的取值,然后求解相应的概率值即可确定()P X n ≤的值. 【详解】(1)当1n =时,X的所有可能取值是12 X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤X n >当且仅当AB =0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤,因为当3n ≥n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤X n >当且仅当AB =0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.【点睛】本题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.(2019浙江)7.设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( ) A. ()D X 增大 B. ()D X 减小C. ()D X 先增大后减小D. ()D X 先减小后增大【答案】D 【解析】 【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二测函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【详解】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在(0,1)内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.。
数学分类解析一概率统计各地高考题.选择题:1.(安徽理)(10).设两个正态分布N (#i ,。
;)(0>0)和b ;)(%>0)的密度函数图像如图所示。
则有(A )A. 旧 v %b\ <a 2B. 丹 <穴2,0 >。
2C. "\>D. "\> 瞄%>2.(福建理)(5)某一批花生种子,2粒发芽的概率是 (B )16 96 192 256A.--- B. --- C. --- D.---625 625 625 62543.(福建文)(5)某一批花生种子,如果每1粒发芽的概率为石,那么播下3粒种子恰有2粒发芽的概率是(C)16 48k --- C.---125 1254.(广东理)(3).某校共有学生2000名,各年级男、女生人数如表1.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为(C )A. 24B. 18C. 16D. 12一年级二年级三年级女生373Xy男生377370Z5.(湖南理)4.设随机变量:服从正态分布N (2,9),若P (<>c+l )=P (〈<c —1),则c=(B )A.lB.2C.3D.46.(江西文)(11).电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 (C)A.11801B .----2881C.---3601D ,4807. (辽宁理文)(7) . 4张卡片上分别写有数字1, 2, 3, 4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为(C )112 3A. — B. — C. — D.—3 2 3 48. (山东理)(7)在某地的奥运火炬传递活动中,有编号为1, 2, 3, 18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(B .)(A) — (B ) — (C)---51 68 3069. (山东理)(8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶 图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(B)(A) 304.6(B) 303.6 (C)302.610.(山东文)9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为(B )(D)14082 9115 83 02 63 10 2 4 7(D)301.6分数54321人数2010303010A.n 2面D .----------5C. 38D.-510. (陕西文)(3).某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为(C )A. 30B. 25C. 20D. 1511. (重庆理)(5)已知随机变量〈服从正态分布M3, a ),则P(〈<3)= (D)2(A)-(B) -(C) -(D)-5 4 3 212. (重庆文)(5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(D)(A)简单随机抽样法(C)随机数表法(B)抽签法(D)分层抽样法13.(重庆文)(9)从编号为1,2,・“,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为(B)2 3(C)y(D)y二.填空题:1.(广东文)(11).为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[55,75)的人数是13.2.(海南宁夏理文)(16).从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271273280285285287292294295301303303307 308310314319323325325328331334337352乙品种:284292295304306307312313315315316318318 320322322324327329331333336337343356由以上数据设计了如下茎叶图甲乙31277550284542292587331304679403123556888553320224797413313673432356根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①;②•以下任填两个:(1).乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).(2).甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散•(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).(3).甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm.(4).乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)夕卜,也大致对称,其分布较均匀.3.(湖北文)11.一个公司共有1000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是10.4.(湖北文)14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是0.98.5.(湖南理)15.对有n(nN4)个元素的总体{1,2,3,…刀}进行抽样,先将总体分成两个子总体{1,2,…,m}和(m+l>m+2,…,n}(m是给定的正整数,且2WmWn-2),再从每个子总体中各随机抽取2个元素组成样本,用坊表示元素i和f同时出现在样本中的4概率,则P|,,=--------;所有PiQWiVjW77)的和等于鱼.m(n—ni)6.(湖南文)(12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:序号⑺分组睡眠时间组中值(G,)频数(人数)频率(Fj)1[4,5) 4.560.122[5,6) 5.5100.203[6,7) 6.5200.404[7,8)7.5100.205[8,9]8.540.08在上述统计数据的分析中,一部分计算见算法流程图,则输出的S的值为6.42.9.(上海理文)(7).在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(l,l)、D(0,2)、3E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是j(结果用分数表示)10.(上海理文)(9).已知总体的各个体的值由小到大依次为2,3,3,7,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a、》的取值分别是10.5和10.511.(上海文)8.在平面直角坐标系中,从五个点:A(O,O),3(2,0),C(L1),D(0,2),4£(2,2)中任取三个,这三点能构成三角形的概率是;(结果用分数表示).12.(天津文)(11).一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工10人.13.三.解答题:1.(安徽理)(19).(本小题满分12分)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。
(2019全国1文)6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,3,,1000L ,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( ). A.8号学生B.200号学生C.616号学生D.815号学生 答案: C解答:从1000名学生中抽取100名,每10人抽一个,46号学生被抽到,则抽取的号数就为106(099,)n n n N +≤≤∈,可得出616号学生被抽到.(2019全国1文)17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服(1) 分别估计男、女顾客对该商场服务满意的概率;(2) 能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc a b c d a c b d κ-=++++(1)男顾客的的满意概率为404505P == 女顾客的的满意概率为303505P == (2) 有95%的把握认为男、女顾客对该商场服务的评价有差异. 解答:(1) 男顾客的的满意概率为404505P == 女顾客的的满意概率为303505P ==. (2) 22100(40201030) 4.762(4010)(3020)(4030)(1020)κ⨯-⨯==++++ 4.762 3.841>有95%的把握认为男、女顾客对该商场服务的评价有差异.(2019全国2文)4. 生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23 B.35 C.25 D.15答案:B解答:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B ,则恰好有两只测量过的有6种,所以其概率为35.(2019全国2文)5. 在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 答案:A解答:根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果.(2019全国2文)14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为 . 答案:0.98解答:平均正点率的估计值0.97100.98200.99100.9840⨯+⨯+⨯==.(2019全国2文)19. 某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈. 答案: 详见解析 解答:(1)这类企业中产值增长率不低于40%的企业比例是14721100100+=, 这类企业中产值负增长的企业比例是2100. (2)这类企业产值增长率的平均数是()0.1020.10240.30530.50140.7071000.30-⨯+⨯+⨯+⨯+⨯÷=⎡⎤⎣⎦ 这类企业产值增长率的方差是()()()()()222220.100.3020.100.30240.300.30530.500.30140.700.3071000.0296⎡⎤--⨯+-⨯+-⨯+-⨯+-⨯÷=⎣⎦所以这类企业产值28.6020.172040.17100==⨯=≈.(2019全国3文)3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16B.14C.13D.12【答案】D【解析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D . 【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.(2019全国3文)4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A. 0.5 B. 0.6C. 0.7D. 0.8【答案】C 【解析】 【分析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.(2019全国3文)17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70. (1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1) 0.35a =,0.10b =;(2) 4.05,6. 【解析】 【分析】(1)由()0.70P C =可解得a 和b 的值;(2)根据公式求平均数.【详解】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=-=-,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯= 【点睛】本题考查频率分布直方图和平均数,属于基础题.(2019北京文)17.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:支付(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(Ⅰ)400人;(Ⅱ)125;(Ⅲ)见解析.【解析】分析】(Ⅰ)由题意利用频率近似概率可得满足题意的人数;(Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率;(Ⅲ)结合概率统计相关定义给出结论即可.【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人,所以样本中两种支付方式都使用的有1003025540---=,所以全校学生中两种支付方式都使用的有401000400100⨯=(人).(Ⅱ)因为样本中仅使用B的学生共有25人,只有1人支付金额大于2000元,所以该学生上个月支付金额大于2000元的概率为1 25.(Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为125,因为从仅使用B的学生中随机调查1人,发现他本月的支付金额大于2000元,依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B的学生中本月支付金额大于2000元的人数有变化,且比上个月多.【【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力.(2019天津文)15.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F.享受情况如右表,其中“d”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【答案】(I)6人,9人,10人;(II)(i)见解析;(ii)11 15.【解析】【分析】(I)根据题中所给的老、中、青员工人数,求得人数比,利用分层抽样要求每个个体被抽到的概率是相等的,结合样本容量求得结果;(II)(I)根据6人中随机抽取2人,将所有的结果一一列出;(ii )根据题意,找出满足条件的基本事件,利用公式求得概率. 【详解】(I )由已知,老、中、青员工人数之比为6:9:10, 由于采取分层抽样的方法从中抽取25位员工, 因此应从老、中、青员工中分别抽取6人,9人,10人. (II )(i )从已知的6人中随机抽取2人的所有可能结果为{}{}{}{}{},,,,,,,,,A B A C A D A E A F ,{}{}{}{},,,,,,,B C B D B E B F ,{}{}{},,,,,C D C E C F ,{}{}{},,,,,D E D F E F ,共15种;(ii )由表格知,符合题意的所有可能结果为{}{}{}{},,,,,,,A B A D A E A F ,{}{}{},,,,,B D B E B F ,{}{},,,C E C F ,{}{},,,D F E F ,共11种,所以,时间M 发生的概率11()15P M =. 【点睛】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型即其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.(2019江苏)5.已知一组数据6,7,8,8,9,10,则该组数据的方差是____. 【答案】53【解析】 【分析】由题意首先求得平均数,然后求解方差即可. 【详解】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 【点睛】本题主要考查方差的计算公式,属于基础题.(2019江苏)6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】710【解析】 【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况, 若选出的2名学生都是女生,有221C =种情况,所以所求的概率为6171010+=. 【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.(2019江苏)25.在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈L 令n n n n M A B C =U U .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当n =1时,求X 的概率分布; (2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示). 【答案】(1)见解析; (2)见解析. 【解析】 【分析】(1)由题意首先确定X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列;(2)将原问题转化为对立事件的问题求解()P X n >的值,据此分类讨论①.b d =,②.0,1b d ==,③.0,2b d ==,④.1,2b d ==四种情况确定X 满足X n >的所有可能的取值,然后求解相应的概率值即可确定()P X n ≤的值. 【详解】(1)当1n =时,X的所有可能取值是12 X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤X n >当且仅当AB =0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤,因为当3n ≥n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤X n >当且仅当AB =0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.【点睛】本题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.(2019浙江)7.设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时( ) A. ()D X 增大 B. ()D X 减小C. ()D X 先增大后减小D. ()D X 先减小后增大【答案】D 【解析】 【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二测函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【详解】方法1:由分布列得1()3aE X +=,则 2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则当a 在(0,1)内增大时,()D X 先减小后增大.方法2:则()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.。