无机材料科学基础第五章-表面与界面(1)
- 格式:ppt
- 大小:5.79 MB
- 文档页数:115
第五章答案5-1略。
5-2何谓表面张力和表面能?在固态和液态这两者有何差别?解:表面张力:垂直作用在单位长度线段上的表面紧缩力或将物体表面增大一个单位所需作的功;σ=力/总长度(N/m)表面能:恒温、恒压、恒组成情况下,可逆地增加物系表面积须对物质所做的非体积功称为表面能;J/m2=N/m液体:不能承受剪应力,外力所做的功表现为表面积的扩展,因为表面张力与表面能数量是相同的;固体:能承受剪切应力,外力的作用表现为表面积的增加和部分的塑性形变,表面张力与表面能不等。
5-3在石英玻璃熔体下20cm处形成半径5×10-8m的气泡,熔体密度为2200kg/m3,表面张力为0.29N/m,大气压力为1.01×105Pa,求形成此气泡所需最低内压力是多少?解:P1(熔体柱静压力)=hρg=0.2×2200×9.81=4316.4Pa附加压力=2×0.29/5×10-8=1.16×107Pa故形成此气泡所需压力至少为P=P1+△P+P大气=4316.4+1.16×107+1.01×105=117.04×105Pa5-4(1)什么是弯曲表面的附加压力?其正负根据什么划分?(2)设表面张力为0.9J/m2,计算曲率半径为0.5μm、5μm的曲面附加压力?解:(1)由于表面张力的存在,使弯曲表面上产生一个附加压力,如果平面的压力为P0,弯曲表面产生的压力差为△P,则总压力为P=P0+△P。
附加压力的正负取决于曲面的曲率,凸面为正,凹面为负。
(2)根据Laplace公式:可算得△P=0.9×(1/0.5+1/5)=1.98×106Pa5-5什么是吸附和粘附?当用焊锡来焊接铜丝时,用挫刀除去表面层,可使焊接更加牢固,请解释这种现象?解:吸附:固体表面力场与被吸附分子发生的力场相互作用的结果,发生在固体表面上,分物理吸附和化学吸附;粘附:指两个发生接触的表面之间的吸引,发生在固液界面上;铜丝放在空气中,其表面层被吸附膜(氧化膜)所覆盖,焊锡焊接铜丝时,只是将吸附膜粘在一起,锡与吸附膜粘附的粘附功小,锉刀除去表面层露出真正铜丝表面(去掉氧化膜),锡与铜相似材料粘附很牢固。
第四章固体的表面与界面固体的接触界面可一般可分为表面、界面和相界面:1)表面:表面是指固体与真空的界面。
2)界面:相邻两个结晶空间的交界面称为“界面”。
3)相界面:相邻相之间的交界面称为相界面。
有三类: S/S;S/V; S/L。
产生表面现象的根本原因在于材料表面质点排列不同于材料内部,材料表面处于高能量状态⏹ 4.1 固体的表面及其结构♦ 4.1.1固体的表面1.理想表面2.清洁表面(1)台阶表面(2)弛豫表面(3)重构表面3.吸附表面4. 固体的表面自由能和表面张力5. 表面偏析6. 表面力场固体表面的结构和性质在很多方面都与体内完全不同。
所以,一般将固体表面称为晶体三维周期结构和真空之间的过渡区域。
这种表面实际上是理想表面,此外还有清洁表面、吸附表面等。
1、理想表面没有杂质的单晶,作为零级近似可将清洁表面理想为一个理想表面。
这是一种理论上的结构完整的二维点阵平面。
它忽略了晶体内部周期性势场在晶体表面中断的影响,忽略了表面原子的热运动、热扩散和热缺陷等,忽略了外界对表面的物理化学作用等。
这种理想表面作为半无限的晶体,体内的原子的位置及其结构的周期性,与原来无限的晶体完全一样。
2、清洁表面清洁表面是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表面。
这种清洁表面的化学组成与体内相同,但周期结构可以不同于体内。
根据表面原子的排列,清洁表面又可分为台阶表面、弛豫表面、重构表面等。
(1)台阶表面台阶表面不是一个平面,它是由有规则的或不规则的台阶的表面所组成(2)弛豫表面 –在垂直于表面的方向上原子间距不同于该方向上晶格内部原子间距的表面由于固体体相的三维周期性在固体表面处突然中断,表面上原子的配位情况发生变化,相应地表面原子附近的电荷分布将有所改变,表面原子所处的力场与体相内原子也不相同。
为使体系能量尽可能降低,表面上的原子常常会产生相对于正常位置的上、下位移,结果表面相中原子层的间距偏离体相内原子层的间距,产生压缩或膨胀。
第四章固体的表面与界面固体的接触界面可一般可分为表面、界面和相界面:1)表面:表面是指固体与真空的界面。
2)界面:相邻两个结晶空间的交界面称为“界面”。
3)相界面:相邻相之间的交界面称为相界面。
有三类: S/S;S/V; S/L。
产生表面现象的根本原因在于材料表面质点排列不同于材料内部,材料表面处于高能量状态⏹ 4.1 固体的表面及其结构♦ 4.1.1固体的表面1.理想表面2.清洁表面(1)台阶表面(2)弛豫表面(3)重构表面3.吸附表面4. 固体的表面自由能和表面张力5. 表面偏析6. 表面力场固体表面的结构和性质在很多方面都与体内完全不同。
所以,一般将固体表面称为晶体三维周期结构和真空之间的过渡区域。
这种表面实际上是理想表面,此外还有清洁表面、吸附表面等。
1、理想表面没有杂质的单晶,作为零级近似可将清洁表面理想为一个理想表面。
这是一种理论上的结构完整的二维点阵平面。
它忽略了晶体内部周期性势场在晶体表面中断的影响,忽略了表面原子的热运动、热扩散和热缺陷等,忽略了外界对表面的物理化学作用等。
这种理想表面作为半无限的晶体,体内的原子的位置及其结构的周期性,与原来无限的晶体完全一样。
2、清洁表面清洁表面是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表面。
这种清洁表面的化学组成与体内相同,但周期结构可以不同于体内。
根据表面原子的排列,清洁表面又可分为台阶表面、弛豫表面、重构表面等。
(1)台阶表面台阶表面不是一个平面,它是由有规则的或不规则的台阶的表面所组成(2)弛豫表面 –在垂直于表面的方向上原子间距不同于该方向上晶格内部原子间距的表面由于固体体相的三维周期性在固体表面处突然中断,表面上原子的配位情况发生变化,相应地表面原子附近的电荷分布将有所改变,表面原子所处的力场与体相内原子也不相同。
为使体系能量尽可能降低,表面上的原子常常会产生相对于正常位置的上、下位移,结果表面相中原子层的间距偏离体相内原子层的间距,产生压缩或膨胀。
无机材料物理化学固体表面与界面在材料科学的世界中,无机材料物理化学是一个极其重要的研究领域,特别是在固体表面与界面方面的研究。
这些研究涵盖了各种无机材料,包括金属、非金属、半导体和绝缘体等,它们的表面和界面行为对材料的性质和性能有着深远的影响。
我们来看看固体表面的物理化学。
固体表面是一个具有特殊结构和性质的相,它与相邻的介质(如气体、液体或另一种固体)相互作用。
这种相互作用会影响材料的润湿性、吸附性、反应性以及电子传输等性质。
例如,通过改变表面的粗糙度或化学活性,我们可以控制材料表面的润湿性,进而影响其与液体的相互作用。
界面在无机材料中同样扮演着重要的角色。
在无机材料中,界面可以是两种不同材料之间的接触面,也可以是同一材料不同晶面之间的接触面。
这些界面上的原子排列和电子结构会不同于体相材料,从而影响材料的物理和化学性质。
例如,石墨烯和氮化硼之间的界面可以影响电子传输和热导率。
我们还研究了固体表面和界面在光电、催化、储能等领域的应用。
这些应用需要我们对材料的表面和界面性质有深入的理解,才能实现高效的能量转化和优异的性能。
例如,在太阳能电池中,我们需要优化半导体材料的表面结构以增加光吸收和载流子分离效率;在催化剂中,我们需要理解表面结构对反应活性的影响以设计高效的催化剂。
无机材料物理化学中的固体表面与界面研究为我们提供了理解和控制材料性质的新途径。
通过深入了解材料的表面和界面性质,我们可以设计出具有优异性能的新材料,并优化其在能源、环保、信息技术等领域的应用。
在过去的几十年中,纳米科技的发展取得了令人瞩目的成就。
无机纳米材料,作为一种重要的纳米科技领域,具有许多独特的物理、化学和机械性质,因此在许多领域具有广泛的应用前景。
然而,由于其表面能高,无机纳米材料容易团聚和稳定性差,这限制了其实际应用。
为了解决这些问题,表面修饰改性成为了一种有效的手段。
通过对无机纳米材料进行表面修饰改性,可以有效地提高其稳定性、相容性和生物活性,从而进一步拓展其应用范围。
§5.3 晶体的界面晶 界孪晶界相 界小角度晶界大角度晶界外表面内界面固体的表面与界面固体的接触界面一般可分为表面、界面和相界面:1)表面: 表面是指固体(三维结构)与真空的界面。
2)界面: 相邻两个结晶空间的交界面称为“界面”。
n界面不只是指一个几何分界面,而是指一个薄层,这种分界的表面(界面)具有和它两边基体不同的特殊性质。
n物体界面原子和内部原子受到的作用力不同,它们的能量状态也就不一样,这是一切界面现象存在的原因。
n界面是晶体中的二维缺陷,是一种不平衡缺陷。
高倍电子显微镜下聚四氟乙烯表面结构图n CVD 氧化铝涂层剖面n 氧化铝涂层表面1µm相界面3)相界面: 相邻相之间的交界面称为相界面。
相界面有三类: 固相与固相的相界面(s/S);固相与气相之间的相界面(s/V);固相与液相之间的相界面(s/L)。
液-液界面液-固界面(一)晶界与亚晶界•晶界:属于同一固相但位向不同的晶粒之间的界面称为晶界(grain boundary)•亚晶界:每个晶粒有时又由若干个位向稍有差异的亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界(sub-grain boundary)(二)晶界的分类与结构小角度晶界——相邻晶粒的位向差小于10°的晶界;亚晶界均属小角度晶界,一般小于2°;大角度晶界——相邻晶粒的位向差大于10°的晶界;多晶体中90%以上的晶界属于此类。
倾斜晶界与扭转晶界示意图1. 小角度晶界小角晶界分类对称倾斜晶界不对称倾斜晶界扭转晶界相邻晶粒各转θ/2b 不对称倾斜晶界相互垂直的两组刃位错垂直排列c 扭转晶界两组螺位错构成小角度晶界特点1. 位向差小于10°2. 由位错构成3.位错密度↑—— 位向差↑——晶格畸变↑——晶界能↑注:位错密度 —— 决定位向差与晶界能位错类型与排列方式 —— 决定小角晶界的类型晶界的显微照片晶界的高分辨TEMNi0.76Al0.24:500ppm B 的小角晶界(倾斜7°)2. 大角度晶界——一般在30°~ 40°重合点阵模型↓重合点阵+台阶模型↓重合点阵+台阶+小角晶界模型Ni3(Al-Ti)中的倾斜晶界 —— 旋转36.87°,重合5重位晶界三个晶界相交于一条直线(三)晶界能切变模量积分常数泊松比单位面积能量小角度晶界θ<15°γ0(常数)界面张力晶界能在0.25~1.0J/m 2与θ无关,为定值大角度晶界多晶体材料的晶界均属于大角晶界,界面能大致相等,尽管在交汇处应互成120o,但晶粒大小不同,邻近晶粒数也不等,晶界不成直线,而形成不同方向的曲线(曲面)。
第5章固体表面与界面一、名词解释1.阳离子交换容量:为PH=7 时100g干粘土所吸附的离子的毫克当量数2.可塑性:粘土与适当的水混合均匀制成泥团,当其受到高于某一个剪切应力值时,可以塑造成任何形状,这种去除应力能够保持形状。
3.触变性:泥浆的稀释流动状态到泥浆的稠化凝聚状态之间还有一个中间态,通过扰动和摇动,凝固的泥浆又变回流动状态,当停止扰动或摇动,又变回凝固的泥浆4.滤水性:用石膏模型注浆成型时,泥浆形成的固化泥层透过水的能力5.聚沉值:使一定量的胶体溶液在一定的时间内开始凝聚所需要的电解质浓度6.粘土阳离子交换:粘土颗粒吸附的阳离子被溶液中其它浓度大、价数高的阳离子所交换二、填空与选择1.范氏力主要来源于三种不同效应:发生在极性分子和极性分子之间的静电力;发生在极性分子和非极性分子之间的诱导力和发生在非极性分子和非极性分子之间的色散力。
2.不同类型的物体在应力作用下出现的流动形式可有:粘性流动、宾汉流动、塑性流动、假塑性流动和膨胀流动。
3.粘土阳离子交换顺序为 H+>Al3+>Ba2+>Sr2+>Ca2+>NH4+>K+>Na +>Li+(半径大、电价高交换能力强)。
4.粘土荷电的主要原因有:类质同晶取代、边棱破键和腐殖质电离。
5.水和粘土作用以后,水在粘土胶粒周围随着距离的增大可分为:牢固结合水、疏松结合水和自由水。
(电价低、半径小结合水多)6.当液体与固体相接触,固相不被液体所润湿,则两相的表面张力的关系应是D 。
( A γSV -γSL >γLV;B γSV >γSL;C γSV -γSL <γLV;D γSV <γSL )7.离子晶体通常借助表面离子的极化变形和重排来降低其表面能,对于下列离子晶体的表面能,最小的是 PbI 2、 。
( CaF 2、PbF 2、PbI 2、BaSO 4 、SrSO 4 )8.粘土的很多性能与吸附阳离子种类有关,当吸附下列不同阳离子后的变化规律以箭头表示(小→大):−−−−−−−−−−−→−++++++++++Li Na K NH Mg Ca Sr Ba Al H 422223 与这样变化规律有关的性能是 A 。