2015年中考数学与圆有关的计算总复习(人教版)全面版
- 格式:ppt
- 大小:2.14 MB
- 文档页数:34
题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。
CBA2015年人教版九年级数学中考专题复习 圆圆知识点的考查集中体现在:圆周角与圆心角关系,垂径定理,切线的证明,求面积,半径等。
选择题一般考查圆周角、圆心角及其关系,垂径定理,圆的切线,弧长与扇形面积等知识。
解答题考查切线的问题,求面积,半径,线段长。
1.关于切线的问题,首先连接圆心和切点。
2.关于求面积问题,若图形是规则图形,则首先想到直接去求;若图形是不规则图形,则可借助面积之差,割补法来求。
3.求线段的长,用到垂径定理(勾股定理),锐角三角函数知识。
1. 如图,在⊙O 中,AC ∥OB ,∠BAO=25°,则∠BOC 的度数为__________.2.如图,在⊙O 中,∠CBO=45°,∠CAO=15°,则∠AOB 的度数是________.3. 如图,已知等腰三角形ABC 的底角为30°,以BC 为直径的⊙O 与底边AB 交于点D ,过D 作DE AC ⊥,垂足为E .(1)证明:DE 为⊙O 的切线; (2)连接OE ,若BC =4,求△OEC 的面积.4. 如图,在△ABC 中,∠ACB=︒90, E 为BC 上一点,以CE 为直径作⊙O,AB 与⊙O 相切于点D ,连接CD. 已知BE=OE=2.(1)求证:∠A=2∠DCB ;(2)求图中阴影部分的面积(结果保留π和根号).第1题第2题巩固练习:5.如图,⊙O 是△ABC 的外接圆,连接OA 、OB ,∠OBA=50°,则∠C 的度数为________.6.如图,⊙O 是△ABC 的外接圆,∠AOB=60°,AB=AC=2,则弦BC 的长为______. B =8.如图,点D 为⊙O上一点,点C 在直径BA 的延长线上,且∠CDA=∠CBD . (1)判断直线CD 和⊙O 的位置关系,并说明理由.(2)过点B 作⊙O 的切线BE 交直线CD 于点E ,若AC=2,⊙O 的半径是3,求BE 的长.9. 已知:如图,点C 在以AB 为直径的⊙O 上,点D 在AB 的延长线上,∠BCD=∠A . (1)求证:CD 为⊙O 的切线;(2)过点C 作CE ⊥AB 于E .若CE=2,cosD=,求AD 的长.第5题第6题第7题第10题第11题.cm cm 11、(2013•黔西南州)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O的直径.12、如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.。
中考总复习:圆综合复习—知识讲解(提高)【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小. 2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦. ②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧. ⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧. ⑦同心圆:圆心相同,半径不相等的圆叫做同心圆. ⑧弓形:由弦及其所对的弧组成的图形叫做弓形. ⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角. 要点诠释:圆周角等于它所对的弧所对的圆心角的一半.圆外角度数等于它所夹弧的度数的差的一半. 圆内角度数等于它所夹弧的度数的和的一半.考点二、圆的有关性质 1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合. 2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示.要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r1-r2”时,要特别注意,r1>r2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°.要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n nnn n S a r n P r ==.考点五、圆中的计算问题 1.弧长公式:180n Rl π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇.3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和. 要点诠释:(1)在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.(2)求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.考点六、四点共圆 1.四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.2.证明四点共圆一些基本方法:1.从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距.2.如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆. (若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)3.把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.4.把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆. 即利用相交弦、切割线、割线定理的逆定理证四点共圆.考点七、与圆有关的比例线段(补充知识)1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.3.割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统一归纳为圆幂定理)定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB. 用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理【典型例题】类型一、圆的有关概念及性质1. BC为O的弦,∠BOC=130°,△ABC为O的内接三角形,求∠A的度数.【思路点拨】依题意知O为△ABC的外心,由外心O的位置可知应分两种情况进行解答. 【答案与解析】应分两种情况,当O在△ABC内部时,1113065;22A BOC∠=∠=⨯︒=︒当O 在△ABC 外部时,由∠BOC=130°,得劣弧BC 的度数为130︒,则BAC 的度数为360︒-130︒=230︒,故∠A=115°. 综合以上得∠A=65°或∠A=115°. 【总结升华】转化思想就是化未知为已知,化繁为简,化难为易,从而将无法求解的问题转化成可以求解的问题,使问题得以解决. 举一反三:【变式】如图,∠AOB=100°,点C 在⊙O 上,且点C 不与A 、B 重合,则∠ACB 的度数为( )A .50B .80或50C .130D .50 或130 【答案】解:当点C 在优弧上时,∠ACB=21∠AOB=21×100°=50°, 当点C在劣弧上时,∠ACB=21(360°-∠AOB)=21×(360°-100°)=130°.故选D .类型二、与圆有关的位置关系2.如图,已知正方形的边长是4cm ,求它的内切圆与外接圆组成的圆环的面积.(答案保留π)【思路点拨】设正方形外接圆,内切圆的半径分别为R ,r ,根据圆环的面积等于大圆的面积减去小圆的面积即可.A BO【答案与解析】解:设正方形外接圆,内切圆的半径分别为R ,r , 如图,连接OE 、OA , 则OA 2-OE 2=AE 2,即R 2-r 2=()2=()2=4,S 圆环=S 大圆-S 小圆=πR 2-πr 2,(2分)=π(R 2-r 2),(3分) ∵R 2-r 2=()2=4, ∴S=4π(cm 2).【总结升华】此题比较简单,解答此题的关键是作出辅助线,找出两圆半径之间的关系,根据圆的面积公式列出关系式即可.3.如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,10cm OP =,射线PN 与⊙O 相切于点Q .A,B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s . (1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?【思路点拨】(1)连OQ,则OQ⊥PN,由勾股定理可以求得PQ 的长;(2)由直线AB 与⊙O 相切,先找出结论成立的条件,当BQ 等于⊙O 的半径时,直线AB 与⊙O 相切,再根据直线AB 与⊙O 相切时的不同位置,分类求出t 的值. 【答案与解析】解 (1)连接OQ .∵PN 与⊙O 相切于点Q ,∴OQ⊥PN, 即90OQP ∠=.10OP =,6OQ =,∴)(861022cm PQ =-=(2)过点O 作OC AB ⊥,垂足为C .点A 的运动速度为5cm/s ,点B 的运动速度为4cm/s ,运动时间为t s , ∴t PA 5=,4PB t =.10PO =,8PQ =,∴PQPBPO PA = P P ∠=∠,∴△PAB∽△POQ, ∴∠PBA=∠PQO=90090BQO CBQ OCB ∠=∠=∠=,∴四边形OCBQ 为矩形.∴BQ=OC∵⊙O 的半径为6,∴BQ=OC=6时,直线AB 与⊙O 相切.①当AB 运动到如图1所示的位置时.84BQ PQ PB t =-=-.由6BQ =,得846t -=.解得0.5(s)t =. ②当AB 运动到如图2所示的位置时.48BQ PB PQ t =-=-.由6BQ =,得486t -=.解得 3.5(s)t =. 所以,当t 为0.5s 或3.5s 时,直线AB 与⊙O 相切. 【总结升华】本例是一道双动点几何动态题.是近年来中考数学的热点题型.这类试题信息量大,对学生获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.举一反三:【变式】已知:如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连接BE .(1)求证:BE 与⊙O 相切;(2)连接AD 并延长交BE 于点F ,若OB=9,2sin 3ABC ∠=,求BF 的长.【答案】(1)证明:连结OC .EC 与⊙O 相切,C 为切点.90....ECO OB OC OCB OBC OD DC DB DC ∴∠==∴∠=∠⊥∴=,∴直线OE 是线段BC 的垂直平分线....90.EB EC ECB EBC ECO EBO EBO ∴=∴∠=∠∴∠=∠∴∠= AB 是⊙O 的直径.BE ∴与⊙O 相切.(2)解:过点D 作DM AB ⊥于点M ,则DM ∥FB .在Rt ODB ∆中,2909sin 3sin 6.ODB OB ABC OD OB ABC ∠==∠=∴=⋅∠=,,, 由勾股定理得223 5.BD OB OD =-=在Rt DMB ∆中,同理得22sin 5.5.DM BD ABC BM BD DM =⋅∠==-O 是AB 的中点,18.13.AB AM AB BM ∴=∴=-= DM ∥FB ,∴△AMD ∽△ABF .365MD AM BF AB MD AB BF AM ∴=⋅∴==类型三、与圆有关的计算4.如图,有一个圆O 和两个正六边形T 1,T 2. T 1的6个顶点都在圆周上,T 2的6条边都和圆O 相切(我们称T1,T2分别为圆O 的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a ,b ,圆O 的半径为r ,求r:a 及r :b 的值;(2)求正六边形T 1,T 2的面积比S 1:S 2的值.【思路点拨】(1)根据圆内接正六边形的半径等于它的边长,则r :a=1:1;在由圆的半径和正六边形的半边以及正六边形的半径组成的直角三角形中,根据锐角三角函数即可求得其比值;(2)根据相似多边形的面积比是相似比的平方.由(1)可以求得其相似比,再进一步求得其面积比.【答案与解析】解:(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形.所以r :a=1:1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形,所以r :b=AO :BO=sin60°=:2;(2)T 1:T 2的边长比是:2,所以S 1:S 2=(a :b )2=3:4.【总结升华】 计算正多边形中的有关量的时候,可以构造到由正多边形的半径、边心距、半边组成的直角三角形中,根据锐角三角函数进行计算.注意:相似多边形的面积比即是其相似比的平方.举一反三:【变式】有一个亭子,它的地基是半径为8m的正六边形,求地基的周长和面积.(结果保留根号)【答案】解:连接OB、OC;∵六边形ABCDEF是正六边形,∴∠BOC==60°,∴△OBC是等边三角形,∴BC=OB=8m,∴正六边形ABCDEF的周长=6×8=48m.过O作OG⊥BC于G,∵△OBC是等边三角形,OB=8m,∴∠OBC=60°,∴OG=OB•sin∠OBC=8×=4m,∴S△OBC=BC•OG=×8×4=16,∴S六边形ABCDEF=6S△OBC=6×16=96m2.类型四、与圆有关的综合应用5.(•孝感模拟)如图,AB是⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过点D 作EF∥BC,交AB、AC的延长线于点E、F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.【思路点拨】(1)连接OD,只要证明OD⊥EF即可.(2)连接BD,CD,根据相似三角形的判定可得到△CDF∽△ABD∽△ADF,根据相似比及勾股定理即可求得半径及EF的值.【答案与解析】(1)证明:连接OD;∵AB是直径,∴∠ACB=90°;∵EF∥BC,∴∠AFE=∠ACB=90°,∵OA=OD,∴∠OAD=∠ODA;又∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AF,∴∠ODE=∠AFD=90°,即OD⊥EF;又∵EF过点D,∴EF是⊙O的切线.(2)解:连接BD,CD;∵AB是直径,∴∠ADB=90°,∴∠ADB=∠AFD;∵AD平分∠BAC,∴∠OAD=∠DAC,∴BD=CD;设BD=CD=a;又∵EF是⊙O的切线,∴∠CDF=∠DAC,∴∠CDF=∠OAD=∠DAC,∴△CDF∽△ABD∽△ADF,∴=,=;∵sin∠ABC==,∴设AC=3x,AB=4x,∴=,则a2=4x,∴在Rt△CDF中,由勾股定理得DF2=CD2﹣CF2=4x﹣1;又∵=,∴4x﹣1=1×(1+3x),∴x=2,∴AB=4x=8,AC=3x=6;∵EF∥BC,∴△ABC∽△AEF,∴=,=,AE=,∴在Rt△AEF中,EF===.综上所述,⊙O的半径及EF的长分别是4和.【总结升华】本题考查切线的判定和性质,圆周角定理,相似三角形的判定和性质等知识点的综合运用.举一反三:【变式】(•宁波模拟)已知:如图,△ABC中,∠BAC=90°,点D在BC边上,且BD=BA,过点B画AD的垂线交AC于点O,以O为圆心,AO为半径画圆.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为8,tan∠C=,求线段AB的长,sin∠ADB的值.【答案】解:(1)连接OD,∵BA=BD,BO⊥AD,∴∠ABO=∠DBO,在△ABO和△DBO中,∴△ABO≌△DBO(SAS),∴OD=OA.∠ODB=∠OAB=90°,∴BD⊥OD,∴BC是⊙O的切线;(2)∵在RT△ODC中,CD===6,∴OC=10,∴AC=18在RT△ABC中,A B=AC•tan∠C=18×=24,∵∠ADB=∠DAB=∠AOB,∴sin∠ADB=sin∠AOB==,6.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC;(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:;(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,并给予证明.【思路点拨】(1)延长BP至E,使PE=PC,连接CE,证明△PCE是等边三角形.利用CE=PC,∠E=60°,∠EBC=∠PAC,得到△BEC≌△APC,所以PA=BE=PB+PC;(2)过点B作BE⊥PB交PA于E,证明△ABE≌△CBP,所以PC=AE,可得PA=PC+PB.(3)在AP上截取AQ=PC,连接BQ可证△ABQ≌△CBP,所以BQ=BP.又因为∠APB=30°.所以PQ=PB,PA=PQ+AQ=PB+PC.【答案与解析】证明:(1)延长BP至E,使PE=PC,连接CE.∵∠BAC=∠CPE=60°,PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=60°;又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP,∵△ABC、△ECP为等边三角形,∴CE=PC,AC=BC,∴△BEC≌△APC(SAS),∴PA=BE=PB+PC.(2)过点B作BE⊥PB交PA于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,又∵∠APB=45°,∴BP=BE,∴;又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴.(3)答:;证明:过点B,作BM⊥AP,在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.∴MP=QM,又∵∠APB=30°,∴cos30°=,∴PM=PB,∴∴【总结升华】本题考查三角形全等的性质和判定方法以及正多边形和圆的有关知识.要熟悉这些基本性质才能灵活运用解决综合性的习题.举一反三:【变式】(1)如图①,M、N分别是⊙O的内接正△ABC的边AB、BC上的点且BM=CN,连接OM、ON,求∠MON的度数;(2)图②、③、…④中,M、N分别是⊙O的内接正方形ABCD、正五边ABCDE、…正n边形ABCDEFG…的边AB、BC上的点,且BM=CN,连接OM、ON,则图②中∠MON的度数是,图③中∠MON的度数是;…由此可猜测在n边形图中∠MON的度数是;(3)若3≤n≤8,各自有一个正多边形,则从中任取2个图形,恰好都是中心对称图形的概率是 .【答案】解:(1)连接OB、OC;∵△ABC是⊙O的内接正三角形,∴OB=OC∠BOC=120°,∠OBC=∠OCB=∠OBA=30°;又∵BM=CN,∴△OBM≌△OCN,∴∠MOB=∠NOC,∴∠MON=∠BOC=120°;(2)90°;72°;360n︒.(3)15.中考总复习:圆综合复习—巩固练习(提高)【巩固练习】一、选择题1.(•杨浦区三模)已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d的取值范围是()A.d>8 B.d>2 C.0≤d<2 D.d>8或d<22.如图,等腰梯形ABCD内接于半圆D,且AB=1,BC=2,则OA=( )A.132+B2 C.323+D15+3.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4 cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是( )A.相离 B.相切 C.相交 D.相切或相交第2题第3题第5题4.已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1=3,则圆O1与圆O2的位置关系是( )A.相交或相切 B.相切或相离 C.相交或内含 D.相切或内含5.如图所示,在圆O内有折线OABC,其中OA=8,AB=2,∠A=∠B=60°,则BC的长为( )A.19 B.16 C.18 D.206.如图,MN是半径为0.5的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN 上一动点,则PA+PB的最小值为( )A.2B.2 C.1 D.2二、填空题7.如图,分别以A,B为圆心,线段AB的长为半径的两个圆相交于C,D两点,则∠CAD的度数为_______.8.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径是50cm.小红同学为了在圣诞节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是________度.第7题第8题第9题9.如图,AB⊥BC,AB=BC=2 cm,OA与OC关于点O中心对称,则AB、BC、CO、OA所围成的面积是________cm2.10.如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点,若两圆的半径分别为3 cm和5 cm,则AB的长为________cm.11.将半径为4 cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是________cm.第10题第11题12.(•安徽模拟)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=n,则S△AEF=mn;④EF是△ABC的中位线.其中正确的结论是.三、解答题13.(•滕州市校级模拟)如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)证明:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离;(3)若,求的值.14.如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若BE是△DEC外接圆的切线,求∠C的大小;(2)当AB=1,BC=2时,求△DEC外接圆的半径.15.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.16. 如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.(1)证明:直线PB是⊙O的切线;(2)探究线段PO与线段BC之间的数量关系,并加以证明;(3)求sin∠OPA的值.【答案与解析】一、选择题1.【答案】D ;【解析】没有公共点的两个圆的位置关系,应该是内含和外离,当内含时,这两个圆的圆心距d的取值范围是d<R﹣r,即d<2;当外离时,这两个圆的圆心距d的取值范围是d>R+r,即d>8.故选D.2.【答案】A ;【解析】作BE⊥AD,CF⊥AD,垂足分别是E,F,连接BD,则AE=DF,∠ABD=90°,EF=BC=2,设AE=x,则AD=2+2x.由△ABE∽△ADB可得AE AB AB AD=,即1122xx=+,解得132x-=.∴ AD=2+2x=1+3,则132OA+=.3.【答案】B ;【解析】如图,过C作CD⊥AB于D,在Rt△CBD中,BC=4cm,∠B=30°,∴ CD=12BC=1422⨯=(cm).又⊙C的半径为2cm,∴ d=r.∴直线AB与⊙C相似.4.【答案】A ;【解析】因为AO1=3,所以点A在圆O1上,又因为点A在圆O2上,所以圆O1与圆O2的位置关系是相交或相切.5.【答案】D ;【解析】延长AO交BC于D点,过O作OE⊥BD于E.∵∠A=∠B=60°,∴∠ADB=60°.∴△DAB是等边三角形,BD=AB=12.在Rt△ODE中,OD=12-8=4,∠ODE=60°,∴ DE=OD·cos 60°=1422⨯=,∴ BE=10,故BC=2BE=2×10=20.6.【答案】A;【解析】过B作BB′⊥MN交⊙O于B′,连接AB′交MN于P,此时PA+PB=AB′最小.连AO并延长交⊙O于C,连接CB′,在Rt△ACB′中,AC=1,∠C=190452⨯=°°,∴22sin451AB AC'==⨯=°.二、填空题7.【答案】120°;【解析】连接BC,BD,则△ABC与△ABD都是等边三角形,故∠CAB=∠DAB=60°,所以∠CAD=60°+60°=120°.8.【答案】18 ;【解析】设被剪去的扇形纸片的圆心角为θ度, 则由题意(90)50210180θππ-⨯=⨯⨯. ∴ θ=18.9.【答案】2 ;【解析】连接AC ,因为OA 与OC 关于点O 中心对称,所以A ,O ,C 三点共线,AO CO S S =弧形弧形, 所以所求圆形的面积=△ABC 的面积1122222AB BC ==⨯⨯=(cm 2). 10.【答案】8 ;【解析】连接OC ,OA ,则OC 垂直平分AB ,由勾股定理知2222534AC OA OC =-=-=, 所以AB =2AC =8.11.【答案】1 ;【解析】如图是几何体的轴截面,由题意得OD =OA =4,2πCD =4π,∴ CD =2.则22224223OC OD CD =-=-=.设EF =x ,EC =y ,由△OEF ∽△OCD 得23223x x -=, ∴ 233y x =-.∴ 2222(233)23(2)23(1)23S xy r x x x x πππππ==-=--=--+圆柱侧面积. ∴ 当x =1时,S 有最大值23π.12.【答案】①②;【解析】如图∵∠ABC 和∠ACB 的平分线相交于点O ,∴∠ABC=2∠1,∠ACB=2∠2,而∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∴∠1+∠2=90°﹣∠A,又∵∠1+∠2+∠BOC=180°,∴180°﹣∠BOC=90°﹣∠A,∴∠BOC=90°∠A,所以①正确;∵EF∥BC,∴∠1=∠3,∠2=∠4,而∠1=∠EBO,∠2=∠FCO,∴∠EBO=∠3,∠4=∠FCO,∴EB=EO,FC=FO,∴BE+FC=EF,∴以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切,所以②正确;连OA,过O作OG⊥AE于G,如图,∵点O为△ABC的内心,∴OA平分∠BAC,∴OG=OD=m,∴S△AEF=S△OAE+S△OAF=AE•m+AF•m=(AE+AF)•m=mn,所以③不正确;∵EB=EO,FC=FO,若EF是△ABC的中位线,则EB=AE,FC=AF,∴AE=EO,AF=FO,∴AE+AF=EO+FO=EF,这不符合三角形三边的关系,所以④不正确.故答案为:①②.三、解答题13.【答案与解析】解:(1)连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵OA=OD,∴∠BAD=∠ODA,∴∠ODA=∠DAC,∴AC∥OD,∵∠C=90°,∴∠ODC=90°,即BC是⊙O的切线.(2)在Rt△ADC中,∠ACD=90°,由勾股定理,得:,作OF⊥AD于F,根据垂径定理得可证△AOF ∽△ADC ∴∴ ∴; (3)连接ED ,∵AD 平分∠BAC ,∴∠BAD=∠DAC ,∵AE 为直径,∴∠ADE=90°,∴在Rt △AED 中,tan ∠EAD==tan ∠DAC=,∵∠AED=90°,∴∠EDB+∠ADC=90°,∵∠DAC+∠ADC=90°,∴∠EDB=∠DAC=∠EAD ,∵∠B=∠B ,∴△BED ∽△BDA , ∴.14.【答案与解析】(1)∵ DE 垂直平分AC ,∴ ∠DEC =90°.∴ DC 为△DEC 外接圆的直径.∴ DC 的中点O 即为圆心.连接OE ,又知BE 是⊙O 的切线,∴ ∠EBO+∠BOE =90°.在Rt △ABC 中,E 是斜边AC 的中点,∴ BE =EC .∴ ∠EBC =∠C .又∵ ∠BOE =2∠C ,∴ ∠C+2∠C =90°.∴ ∠C =30°.(2)在Rt △ABC 中,225AC AB BC =+= ∴ 152EC AC ==. ∵ ∠ABC =∠DEC =90°,∴ △ABC ∽△DEC .∴AC BCDC EC=.∴54DC=.∴△DEC外接圆的半径为58.15.【答案与解析】(1)证明:连接OF .∵ FH是⊙O的切线,∴ OF⊥FH.∵ FH∥BC,∴ OF垂直平分BC.∴BF FC=.∴ AF平分∠BAC.(2)证明:由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2,∴∠1+∠4=∠2+∠3.∴∠1+∠4=∠5+∠3,即∠FDB=FBD.∴ BF=FD.(3)解:在△BFE和△AFB中,∵∠5=∠2=∠1,∠BFE=∠AFB,∴△BFE∽△AFB.∴BF AF FE BF=,∴274944 FA==,∴4921744 AD=-=.16.【答案与解析】(1)证明:连接OB.∵ BC∥OP,∴∠BCO=∠POA,∠CBO=∠POB.又∵ OC=OB,∴∠BCO=∠CBO.∴∠POB=∠POA.又∵ PO =PO ,OB =OA ,∴ △POB ≌△POA .∴ ∠PBO =∠PAO =90°.∴ PB 是⊙O 的切线.(2)解:2PO =3BC .(写PO =32BC 亦可) 证明:∵ △POB ≌△POA ,∴ PB =PA .∵ BD =2PA ,∴ BD =2PB .∵ BC ∥PO ,∴ △DBC ∽△DPO .∴ 23BC BD PO PD ==, ∴ 2PO =3BC .(3)解:∵ △DBC ∽△DPO ,∴ 23DC BD DO PD ==,即23DC OD =, ∴ DC =2OC .设OA =x ,PA =y ,则OD =3x ,OB =x ,BD =2y .在Rt △OBD 中,由勾股定理,得(3x)2=x 2+(2y)2,即2x 2=y 2.∵ x >0,y >0,∴ 2y x =,223OP x y x =+=.∴ 3sin 33OA OPA OP x ∠====。
与圆有关的计算【命题趋势】在中考中.圆有关的计算常以弧长.扇形面积.阴影部分面积.圆锥有关计算为主.占分值6分左右。
【中考考查重点】一、弧长、扇形面积的有关计算二、圆锥的有关计算三、阴影部分面积的计算考点:弧长.扇形与圆锥的有关计算设的半径为R.圆心角所对弧长为l.弧长公式:l=nπR180(弧长的长度和圆心角大小和半径的取值有关)扇形面积公式:圆锥的侧面积公式:122S l r rlππ==(其中l是圆锥的母线长.r是圆锥的底面半径)母线的概念:连接圆锥顶点和底面圆周任意一点的线段。
圆锥体表面积公式:(l为母线)【备注】1)圆锥的表面积=扇形面积=底面圆面积2)扇形的弧长为圆锥的底面圆周长2πR1.(2020秋•涟源市期末)若圆弧的半径为3.所对的圆心角为60°.则弧长为()A.πB.πC.πD.3π【答案】B【解答】解:弧长l==π.故选:B2.(2020•兰州)如图.现有一圆心角为90°.半径为8cm的扇形纸片.用它恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm【答案】C【解答】解:弧长:=4π(cm).圆锥底面圆的半径:r==2(cm).故选:C.3.(2021•山西)如图.有一圆心角为120°.半径长为6cm的扇形.若将OA、OB重合后围成一圆锥侧面.那么圆锥的高是()A.4cm B.cm C.2cm D.2cm【答案】A【解答】解:由圆心角为120°、半径长为6cm.可知扇形的弧长为=4πcm.即圆锥的底面圆周长为4πcm.则底面圆半径为2cm.已知OA=6cm.由勾股定理得圆锥的高是4cm.故选:A.4.(2020•枣庄)在Rt△ABC中.∠C=90°.BC=4cm.AC=3cm.把△ABC绕点A顺时针旋转90°后.得到△AB1C1.如图所示.则点B所走过的路径长为()A.5cm B.πcm C.πcm D.5πcm【答案】C【解答】解:在Rt△ABC中.AB===5.l AB===πcm.故点B所经过的路程为πcm.故选:C考点:阴影部分面积的计算求阴影部分面积的几种常见方法:1)公式法;2)割补法;3)拼凑法;4)等积变形构造方程法;5)去重法。
第23讲与圆有关的计算一、知识清单梳理知识点一:正多边形与圆关键点拨与对应举例1.正多边形与圆(1)正多边形的有关概念:边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.(2)特殊正多边形中各中心角、长度比:中心角=120°中心角=90°中心角=60°,△BOC为等边△a:r:R=2:1:2 a:r:R=2::2 a:r:R=2:2例:(1) 如果一个正多边形的中心角为72°,那么这个正多边形的边数是5.(2)半径为6的正四边形的边心距为32,中心角等于90°,面积为72.知识点二:与圆有关的计算公式2.弧长和扇形面积的计算扇形的弧长l=180n rπ;扇形的面积S=2360n rπ=12lr例:已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为3π.3.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:,S侧==πrl在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.例:如图,已知一扇形的半径为3,圆心角为60°,则图中阴影部分的面积为【素材积累】1、一个房产经纪人死后和上帝的对话一个房产经纪人死后,和上帝喝茶。
上帝认为他太能说了,会打扰天堂的幽静,于是旧把他打入了地狱。
刚过了一个星期,阎王旧满头大汗找上门来说:上帝呀,赶紧把他弄走吧!上帝问:怎么回事?阎王说:地狱的小。
2、机会往往伪装成困难美国名校芝加哥大学的一位教授到访北大时曾提到:芝加哥大学对学生的基本要求是做困难的事。
因为一个人要想有所成旧,旧必须做那些困难的事。
只有做困难的事,才能推动社会发展进步。