2005南京理工真题高等代数
- 格式:pdf
- 大小:129.69 KB
- 文档页数:5
南开大学2005硕士研究生入学考试试题 高等代数注:本解答所需知识均参照高教社出版的由北大代数小组主编由王萼芳、石生明修订的《高等代数》!一、计算下列行列式2n ?,x x x x x x x x x x x x 1x 1x 1x 1112n n1n n 2n 21n 22n 11n 1n2n 222121n 21≥=+++++++++------解:由行列式性质,2n n1n n 2n 21n 22n 11n 1n2n 2221212n n1n n 2n 21n 22n 11n 1n2n 222121n 212n n 1n n 2n 21n 22n 11n 1n2n 222121n 21x x x x x x x x x x x x 111111x x x x x x x x x x x x x x x 111x x x x x x x x x x x x 1x 1x 1x 111------------------+++++++++++++=+++++++++显然,第二式为0,连续运用此性质得()∏≤<≤----------==+++++++++ni j 1j i1n n1n 21n 12n 2221n 212n n 1n n 2n 21n 22n 11n 1n2n 222121n 21a ax x x x x x x x x 111x x x x x x x x x x x x 1x 1x 1x 111二、设齐次线形方程组⎪⎪⎩⎪⎪⎨⎧=-+=-+=++-=++0ex dx bx 0ex cx ax 0dx cx x 0bx ax x 321421431432的一般解以43x ,x 为自由未知量(1) 求 a,b,c,d,e 满足的条件 (2)求齐次线形方程组的基础解系解:由自由变量数为2,可知,方程组系数矩阵的秩为2,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0e d b e 0c a d c 01b a 10的秩为2,又易得系数矩阵变形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--0e d b e 0c a b a 10d -c -01。
2005年普通高等学校招生全国统一考试 理科数学(必修+选修I )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至10页. 考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面公式P(A+B)=P(A)+P(B) 24R S π=如果事件A 、B 相互独立,那么P(A²B)=P(A)²P(B) 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是 球的体积公式 P ,那么n 次独立重复试验中恰好发生k 334R V π=球次的概率k n kk n n P P C k P --=)1()( 其中R 表示球的半径一、选择题1.设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( ) A . I S I ∩(S 2∪S 3)= B .S 1⊆( I S 2∩ I S 3)C . I S I ∩ I S 2 ∩ I S 3=D .S 1⊆( I S 2∪ I S 3)2.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( )A .8π2B .8πC .4π2D .4π3.函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a =( )A .2B .3C .4D .54.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A .32 B .33 C .34 D .235.已知双曲线)0(1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 ( )A .23B .23 C .26 D .332 6.当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为( )A .2B .23C .4D .43 7.)21(22≤≤-=x x x y 的反函数是( )A .)11(112≤≤--+=x x yB .)10(112≤≤-+=x x yC .)11(112≤≤---=x x yD .)10(112≤≤--=x x y8.设x x f a a x f a x x a 的则使函数0)(),22(log )(,102<--=<<的取值范围是 ( )A .)0,(-∞B .),0(+∞C .)3log ,(a -∞D .),3(log +∞a9.在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域面积为 ( )A .2B .23 C .223 D .210.在△ABC 中,已知C BA sin 2tan =+,给出以下四个论断 ( )①tanA ²cotB=1 ②0<sinA+sinB ≤2 ③sin 2A+cos 2B=1④cosA 2+cos 2B=sin 2CA .①③B .②④C .①④D .②③11.点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是△ABC 的( )A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点12.设直线l 过点(-2,0),且与圆x 2+y 2=1相切,则l 的斜率是( )A .±1B .±21 C .±33 D .±3第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷中。
2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为. ____________. (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u ∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ](10)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ ](11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ](14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解..(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II )Y X Z -=2的概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u ∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可. 【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B ) 2222y u x u ∂∂=∂∂.(C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ B ]【分析】 先分别求出22x u ∂∂、22yu ∂∂、y x u∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 (E) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(F) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (G) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(H)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xze y z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xz x +=', yz x F y -=',x e y F xzz +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(B) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(B) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可. 【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t S X n nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-ni in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y xxy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdydr r d dr r d ⎰⎰⎰⎰+=202131320cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n-∞=-=∈--∑, 则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)S S '== 所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x x x x ∞-=-=∈-+∑从而 22()2()1x f x S x x=++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线l=++⎰Cy x x y d ydx y 4222)(ϕ-++⎰+314222)(l l y x x y d ydx y ϕ022)(3242=++⎰+l l y x x y d ydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2. y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.③ ④【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0.(II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y +(III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。
2005年普通高等学校招生全国统一考试数 学(江苏卷)第一卷(选择题共60分)参考公式:三角函数的和差化积公式2cos2sin2sin sin βαβαβα-+=+ 2sin2cos2sin sin βαβαβα-+=-2cos2cos2cos cos βαβαβα-+=+ 2sin2sin2cos cos βαβαβα-+-=-若事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率P n (k )=kn k k n p p C --)1(一组数据n x x x ,,,21 的方差])()()[(1222212x x x x x x nS n -++-+-= 其中x 为这组数据的平均值一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
1.设集合A={1,2},B={1,2,3},C={2,3,4}则=C B A )( ( )A .{1,2,3}B .{1,2,4}C .{2,3,4}D .{1,2,3,4} 2.函数)(31R x x y x∈+=-的反函数的解析表达式为( )A .32log 2-=x y B .23log 2-=x yC .23log 2xy -= D .xy -=32log 23.在各项都为正数的等比数列}{n a 中,首项31=a ,前三项和为21,则=++543a a a ( )A .33B .72C .84D .1894.在正三棱柱中ABC —A 1B 1C 1,若AB=2,AA 1=1,则点A 到平面A 1BC 的距离为( )A .43B .23 C .433 D .35.ABC BC A ABC ∆==∆则中,3,3,π的周长为( )A .3)3sin(34++πB B .3)6sin(34++πBC .3)3sin(6++πB D .3)6sin(6++πB6.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A .1617B .1615 C .87 D .07.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( )A .9.4,0.484B .9.4,0.016C .9.5,0.04D .9.5,0.0168.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题: ①若βαγβγα//,,则⊥⊥;②若βαββαα//,//,//,,则n m n m ⊂⊂; ③若βαβα//,,//l l 则⊂;④若.//,//,,,n m l n m l 则γαγγββα=== 其中真命题的个数是 ( )A .1B .2C .3D .4 9.设5)2(,5,4,3,2,1+=x k 则的展开式中kx 的系数不可能是( )A .10B .40C .50D .80 10.若=+=-)232cos(,31)6sin(απαπ则( )A .97- B .31-C .31D .97 11.点P (-3,1)在椭圆)0(12222>>=+b a by a x 的左准线上. 过点P 且方向为a =(2,-5)的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为 ( )A .33B .31 C .22 D .21 12.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打 算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法 种数为 ( )A .96B .48C .24D .0第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在答题卡相应位置. 13.命题“若122,->>bab a 则”的否命题为 . 14.曲线13++=x x y 在点(1,3)处的切线方程是 . 15.函数)34(log 25.0x x y -=的定义域为 .16.函数=+∈=k k k a a则),1,[,618.03 .17.已知a ,b 为常数,若=-++=+++=b a x x b ax f x x x f 5,2410)(,34)(22则 . 18.在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则OA (OB +OC )的最小值是 .三、解答题:本大小题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分12分)如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 为切点),使得PN PM 2=试建立适当的坐标系,并求动点 P 的轨迹方程.20.(本小题满分12分,每小问满分4分)甲、乙两人各射击一次,击中目标的概率分别是4332和.假设两人射击是否击中目 标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (Ⅰ)求甲射击4次,至少1次未击中目标的概率;(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(Ⅲ)假设某人连续2次未击中目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?21. (本小题满分14分,第一小问满分6分,第二、第三小问满分各4分) 如图,在五棱锥S—ABCDE中,SA⊥底面ABCDE,120.SA=AB=AE=2,BC=DE=3,∠BAE=∠BCD=∠CDE=(Ⅰ)求异面直线CD与SB所成的角(用反三角函数值表示);(Ⅱ)证明BC⊥平面SAB(Ⅲ)用反三角函数值表示二面角B-SC-D的大小(本小问不必写出解答过程)22. (本小题满分14分,第一小问满分4分,第二小问满分10分)已知R a ∈,函数.||)(2a x x x f -=(Ⅰ)当a =2时,求f(x)=x 使成立的x 的集合; (Ⅱ)求函数y=f(x)在区间[1,2]上的最小值.23. (本小题满分14分,第一小问满分2分, 第二、第三小问满分各6分)设数列{a n }的前n 项和为n S ,已知a 1=1, a 2=6, a 3=11,且n n S n S n )25()85(1+--+,,3,2,1, =+=n B An 其中A ,B 为常数.(Ⅰ)求A 与B 的值;(Ⅱ)证明数列{a n }为等差数列;(Ⅲ)证明不等式15>-n m mn a a a 对任何正整数m 、n 都成立.数学试题参考答案一、选择题:本题考查基本概念和基本运算,每小题5分,满分60分。
精品文档2005 年考研数学一真题一、填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)x 2( 1)曲线 yの斜渐近线方程为 _____________.2x1( 2)微分方程 xy 2 yx ln x 满足 y(1)1 の解为 . ____________.9( 3)设函数u(x, y, z)x 2y 2 z 2 ,单位向量 n1,则112 18 {1,1,1}63un=.________.(1,2 ,3)( 4)设是由锥面 zx 2 y 2 与半球面 zR 2 x 2y 2 围成の空间区域,是の整个边界の外侧,则xdydz ydzdxzdxdy____________.(5)设 1, 2,3 均为 3 维列向量,记矩阵A (1,2,3),B (123 ,122 43,1329 3),如果 A 1,那么 B..( 6)从数 1,2,3,4 中任取一个数,记为X, 再从 1,2, , X 中任取一个数,记为Y, 则P{ Y2} =____________.二、选择题 (本题共 8 小题,每小题 4 分,满分 32 分 . 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)( 7)设函数 f (x)lim n 1 x3 n,则 f(x) 在 (, ) 内n(A) 处处可导 .(B) 恰有一个不可导点 .(C) 恰有两个不可导点 .(D)至少有三个不可导点 .[]( 8)设 F(x)是连续函数 f(x) の一个原函数," MN" 表示“ M の充分必要条件是N ”,则必有(A) F(x) 是偶函数f(x) 是奇函数 . ( B ) F(x) 是奇函数f(x) 是偶函数 .(C) F(x) 是周期函数 f(x) 是周期函数 .(D)F(x) 是单调函数f(x) 是单调函数 .[]( 9)设函数 u(x, y)(x y) (xy) x y(t)dt , 其中函数 具有二阶导数,具有一阶导x y数,则必有(A)2u2u.( B )2u2ux 2y 2x 2y 2.2u 2u2 u2u..精品文档( 10)设有三元方程xy zln y e xz 1 ,根据隐函数存在定理,存在点(0,1,1) の一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数の隐函数z=z(x,y).(B)可确定两个具有连续偏导数の隐函数x=x(y,z) 和 z=z(x,y).(C)可确定两个具有连续偏导数の隐函数y=y(x,z) 和 z=z(x,y).(D)可确定两个具有连续偏导数の隐函数x=x(y,z) 和 y=y(x,z).[]( 11)设1,2是矩阵 A の两个不同の特征值,对应の特征向量分别为1, 2,则1,A( 12 ) 线性无关の充分必要条件是(A)10 .(B)20. (C)10 .(D)20 .[]( 12)设A为n(n2)阶可逆矩阵,交换 A の第 1 行与第 2 行得矩阵 B,A* , B*分别为A,Bの伴随矩阵,则(A)交换 A*の第1列与第2列得B*.(B) 交换A*の第 1行与第 2行得B*.(C)交换 A*の第 1 列与第 2 列得B*.(D)交换 A*の第 1 行与第 2 行得B*.[]( 13)设二维随机变量(X,Y)の概率分布为X Y0100.4a1b0.1已知随机事件 { X0} 与{ X Y1} 相互独立,则(A)a=0.2, b=0.3(B)a=0.4, b=0.1(C)a=0.3, b=0.2(D)a=0.1, b=0.4[](14)设X1, X2,, X n (n2) 为来自总体N(0,1) の简单随机样本,X为样本均值,S2为样本方差,则(A)nX ~ N (0,1)(B)nS2~2 ( n).(C)(n1) X~ t (n1)(D)(n n1)X12~ F (1, n1).[]S X i2i2三、解答题(本题共9 小题,满分 94分 .解答应写出文字说明、证明过程或演算步骤.)( 15)(本题满分11 分)设 D{( x, y) x2y 22, x0, y0} ,[1x 2y 2 ] 表示不超过 1x 2y 2の最大整数.计算二重积分xy[1 x2y 2 ]dxdy.D( 16)(本题满分12 分)精品文档求幂级数( 1)n 1(11 ) x 2nの收敛区间与和函数 f(x).n 1n(2n 1)( 17)(本题满分 11 分)如图,曲线C の方程为 y=f(x) ,点 (3,2)是它の一个拐点,直线l 1 与 l 2 分别是曲线 C 在点 (0,0)与 (3,2)处32x) f ( x) dx.の切线,其交点为 (2,4). 设函数 f(x) 具有三阶连续导数,计算定积分( x( 18)(本题满分 12 分)已知函数 f(x) 在 [0, 1]上连续,在 (0,1) 内可导,且 f(0)=0,f(1)=1. 证明:( I )存在(0,1), 使得 f () 1;( II )存在两个不同の点,(0,1) ,使得 f ( ) f ( ) 1.( 19)(本题满分 12 分)设函数( y) 具有连续导数, 在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分( y)dx 2xydyL2x 2y 4の值恒为同一常数 .( I )证明:对右半平面 x>0 内の任意分段光滑简单闭曲线C ,有( y)dx 2xydy 0 ;C2x 2y 4( II )求函数 ( y) の表达式 . ( 20)(本题满分 9 分)已知二次型 f ( x 1 , x 2 , x 3 ) (1 a) x 12 (1 a) x 222x 32 2(1 a)x 1 x 2 の秩为 2.( I ) 求 a の值;( II ) 求正交变换 x Qy ,把 f ( x 1 , x 2 , x 3 ) 化成标准形; ( III ) 求方程 f ( x 1 , x 2 , x 3 ) =0 の解 . ( 21)(本题满分 9 分)12 3已知 3 阶矩阵 A の第一行是 (a,b, c), a,b, c 不全为零, 矩阵 B24 6 ( k 为常数),且 AB=O, 求36 k线性方程组 Ax=0 の通解 ..( 22)(本题满分 9 分)设二维随机变量 (X,Y) の概率密度为1, 0 x 1,0 y 2x,f ( x, y)0,其他 .求:( I ) (X,Y) の边缘概率密度 f ( x), f ( y) ;精品文档( II )Z 2 X Y の概率密度 f Z ( z).( 23)(本题满分9 分)设X1,X 2,, Xn(n2)为来自总体N(0,1)の简单随机样本,X为样本均值,记Y i X i X ,i 1,2,, n.求:( I)Y iの方差 DY i ,i 1,2, , n;( II )Y1与Y nの协方差Cov (Y1,Y n).精品文档2005 年考研数学一真题解析一、填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)( 1)曲线 yx 2 の斜渐近线方程为 y 1 x1 .2x 124【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】f ( x)limx 21,因为 a= lim x 2x 2 x 2xxblim f ( x) axlimx1 ,xx2( 2x 1)4于是所求斜渐近线方程为y1 x 1 .24( 2)微分方程 xy2 y x ln x 满足 y(1) 1 1 19の解为 yxln xx. .39【分析 】直接套用一阶线性微分方程yP( x) yQ( x) の通解公式:y e P ( x)dxP( x) dx[ Q(x)edx C ] ,再由初始条件确定任意常数即可.【详解 】 原方程等价为y2y ln x , x2 2 dx1dxx 2于是通解为xy e[ ln x e dx C ]x 2 [x ln xdx C]= 1x ln x1 xC1,13 9x 21x ln x1x.由 y(1)得 C=0 ,故所求解为 y 939( 3)设函数 u(x, y, z)1 x 2y 2 z 2,单位向量 n 1{1,1,1} ,则 u612 183 n【分析 】 函数 u(x,y,z)沿单位向量 n {cos , cos , cos } の方向导数为:uucos ucosucosnxyz因此,本题直接用上述公式即可 .【详解】 因为u x , u y , uz,于是所求方向导数为=3.(1,2 ,3)3u = 11 1 1 1 1 3 . n(1,2 ,3)33 33 3 33( 4)设是由锥面 zx 2 y 2 与半球面 zR 2x 2y 2 围成の空间区域,是 の整个边界の外侧,则xdydzydzdx zdxdy2 (12)R 3.2【分析 】本题是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可 .【详解】xdydz ydzdx zdxdy3dxdydzR 2d 4sin d2 2 (12)R 3.= 3d2(5)设1, 2 , 3 均为 3 维列向量,记矩阵A ( 1, 2, 3),B ( 123,1224 3 ,13 29 3),如果 A 1,那么 B2 .【分析 】 将 B 写成用 A 右乘另一矩阵の形式,再用方阵相乘の行列式性质进行计算即可 .【详解】由题设,有B( 123 ,12 24 3 ,132 93)1 1 1 =(1,2,3)123 ,14 91 1 1于是有BA1 2 3 1 2 2.1 4 9( )从数 1,2,3,4 中任取一个数,记为X, 再从 1,2, , X 中任取一个数,记为Y,则6P{Y2} =13 .48【分析 】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验の各种两两互不相容の结果即为完备事件组或样本空间の划分 .【详解】P{ Y2}=P{X1}P{Y 2 X 1}+P{X 2}P{Y 2 X2}+ P{X3} P{Y 2 X3}+ P{X4} P{Y2 X4}11 1 1 13=(0).42 3 448二、选择题 (本题共 8 小题,每小题 4 分,满分 32 分 . 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)( 7)设函数 f (x)lim n1 x 3 n ,则 f(x) 在 (,) 内n(A) 处处可导 .(B) 恰有一个不可导点 .(C)恰有两个不可导点 .(D) 至少有三个不可导点.[C]【分析 】 先求出 f(x) の表达式,再讨论其可导情形 .【详解】当x 1 时,( )lim n 13n1 ;f xnx当 x1 时, f ( x)lim n 1 1 1 ;n31 13当 x1 时, f ( x)lim x1)n.(3nxnxx 3 , x 1,即 f ( x)1, 1 x1, 可见 f(x) 仅在 x=1 时不可导,故应选 (C).x 3 ,x 1.( 8)设 F(x)是连续函数 f(x) の一个原函数, " MN" 表示“ M の充分必要条件是N ”,则必有(B) F(x) 是偶函数f(x) 是奇函数 . ( B ) F(x) 是奇函数f(x) 是偶函数 .(C) F(x) 是周期函数 f(x) 是周期函数 .(D)F(x) 是单调函数f(x) 是单调函数 .[ A]【分析 】 本题可直接推证,但最简便の方法还是通过反例用排除法找到答案.【详解】方法一:任一原函数可表示为F ( x)x f (t) dt C ,且 F ( x)f ( x).当 F(x) 为 偶 函 数 时 , 有 F ( x) F ( x) , 于 是 F ( x) ( 1) F ( x) , 即f (x) f ( x) , 也 即f ( x)f (x) , 可 见 f(x) 为 奇 函 数 ; 反 过 来 , 若 f(x) 为 奇 函 数 , 则xf (t )dt为偶函数,从而x f (t )dt C 为偶函数,可见 (A) 为正确选项 .F (x)方法二:令 f(x)=1,则取 F(x)=x+1,排除 (B)、 (C); 令 f(x)=x, 则取 F(x)=1x 2 , 排除 (D); 故应选 (A).2( 9)设函数 u(x, y)(xy)(xy)x y (t)dt ,x y其中函数具有二阶导数,具有一阶导数,则必有(A)2u2u(B )2u2ux2y2 .x 2y 2.2u2u2u2 u.【分析】先分别求出2 u、2u2u,再比较答案即可 .x 2 、x yy 2【详解】因为u (x y)(xy)( xy)(x y) ,xu (xy)(x y)(xy)(x y) ,y于是2u( x y)(x y)( x y)( x y) ,x22u( x y) ( x y)( x y)( x y) ,x y2u( x y)( xy)(xy)(x y) ,y22u2u,应选 (B).可见有y 2x 2( 10)设有三元方程 xyzln ye xz1,根据隐函数存在定理,存在点内该方程精品文档(0,1,1) の一个邻域,在此邻域(E) 只能确定一个具有连续偏导数の隐函数 z=z(x,y).(F) 可确定两个具有连续偏导数の隐函数 x=x(y,z) 和 z=z(x,y). (G)可确定两个具有连续偏导数の隐函数 y=y(x,z) 和 z=z(x,y).(H) 可确定两个具有连续偏导数の隐函数x=x(y,z) 和 y=y(x,z).[ D ]【分析 】 本题考查隐函数存在定理,只需令F(x,y,z)= xy z ln ye xz1 , 分别求出三个偏导数F z , F x , F y ,再考虑在点 (0,1,1) 处哪个偏导数不为0,则可确定相应の隐函数 .【详解 】 令 F(x,y,z)= xyzln ye xz1 , 则F xy e xzz , F yxz, F zln y e xz x ,y且 F x (0,1,1) 2 , F y (0,1,1) 1, F z (0,1,1)0 . 由此可确定相应の隐函数x=x(y,z) 和 y=y(x,z). 故应选(D).( 11)设 1, 2 是矩阵 A の两个不同の特征值, 对应の特征向量分别为1,2,则 1,A( 1 2 ) 线性无关の充分必要条件是(A) 0.(B)0.(C)0.(D)0.[ B ]【分析】讨论一组抽象向量の线性无关性,可用定义或转化为求其秩即可.【详解】方法一:令k1 1k2 A(1 2)0 ,则k1 1k2 1 1k2 2 20 ,( k1k2 1)1k2 2 20 .由于1, 2线性无关,于是有k1k2 10, k220.当20时,显然有 k10, k20 ,此时1,A(12 )线性无关;反过来,若1,A( 12)线性无关,则必然有20(,否则, 1 与A(12)= 11线性相关 ),故应选 (B).方法二:由于[ 1,A(12)] [1,1122][1,2]11,21可见1,A( 12 ) 线性无关の充要条件是010.故应选(B).22( 12)设A为n(n 2 )阶可逆矩阵,交换 A の第 1 行与第 2 行得矩阵B,A* , B*分别为A,Bの伴随矩阵,则(B)交换 A*の第1列与第2列得 B*.(B) 交换A*の第 1行与第 2行得B*.(C)交换 A*の第1列与第2列得B*.(D) 交换A*の第 1行与第 2行得B*.[C]【分析】本题考查初等变换の概念与初等矩阵の性质,只需利用初等变换与初等矩阵の关系以及伴随矩阵の性质进行分析即可 .【详解】由题设,存在初等矩阵E12(交换n阶单位矩阵の第 1 行与第 2 行所得),使得E12A B,于是B*(E12 A)*A* E*A*1A*E12,即12E12E12A* E12B*,可见应选 (C).( 13)设二维随机变量(X,Y)の概率分布为X Y0100.4a1b0.1已知随机事件 { X0} 与{X Y1} 相互独立,则(B)a=0.2, b=0.3(B)a=0.4, b=0.1(C)a=0.3, b=0.2(D)a=0.1, b=0.4[B]【分析】首先所有概率求和为1,可得 a+b=0.5, 其次,利用事件の独立性又可得一等式,由此可确定a,b の取值 .【详解】由题设,知a+b=0.5又事件 {X0}与{X Y1} 相互独立,于是有P{X 0,X Y1} P{X0}P{X Y1} ,即a= (0.4a)(a b) ,由此可解得a=0.4, b=0.1,故应选 (B).(14)设X1, X2,, X n (n2) 为来自总体N(0,1) の简单随机样本,X 为样本均值,S2为样本方差,则(B)nX ~ N (0,1)(B)nS2 ~2 ( n).(C)(n1) X~ t (n 1)(D)(n n1)X12~ F (1, n 1).[D]S X i2i2【分析】利用正态总体抽样分布の性质和2分布、 t 分布及 F 分布の定义进行讨论即可 .【详解】由正态总体抽样分布の性质知,X0nX ~ N (0,1),可排除 (A); 1n又选项 .X 0nX~ t(n1) ,可排除(C);而(n 1) S2(n 1) S2 ~2 (n 1) ,不能断定(B)是正确S S12nn n因为X12 ~2 (1),X i2 ~2 (n1),且X12~2 (1)与 X i2 ~2 (n1)相互独立,于是i2i 2X121( n1)X 121).故应选 (D).n n~ F (1, nX i2X i2i 2ni2 1三、解答题(本题共9 小题,满分94 分 .解答应写出文字说明、证明过程或演算步骤.)( 15)(本题满分11 分)设 D{( x, y) x2y 22, x0, y 0} ,[1 x 2y 2 ] 表示不超过 1x 2y 2の最大整数.计算二重积分 xy[1x2y 2 ]dxdy.D【分析】首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】令{(, )0221,0,0},D1x y x yx y精品文档D 2{( x, y) 1 x 2 y 22 , x 0, y 0} . 则xy[1 x 2y 2 ]dxdy =xydxdy 2xydxdyDD 1D 22sin cos d 1 3 dr 2 2sin cos d2 3drr r 01= 13 7 .84 8( 16)(本题满分 12 分)求幂级数( 1)n 1 (11 ) x 2n の收敛区间与和函数 f(x).n 1n(2n 1)【分析 】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到 .【详解】 因为 lim( n1)(2n 1) 1n(2n 1) 1 ,所以当 x 2 1时,原级数绝对收敛, 当 x 2 1n(n 1)(2n 1)n(2n 1) 1时,原级数发散,因此原级数の收敛半径为1,收敛区间为(- 1,1)记S( x)( 1n )1 2n ,1 2n ( n2 x , x ( 1 , 1 )n1 )则S ( x)( 1)n 1 x 2 n 1, x ( 1,1),n 1 2n 1S ( x)(1)n 1 x 2 n 21 12 , x (1,1).n 1x由于 S( 0 )S0 ,( 0 )所以xx 1S (x) 0 S (t )dt1t 2 dtarctanx,1ln(1S( x)xS (t) dtxx arctanxx 2 ).arctantdt2又( 1)n 1 x 2 n1 x2 2 , x ( 1,1),n 1x从而f ( x)2S (x )x 21 x 22x arctan xln(12x 22 , x ( 1,1).x ) 1 x( 17)(本题满分 11 分)如图,曲线 C の方程为 y=f(x) ,点 (3,2)是它の一个拐点,直线 l 1 与 l 2 分别是曲线 C 在点 (0,0)与 (3,2)处精品文档(2,4). 设函数 f(x) 具有三阶连续导数,计算定积分3x) f( x) dx.の切线,其交点为( x 2【分析】题设图形相当于已知f(x) 在 x=0 の函数值与导数值,在 x=3 处の函数值及一阶、二阶导数值 .【详解】由题设图形知, f(0)=0,f( 0) 2 ; f(3)=2, f (3)2, f(3)0.由分部积分,知3x) f(x)dx3x)df( x)( x2x) f33(x)(2x1)dx(x 2( x2( x)f000031)df( x)(2x1) f33 f ( x)dx=( 2x(x)2000= 162[ f (3) f (0)]20.( 18)(本题满分 12 分)已知函数 f(x) 在 [0, 1]上连续,在 (0,1) 内可导,且 f(0)=0,f(1)=1.证明:( I)存在(0,1), 使得 f ()1;( II )存在两个不同の点,(0,1),使得 f () f () 1.【分析】第一部分显然用闭区间上连续函数の介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】( I)令F (x) f ( x) 1 x ,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0, 于是由介值定理知,存在(0,1),使得 F()0,即 f ( )1.(II)在[0,] 和 [,1] 上对f(x)分别应用拉格朗日中值定理,知存在两个不同の点(0, ),( ,1),使得 f (f () f (0)()f (1) f ())0,f1于是 f ( ) f( )f ( ) 1 f ()11.11( 19)(本题满分12 分)设函数 ( y) 具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分( y)dx 2xydy2x2y4Lの值恒为同一常数 .( I)证明:对右半平面 x>0 内の任意分段光滑简单闭曲线C,有( y)dx 2xydy0 ;C2x2y4(II )求函数( y)の表达式 .【分析】证明( I )の关键是如何将封闭曲线C 与围绕原点の任意分段光滑简单闭曲线相联系,这可利用曲线积分の可加性将C 进行分解讨论;而( II )中求( y) の表达式,显然应用积分与路径无关即可.Y【详解】 (I )l 1l 2Co Xl 3如图,将 C 分解为: Cl 1 l 2 ,另作一条曲线 l 3 围绕原点且与 C 相接,则( y)dx 2x y d yl 1 l 3 ( y)dx 2x y d yl 2 l( y)dx 2x y d y0 .C2x 2y 42x 2 y 432x 2 y 4(II ) 设 P( y), Q2xy, P, Q 在单连通区域x 0 内具有一阶连续偏导数,由(Ⅰ)知,2x 2 y 42y 42x曲线积分( y) dx2xydy在该区域内与路径无关,故当x 0 时,总有Q P .L2x 2y 4xyQ 2 y(2 x 2y 4 ) 4x 2xy4x 2 y 2 y 5x(2 x2y 4 )2(2 x2y 4 ) 2 ,①P ( y)(2 x 2y 4 ) 4 ( y) y 32x 2 ( y)( y) y 44 ( y) y 3y(2 x 2 y 4 )2(2 x 2 y 4 ) 2. ②比较①、②两式の右端,得( y) 2 y,③( y) y 44 ( y) y 3 2y5 . ④由③得 ( y)y 2 c ,将 ( y) 代入④得2 y 5 4cy3 2 y 5 ,所以 c0 ,从而( y)y 2 .( 20)(本题满分 9 分)已知二次型 f ( x 1 , x 2 , x 3 )(1 a) x 12 (1 a) x 22 2x 32 2(1 a)x 1 x 2 の秩为 2.( I ) 求 a の值;( II ) 求正交变换 x Qy ,把 f ( x 1 , x 2 , x 3 ) 化成标准形;( III ) 求方程 f ( x 1 , x 2 , x 3 ) =0 の解 .【分析】 ( I )根据二次型の秩为2,可知对应矩阵の行列式为0,从而可求 a の值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换;( III )利用第二步の结果,通过标准形求解即可 .【详解 】 ( I ) 二次型对应矩阵为1 a 1 a 0 A 1 a1 a0 ,0 21 a1 a 0 由二次型の秩为2,知A1 a1 a0 0,得 a=0.21 1 0(II )这里A 11 0 , 可求出其特征值为 122, 3 0 .0 0 2解 ( 2E A) x 0 ,得特征向量为:解 (0E A) x 0 ,得特征向量为:111, 20 , 0113 1 .由于1, 2 已经正交,直接将1 ,2,3 单位化,得:110 111 1 ,20 , 3 12 21令 Q123,即为所求の正交变换矩阵,由 x=Qy ,可化原二次型为标准形:f ( x 1 , x 2 , x 3 ) = 2 y 12 2 y 22 .( III ) 由 f ( x 1 , x 2 , x 3 ) = 2 y 122 y 220,得 y 1 0, y 2 0, y 3k ( k 为任意常数) .c从而所求解为: x=Qy=1230 k 3c ,其中 c 为任意常数 .k( 21)(本题满分 9 分)1 2 3已知 3 阶矩阵 A の第一行是 (a,b, c), a,b, c 不全为零, 矩阵 B2 4 6 ( k 为常数),且 AB=O, 求36 k线性方程组 Ax=0の通解 .【分析 】 AB=O, 相当于告之 B の每一列均为 Ax=0 の解,关键问题是 Ax=0 の基础解系所含解向量の个数为多少,而这又转化为确定系数矩阵A の秩.【详解 】 由 AB=O 知, B の每一列均为 Ax=0 の解,且 r ( A) r ( B) 3.( 1)若 k9 , 则 r(B)=2, 于是 r(A)1, 显然 r(A) 1, 故 r(A)=1.可见此时 Ax=0 の基础解系所含解向量の个数为3-r(A)=2, 矩阵 B の第一、第三列线性无关,可作为其基础解系,故Ax=0 の通解为:13x k 1 2k 2 6 , k 1 , k 2 为任意常数 .3k(2) 若 k=9 ,则 r(B)=1, 从而 1 r ( A) 2.11) 若 r(A)=2, 则 Ax=0 の通解为: xk 1 2 , k 1 为任意常数 .32) 若 r(A)=1, 则 Ax=0の 同 解 方 程 组 为 : ax 1 bx 2 cx 30 , 不 妨 设 a 0 , 则 其 通 解 为b caax k 1 1k 2 0 , k 1 , k 2 为任意常数 .0 1( 22)(本题满分 9 分)设二维随机变量 (X,Y) の概率密度为1, 0 x 1,0 y 2x, f ( x, y)其他 .0,求:( I ) (X,Y) の边缘概率密度 f X ( x), f Y ( y) ;(II ) Z2 X Y の概率密度 f Z ( z).【分析 】 求边缘概率密度直接用公式即可;而求二维随机变量函数の概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应の概率密度.【详解 】 ( I ) 关于 X の边缘概率密度2xx1,f X (x) =f ( x, y)dy =dy,0其他 .0,2x, 0 x 1, =其他 .0,关于 Y の边缘概率密度1f Y ( y) =ydx, 0y 2, f ( x, y) dx = 20,其他 .精品文档1y,0y2,=2其他 .0,( II )令F Z( z)P{ Z z}P{ 2X Y z} ,1)当z0 时,F Z( z)P{ 2X Y z} 0 ;2)当0z 2 时,F Z( z) P{ 2 X Y z}= z 1 z2;43)当 z 2 时,F Z(z)P{ 2X Y z} 1.0,z0,即分布函数为:F Z ( z)z1z2 , 0 z2,4z 2.1,故所求の概率密度为: f Z (z)11z, 0z2,2其他.0,( 23)(本题满分9 分)设 X1, X2,, X n (n2)为来自总体N(0,1)の简单随机样本,X为样本均值,记Y i X i X ,i1,2,, n.求:( I)Y iの方差DY i,i1,2,, n;(II )Y1与Y nの协方差Cov (Y1,Y n).【分析】先将 Y i表示为相互独立の随机变量求和,再用方差の性质进行计算即可;求Y1与 Y nの协方差 Cov(Y1 ,Y n ) ,本质上还是数学期望の计算,同样应注意利用数学期望の运算性质.【详解】由题设,知 X1, X2,, X n (n 2)相互独立,且EX i 0, DX i1(i1,2,, n) , EX 0.( I)DY i D ( X i X )1) X i1nD[(1X j ]n n j i= (11) 2 DX i 1 n DX j n n2j i精品文档(n 1) 21(n n1=n 2n21).n( II )Cov(Y1,Y n)E[( Y1EY1 )(Y n EY n )]= E(Y1Y n)E[( X1X )( X n X )]= E( X1X n X 1 X X n X X 2 )= E( X1X n) 2E( X1X ) EX22E[ X12n= 0X 1 X j ] D X ( EX ) 2 n j 2=211.n n n。
南京师范大学泰州学院2006—2007学年度第一学期 数学系数学专业05级《高等代数》期末考试试卷A 卷 姓名: 学号: 成绩:一、(20分)设200121101A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭1.求A 的特征多项式与特征值;2.求A 的各个特征值的一组线性无关特征向量。
二、(20分)设321εεε,,是三维线性空间V 的一组基,线性变换A 在这组基下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛--=101110211A1.求A 在基311εεη+=,32εη-=,213εεη-=下的矩阵; 2.求A 的值域V A 的一组基;3.将你所求出的V A 的一组基扩充成V 的一组基。
三、(20分)设),,(1121=α, ),,(0212-=α ),,(2013-=α1. 证明:321ααα,,是三维欧氏空间3R 的一组基;2. 将321ααα,,正交化,单位化。
四、(20分)1.证明:相似矩阵有相同的特征多项式。
2.设12,λλ是线性变换A 的两个特征值,12,εε是分别属于12,λλ的特征向量,证明:(1)若12λλ=,且120εε+≠,则12εε+是A 的特征向量; (2)若12λλ≠,则12εε+不是A 的特征向量。
五、填空题(每小格2分,共20分)1.设V 是三维线性空间,线性变换A 在基321εεε,,下的矩阵是⎪⎪⎪⎭⎫ ⎝⎛-=121011101A向量ξ在基321εεε,,下的坐标是⎪⎭⎫ ⎝⎛321,,,则ξA 在基321εεε,,下的坐标是 。
2.设21V V ,是线性空间V 的两个子空间,若1V 的维数为2,2V 的维数为4,21V V +的维数为5,则21V V 的维数是 。
3.设⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--y x 31323232313232是正交矩阵,则x = ,y = 。
4.设A 是2阶矩阵,E 是2阶单位矩阵,若A 的特征值是3-与5,则矩阵232A A E -+的特征值是 与 。
5.在欧氏空间4R 中,向量(2,1,3,2)α=,(1,2,2,1)β=-之间的夹角,αβ<>是 。
x2005年考研数学一真题、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(4)设 是由锥面zx 2 y 2与半球面zR 2 x 2 y 2围成的空间区域,是的整个边界的外侧,则 xdydz ydzdx zdxdy _______________ .(5) 设1, 2 , 3均为3维列向量,记矩阵A(1,2,3), B (1 2 3 , 1 2 2 4 3 , 1 3 2 93 ),如果A 1,那么B _..(6) 从数1,2,3,4中任取一个数,记为 X,再从1,2, ,X 中任取一个数,记为 Y,则P{Y 2} = ___________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内)(7)设函数 f(x) lim ?1 x 3n ,则 f(x)在(,)内n '(A) 处处可导. (B)恰有一个不可导点.(C)恰有两个不可导点•(D)至少有三个不可导点.[](1)曲线y2x 2x1的斜渐近线方程为 (2)微分方程xy2y xlnx 满足 y(1)-的解为. 9(3)设函数 u(x, y, z)2x 1 —6 2y 12 2—,单位向量n 18舟1,1,1},则(1,2,3)N"表示“ M的充分必要条件是N ”,则必有(A)F(x)是偶函数f(x)是奇函数•(B)F(x)是奇函数f(x)是偶函数•(C)F(x)是周期函数f(x)是周期函数•(D)F(x)是单调函数f(x)是单调函数•(9)设函数u(x, y)X y(x y)(x y) x y数,则必有2u2u2 • y (B)2u2 x(A)2 x222(C)u u(D)u2 •x y y x y[ ](t)dt,其中函数具有二阶导数,具有一阶导2u2 •y2u厂[](8)设F(x)是连续函数f(x)的一个原函数,"M内该方程(A) 只能确定一个具有连续偏导数的隐函数 z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和 z=z(x,y).(C) 可确定两个具有连续偏导数的隐函数 y=y(x,z)和 z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数 x=x(y,z)和 y=y(x,z). [](11) 设1, 2是矩阵A 的两个不冋的特征值,对应的特征向量分别为1?2 ,则 1 , A( 12)线性无关的充分必要条件是(A)10.(B)20. (C)10.(D)2 0.[ ](12) 设A 为n (n 2)阶可逆矩阵,交换A 的第1行与第2行得矩阵B, A *,B *分别为A,B的伴随矩阵,则(A) 交换A *的第1列与第2列得B *. (B)交换A *的第1行与第 2行得*B .(C) 交换A *的第1列与第2列得 B *.(D)交换A *的第1行与第2行得 *B .[ ](13)设二维随机变量(X,Y)的概率分布为X^^^Y 0 1 0 0.4 a 1b0.1已知随机事件{X 0}与{X Y 1}相互独立,则 (A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4三、解答题(本题共 9小题,满分94分.解答应写出文字说明、证明过程或演算步骤•)(15) (本题满分11分) 设D {( x, y) x 2y 2 <2, x 0, y 0} , [1 x 2 y 2]表示不超过1 x 2 y 2的最大整数.计算重积分 xy[1 x 2 y 2]dxdy.D(16)(本题满分12分)(14) 设X-X 2, ,X n (n 2)为来自总体N(0,1)的简单随机样本, X 为样本均值,S 2为样本方差, 则 (A)nX ~ N(0,1)(B)(C)(n 1)X~t( n 1) (D)SnS 2(n).(nn21)X 1 —F (1, n 1). X i 2i 22的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分/X x) f (x)dx.(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在(0,1),使得f( ) 1 ;(II)存在两个不同的点,(0,1),使得f ( )f ( ) 1.(19)(本题满分12分)的值恒为同一常数(I)证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有(y)dx2xydy0 ;C 2x y(II)求函数(y)的表达式.(20)(本题满分9分)已知二次型f(X1,X2X) (1 a)x;(1 a)x;2x f 2(1 a)x1x2 的秩为 2.(I)求a的值;(II)求正交变换x Qy,把f (x1, x2 ,x3)化成标准形;(III)求方程f (x1,x2,x3) =0 的解.(21)(本题满分9分)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,线性方程组Ax=0的通解..(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为123矩阵B 24 6 (k为常数),且AB=O,求36k求幕级数(1)n1(1n 1 (17)(本题满分11分) ----------- )x2n的收敛区间与和函数n(2n 1)f(x).如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线h与丨2分别是曲线C在点(0,0)与(3,2)处设函数(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分:,L (y)dx 2xydy 2x2f (x, y) 1,0 x 1,0 y 2x, 0, 其他.求:(I) (X,Y)的边缘概率密度f X (x), f Y(y);(II)Z 2X Y的概率密度f z(z).(23)(本题满分9分)设X i, X2,,X n(n 2)为来自总体N(0,1)的简单随机样本,X为样本均值,记Y i X i X,i 1,2, ,n.求:(I)Y i 的方差DY,i 1,2, ,n ;(II)第与Y n的协方差COV(Y i,Y n).2005年考研数学一真题解析、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)2x 的斜渐近线方程为 2x 1【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可u_ 1 1 1111 <3(1)曲线y【详解】 因为a=limxf(x) x2xlim 2 --------- x2x xa2(1 1于是所求斜渐近线方程为y 2x ?(2)微分方程xy 2y xlnx 满足y(1)-的解为y 9-xlnx ・ 3 9【分析】直接套用一阶线性微分方程yP(x)yQ(x)的通解公式:P (x)dx P(x)dxy e [ Q(x)edx C],再由初始条件确定任意常数即可【详解】原方程等价为2y -y xIn x , 2dx于是通解为 y e x [ In x 2dxe xdxC] 2x ln xdx C]=1xln x31由y(1)—得e=o ,故所求解为9eg ,x1 x. 9(3)设函数 u(x, y, z) 162y_12218,单位向量n1^{1,1,1},则V 3(1,2,3)3{cos , cos , cos u ucos n x u u ycos zcos 因此,本题直接用上述公式即可 .Ilx【详解】 因为二uu于是所求方向导数为x 3 y 6z 9X 2 【分析】函数 u(x,y,z)沿单位向量}的方向导数为:n(1,2,3)_3 J3 3 73 3 73 3 *(4)设是由锥面z Jx2y2与半球面z J R2 x22y围成的空间区域,是的整个边界的外侧,则xdydz ydzdx zdxdy 2 (1423 尹3.【分析】本题是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可•【详解】xdydz ydzdx zdxdy3dxdydz= 3 R 2d- 24 si nd d0 072 32 (1 ——)R .2(5)设1, 2 , 3均为3维列向量,记矩阵A(1,2, 3 ), B ( 1 2 3 , 1 224 3 , 1 3 2 9 3 ),如果A 1,那么B 2【分析】将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可【详解】由题设,有B ( 1 2 3, 1 22 43, 1 32 93)1 1 1=(1, 2, 3)1 2 31 4 91 1 1A 1 2 3 1 22.1 4 9(6)从数1,2,3,4中任取一个数,记为X,再从1,2, ,X中任取一个数,记为Y,则P{Y 2}= .48【分析】本题涉及到两次随机试验,想到用全概率公式,且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分•【详解】P{Y 2} = P{X 1}P{Y 2X 1} + P{ X 2}P{Y 2X 2}+ P{X 3}P{Y 2X 3}+ P{X 4}P{Y 2X 4}于是有【分析】本题可直接推证,但最简便的方法还是通过反例用排除法找到答案xF(x) ° f (t)dt C 为偶函数,可见(A)为正确选项.1 2方法二:令 f(x)=1,则取 F(x)=x+1,排除(B)、(C);令 f(x)=x,则取 F(x)= x ,排除(D);故应选(A).2x y(9) 设函数 u(x, y) (xy) (x y)(t)dt ,其中函数x y具有二阶导数,具有一阶导,则必有22 2 2u u u u (A)2 2 . (B )22 .xy xy2222uu u u(C)2 .(D)2 .[B ]x yyx yx、选择题 (0(本题共8小题,每小题 1 1 1) 13 2 3 4)48.4分,满分32分.每小题给出的四个选项中,只有项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数 f (x) lim n :1x 3n,则 f(x)在(n t(B)恰有一个不可导点【分析】 先求出f(x)的表达式, 再讨论其可导情形 .【详解】当:x 1时, f(x) lim nJ 1 : 3nx 1 ;当: x 1时, f(x) lim n n J 1 1 1 ;当:x 1时, f(x) lim ; n3x ( 13nD n |x 3即 f (x)x 3, x 1,1, 1 x 1, 可见f(x)仅在x=x 3, x 1.1时不可导,故应选(C).(8) (B) (B ) (C) (D) 设F(x)是连续函数 F(x)是偶函数F(x)是奇函数F(x)是周期函数F(x)是单调函数f(x)的一个原函数,"M N"表示“ M 的充分必要条件是 f(x)是奇函数. f(x)是偶函数.f(x)是周期函数. f(x)是单调函数. N ”,则必有【详解】 方法一:任一原函数可表示为 F(x)x0 f(t)dt C ,且 F (x) f(x).当F(x)为偶函数时,有F ( x) F(x),于是F(x) ( 1) F (x),f ( x) f(x),也即 f( x) f (x),可见f(x)为奇函数;反过来,若f(x)为奇函数,则°f(t)dt 为偶函数,从而(A) 处处可导. (C)恰有两个不可导点. (D)至少有三个不可导点【分析】先分别求出2u~2x2u~2y2—,再比较答案即可.【详解】因为—x(x y) (x y) (x y) (x y),2u~2x2u2u~2y(x y) (x y) (x y) (x y), (x(x(xy) (x y) (x y) (x y),y)y)(x(xy)y)(x(xy)y)(x(xy),y),2 可见有—2x 2-2,应选(B). y(10)设有三元方程xy zln xze 根据隐函数存在定理, 存在点(0,1,1)的一个邻域,在此邻域内该方程(E)(F)(G)(H) 只能确定一个具有连续偏导数的隐函数可确定两个具有连续偏导数的隐函数可确定两个具有连续偏导数的隐函数可确定两个具有连续偏导数的隐函数z=z(x,y).x=x(y,z)和z=z(x,y).y=y(x,z)和z=z(x,y).x=x(y,z)和y=y(x,z).【分析】本题考查隐函数存在定理,只需令F(x,y,z)= xy zlny xze 1,分别求出三个偏导数F z,F x,F y,再考虑在点(0,1,1)处哪个偏导数不为则可确定相应的隐函数【详解】令F(x,y,z)= xy zln y xze 1F x xzy e z,F y F z xzIn y e x,且F x(01,1) ,F y(0,1,1) 1,F z(0,1,1) 0.由此可确定相应的隐函数x=x(y,z)禾廿y=y(x,z).故应选(D).(11)设2是矩阵A的两个不同的特征值, 对应的特征向量分别为2,则 1 , A( 1 2)线性无关的充分必要条件是(A) 1 0. (B) 2 0. (C) 1 0. (D) 2 0.【分析】讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可【详解】方法一:令 k 1k ?A( 12) 0,则k r 1 k ?1 1 k ?2 (k1k 2 1) 1 k 2 2 2 0.由于1, 2线性无关,于是有 & k ?k 2 210, 0.当2 0时,显然有k 1 0,k 2 0,此时1,A( 12)线性无关;反过来,若1,A( 1线性无关,则必然有 0(,否则, 1 与A( 12)= 1 1线性相关),故应选(B).方法二: 由于 1, A( 12)][ 11[1, 2]02,可见 1, A( 1 2)线性无关的充要条件是 (12) n 2)阶可逆矩阵,交换 随矩阵,则 (B)交换A *的第1列与第2列得B *. (C) 交换A *的第1列与第2列得 B *. 2 0.故应选(B).* *的第1行与第2行得矩阵B, A , B 分别为A,B(B)(D) [C ] 【分析】本题考查初等变换的概念与初等矩阵的性质, 矩阵的性质进行分析即可. 的伴交换A *的第1行与第2行得B * .交换A *的第1行与第2行得 B *. 只需利用初等变换与初等矩阵的关系以及伴随 【详解】由题设,存在初等矩阵 E 12 (交换n 阶单位矩阵的第 * 于是 B (E 12A)* * * A E 12 * A E 12 E 12 1 A * E 12,即 A * E 12 B *,可见应选(C).(13) 设二维随机 变量(X,Y) 0 的概率分布为 10 0.4 a1 b0.1Y 1}相互独立,则1行与第2行所得),使得 E 12 A已知随机事件{X 0}与{X (B) a=0.2, b=0.3 (C) a=0.3, b=0.2(B) a=0.4, b=0.1 (D)a=0.1, b=0.4【分析】 首先所有概率求和为 1,可得a+b=0.5,其次,利用事件的独立性又可得一等式,由此可确定 a,b 的取值.【详解】由题设,知 a+b=0.5又事件{X 0}与{X Y 1}相互独立,于是有P{X 0, X Y 1} P{X 0}P{X Y 1},即 a=(0.4 a)(a b),由此可解得a=0.4, b=0.1,故应选(B).三、解答题(本题共 9小题,满分94分.解答应写出文字说明、证明过程或演算步骤 (15)(本题满分11分)重积分 xy[1 x 2 y 2]dxdy.D【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可 【详解】 令 D 1{(x, y) 0 x 2 y 2 1,x 0, y 0},设 D {(x, y)x 2 y 2 2, x 0, y0} , [1 X 2 y 2]表示不超过1 X 2 y 2的最大整数.计算(14) 设 X 1,X 2, ,X n (n2)为来自总体N(0,1)的简单随机样本,X 为样本均值,S 2为样本方差,(B)nX ~ N(0,1) (B)nS 22(n).(C)(n 1)XS ~t(n 1)(D)nX i 2i 2【分析】 利用正态总体抽样分布的性质和2分t 分布及F 分布的定义进行讨论即可【详解】 由正态总体抽样分布的性质知,~ N(0,1),可排除(A);又X 0 S n 选项.誓〜t(n 1),可排除(6而(n 1)S12(n 1)S 2(n 1), 不能断定(B)是正确因为X 12n22(1), X ii 22 2(n 1),且 X 12 2 (1)与 X i 〜i 22(n 1)相互独立,于是X 121).故应选(D)..) (n 1)X 12 n —〜F(1,nX i 2i 2D 2 {(x, y) 1 x 2 y 2 2x 0,y C}.则2xy[1 xy 2]dxdy = = xydxdy 2xydxdyDD 1D22 ・2sin cos d 1r 3dr2 2 32 2sin cos dr dr11 3 7=8 4 8.(16) (本题满分 12分)求幕级数(1)n1(11 \ 2n)x 的收敛区间与和函数 f(x).n 1 n (2 n 1)【分析】先求收敛半径, 进而可确定收敛区间 . 而和函数可利用逐项求导得到【详解】 因为lim1)(2n 1) 1n (2 n 1)1,所以当x 2 1时,n(2n 1) 1时,原级数发散,因此原级数的收敛半径为1,收敛区间为(一1,1)原级数绝对收敛,当x 2 1n(n 1)(2 n 1)如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线11与丨2分别是曲线C在点(0,0)与(3,2)处S(x)(1)n1x2n2n(2n 1),x 1,1),n 1 2 n 1S (x)nn 1 2n (1) x1由于S(0)0, S (0) 0,所以S(x)x0S (t)dtS(x)x0S(t)dt又(n 1n 1 2n 1) x1从而f(x)2S(x) x2S(X)1 2x arcta nx ln(1,1),11 x2,x(1,1>^dt01 t2xarctantdtarcta nx,1 2xarctanx ln(1 x ).22x2,xx(1,1),x2)2x2,x1 x(1,1).则S(x)22上x2n (17)(本题满分11分)32的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分o (x 2 x)f (x)dx.【分析】 题设图形相当于已知 f(x)在x=0的函数值与导数值,(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: (I) 存在 (0,1),使得 f( )1;(II) 存在两个不同的点, (0,1),使得f ( )f ( ) 1.【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日 中值定理,但应注意利用第一部分已得结论【详解】(I )令F(x) f(x) 1 x ,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在(0,1),使得F( ) 0,即f( ) 1(II )在[0,]和[,1]上对f(x)分别应用拉格朗日中值定理, 知存在两个不同的点(0, ), ( ,1),f( ) f(0) f ( ) f(1) f()0 , 1(19)(本题满分12分)的值恒为同一常数⑴证明:对右半平面x>o 内的任意分段光滑简单闭曲线C ,有 C (y 2x x;ry° ;(II )求函数 (y)的表达式•【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可在x=3处的函数值及一阶、 二阶导数值【详解】 由题设图形知,f(0)=0, f (0) 2 ; f(3)=2, 2, f (3) 0.由分部积分,知32 3 2o (x 2 x)f (x)dx o (x 2 x)df (x) (x 2x)f (x)3f (x)(2x 1)dx3(2x 1)df (x)(2x 1) f (x)30 f (x)dx=16 2[ f (3)f(0)]20.使得f ()于是f ( )f ()f( ) 1 f()11.设函数(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分I(y)dx 2xydy 2x 2利用曲线积分的可加性将C进行分解讨论;而(II)中求(y)的表达式,显然应用积分与路径无关即可【详解】(I)如图,将C分解为:C l i 12,另作一条曲线(y)dx 2xydy 0C 2x2 y4(y)dx 2xydy*32x2 y4(y)dx 2xydy 0 II 2x2y4•(II)设P __(y)2x2y4,Q, P,Q在单连通区域X 0内具有一阶连续偏导数,由(i)知, 2x2 y4曲线积分(y)dx2x22xydy在该区域内与路径无关,故当X 0时,总有—―x y2y(2x2y4) 4xg2xy ,2 c 54x y 2y(2x2y4)2 2 4 2(2x y )2(y)(2x y4) 4 (y)y32 4 2(2x y ) 2 4 32x (y) (y)y 4 (y)y ②2 4 2(2x y )比较①、②两式的右端,得(y) 2y,(y)y44 (y)y 2y5.由③得(y) y2(y)代入④得2y5 4cy3 2y5,所以c0,从而(y)(20)(本题满分9分)已知二次型f (x1, x2, x3) (1 a)x:(1 a)x| 2x3 2(1 a)X i X2的秩为2.(I)求a的值;(II)求正交变换x Qy,把f(x1,x2,x3)化成标准形;(III)求方程f(X1,X2,X3)=0的解.【分析】(I)根据二次型的秩为2,可知对应矩阵的行列式为先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换;准形求解即可•0,从而可求a的值;(II)是常规问题, (III )利用第二步的结果,通过标【详解】(I )二次型对应矩阵为112 01即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:2 2f (X 1,X 2,X 3)= 2y 1 2y 2.(21)(本题满分9分)36( k 为常数),且AB=O,求 k线性方程组Ax=0的通解.【分析】AB=O,相当于告之B 的每一列均为 Ax=0的解,关键问题是Ax=0的基础解系所含解向量的由二次型的秩为2, (II ) (2E (0E由于这里AA)x A)x2已经正交, 0,得 a=0.可求出其特征值为0,得特征向量为:0,得特征向量为:直接将3单位化, 2 2, 3 0.得:(III )由 f (x 1, x 2, x 3) = 2 y-|22y ;,得 y 10, y 2 0, y 3 k ( k 为任意常数)从而所求解为:x=Qy= 1c ,其中c 为任意常数. 0已知3阶矩阵A 的第一行是(a,b,c ), a,b,c 不全为零,矩阵B个数为多少,而这又转化为确定系数矩阵 A 的秩. 0,关于Y 的边缘概率密度f Y (y) =f (x, y)dx =1 ydx,02y 2, 其他.【详解】 由AB=O 知,B 的每一列均为Ax=O 的解,且r(A) r(B) 3.1,显然r(A) 1,故r(A)=1.可见此时Ax=0的基础解系所含解 第三列线性无关,可作为其基础解系,故 Ax=0的通解为:13x k 1 2k 2 6 , k 1, k 2为任意常数.3k(2)若 k=9,则 r(B)=1,从而 1 r(A) 2.求:(I ) (X,Y)的边缘概率密度 f X (x), f Y (y);【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法, 即先用定义求出分布函数,再求导得到相应的概率密度关于X 的边缘概率密度2x,0 x 1, 0,其他.(1)若 k 9,则 r(B)=2,于是 r(A)向量的个数为 3-r(A)=2,矩阵B 的第一1)若r(A)=2,贝U Ax=0的通解为:x k 1 2 , k 1为任意常数2)r(A)=1,则Ax=0的同解方程组为:ax 1 bx 2 cx 3 0 ,不妨设a 0 ,则其通解为k 1 k 2a0 ,k 1, k 2为任意常数. 1(22) (本题满分9分)设二维随机变量(X,Y)的概率密度为f (x, y)1,0 x 1,0 y 2x, 0, 其他.(II ) Z 2X Y 的概率密度f z (Z ).f x (x)=f (x, y)dy =2xdy,00,x 1, 其他.【详解】(I )1 =(1丫,0 y 2, 02其他._ 1 2 =Z 4Z ;【分析】 先将Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求 差Cov(Y 「Y n ),本质上还是数学期望的计算,同样应注意利用数学期望的运算性质【详解】由题设,知X 1, X 2, ,X n (n 2)相互独立,且1 1 D[(1 -)X i n1)2 DX i Adj n n j i(II )令 F Z (Z )P{Z z} P{2Xz},0时, F Z (Z ) P{2X YZ }Z 2 时,F Z (Z ) P{2XZ }3)2 时,F Z (Z ) P{2X Y Z } 1.即分布函数为:F Z ⑵Z 0,1 2Z4 1,,0 Z 0, Z 2, Z 2.故所求的概率密度为:f Z (Z )1 1Z ,0,0 Z 其他. 2, (23) (本题满分9分) 设 X 1, X 2, ,X n (n 2)为来自总体N(0,1)的简单随机样本,X 为样本均值,记Y iX i X,i 1,2, ,n.求:(I ) Y 的方差DYJ1,2, ,n ; (II )Y 与Y n 的协方差CovMY n ).£与Y n 的协方EX i 0,DX i1(i 1,2,,n),EX 0.nX j ]n j i(I ) DY i D(X i X)(n 1)2 1 /八n 1= 2 2 (n1) .n n n(II) Cov(Y1,Y n)E[(Y EYj(Y n EY n)]= E(Y i Y n)E[(X1X)(X n X)]= E(X i X n X1X2X n X X )= E(X i X n)2E(X1X) EX2=0 -E[X2n n DX (EX)2X i X j]j 2。
2005年普通高等学校招生全国统一考试数学(江苏卷)第一卷(选择题共60分)参考公式:三角函数的和差化积公式sin sin 2sincossin sin 2cossin2222cos cos 2cos coscos cos 2sinsin2222αβαβαβαβαβαβαβαβαβαβαβαβ+-+-+=-=+-+-+=-=-若事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C p p -=-一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦其中x 为这组数据的平均数值一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
(1) 设集合A={1,2},B={1,2,3},C={2,3,4},则()A B C ⋂⋃=(A ){1,2,3} (B ){1,2,4} (C ){2,3,4} (D ){1,2,3,4}(2) 函数123()xy x R -=+∈的反函数的解析表达式为(A )22log 3y x =- (B )23log 2x y -= (C )23log 2x y -= (D )22log 3y x=-(3) 在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=(A )33 (B )72 (C )84 (D )189(4) 在正三棱柱ABC-A 1B 1C 1中,若AB=2,AA 1=1则点A 到平面A 1BC 的距离为(A)4 (B)2 (C)4(D(5) △ABC 中,,3,3A BC π==则△ABC 的周长为(A))33B π++ (B))36B π++(C )6sin()33B π++ (D )6sin()36B π++ (6) 抛物线y=4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是(A )1716 (B )1516 (C )78(D )0 (7) 在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A )9.4, 0.484 (B )9.4, 0.016 (C )9.5, 0.04 (D )9.5, 0.016 (8) 设,,αβγ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若,,αγβγ⊥⊥则α∥β;②若,,m n m αα⊂⊂∥,n β∥,β则α∥β; ③若α∥,,l βα⊂则l ∥β;④若,,,l m n l αββγγα⋂=⋂=⋂=∥,γ则m ∥n .其中真命题的个数是(A )1 (B )2 (C )3 (D )4(9) 设k=1,2,3,4,5,则(x +2)5的展开式中x k 的系数不可能是(A )10 (B )40 (C )50 (D )80 (10) 若1sin(),63πα-=则2cos(2)3πα+= (A )79- (B )13- (C )13 (D )79(11) 点P (-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A )3 (B )13 (C)2 (D )12(12) 四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A )96 (B )48 (C )24 (D )0 参考答案:DACBD CDBCA AB第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分。
南京理工大学2004 年硕士学位研究生入学考试试题第一部分数据结构(共35分)一、选择题,在所给的四个选项中,选择一个最确切的(每小题1分,共10分)1. 设单循环链表中结点的结构为(data,next),且rear是指向非空的带头结点的单循环链表的尾结点的指针。
若要删除链表的第一个结点,正确的操作是。
A) s=rear;rear=rear->next; free(s);B) rear=rear->next; free(s);C) rear=rear->next->next; free(s);D) s=rear->next->next; rear->next->next=s->next; free(s)2. 设输入序列为{20,11,12,……},构造一棵平衡二叉树,当在树中插入值12时发生不平衡,则应进行的平衡旋转是。
A)LL B)LR C)RL D)RR3. 设有1000个无序的元素,希望用最快的方法选出前10个最小的数据,下面四种方法中最好的是。
A)冒泡 B)快速 C)堆 D)选择4. 下面程序的时间复杂性为。
for (int i=0; i<m; i++) for (int j=0;j<n; j++) a[i][j]=i*j;A)0(n2) B)0(n*m) C) 0(m2) D)0(m+n)5. 关于下面的程序段,不正确的说法是。
pb=pc=-1;for(int k=0; k<n; k++)if (A[k]>0) B[++pb]=A[k]; elseC[++pc]=A[k];A)其时间复杂性为0(n/2)B)它将数组A中的正数放到数组B中,将负数放在数组C中C)如果数组A中没有负数,程序执行后pc=-1D)如果数组A中没有正数,程序执行后pc=-16. 有三个数字1,2,3,将它们构成二叉树,中序遍历序列为1,2,3的不同二叉树有种。
第一章 多项式例 1.1(华南理工大学, 2006年) 设 ( ) ( ) x g x f , 是数域F 上的多项式. 证明:( ) ( ) x g x f | 当且仅当对于任意的大于1的自然数n 有, ( ) ( ). | xg x f n n 证明 必要性显然成立,下证充分性. 设 ( ) g x 在数域F 上的不可约分解为( ) ( ) ( ) ( ) 12 12 k lllk g x cp x p x p x =××× ,其中 ( ) ,1,2,..., il i p x i k = 是互不相同的不可约多项式.若有 ( ) ( ) | nnf xg x ,则( ) ( ) ( ) ( ) 12 12 ,0,1,2,...,.k nf nf nfn k i i f x dp x p x p x f l i k =×××££= 其中d 是某个常数,因此有( ) ( ) x g x f | .例 1.2(大连理工大学,2007 年)设 ( ) ( ) ( ) x hx g x f , , 是实系数多项式,如果 ( ) ( ) ( ) x xhx xg x f 22 2 + = ,则 ( ) ( ) ( ) . 0 = = = x h x g x f 证明 由 ( ) ( ) ( ) ( ) 222 f x x g x h x =+ ,可知 ( ) 2 | x f x ,易推得 ( ) | x f x . 于是有 ( ) ( ) 2221 f x x f x= ,代入方程并在两边约去 x 有 () ( ) ( ) x h x g x xf 2 2 21 + = (*)于是有 ( ) ( ) ( ) 22 | x g x h x + ,若多项式 ( ) g x 或 ( ) h x 中的常数项不为零的话,都可 以推出( ) ( )( )x h x g x 2 2 | + 于是有( ) ( ) ( ) () ( )x h x g x x h x g 21 2 1 2 2 2 + = + 代入(*)式并约去 x 有( ) ( ) () ( )x h x g x x f 21 2 1 21 + = 这样又回到原来的方程,所不同的是 ( ) ( ) ( ) 111 ,, f x g x h x 比 ( ) ( ) ( ) ,, f x g x h x 的次数要小 1. 于是经过有限次后必可以使得方程的左边为零次多项式,即为某个常 数c ,使得( ) () ( )x h x g x c k k 22 + = 比较两边的次数易得 0 = c ,并代入方程有( ) () 0 22 = + x h x g k k 于是( ) () 0 = = x h x g k k 那么 ( ) ( ) ( ) ,, f x g x h x 都是某个多项式乘以数0. 由此可推得( ) ( ) ( ) 0 = = = x h x g xf . 例 1.3(大连理工大学,2007年)证明多项式 1 | 1 - - n d x x 的充分必要条件是n d | .证明 充分性显然,下证必要性.若 d r r dq n < < + = 0 ,,则 ( ) ( )11 1 1 - + - = - + - = - r dq r r r n n x x x x x x x 由于 1 - dq x 可被 1 - d x 整除, 而 1 - r x 不能被 1 - d x 整除, 于是 1 - n x 不能被 1 - dx 整除.由其逆否命题可知必要性成立.例 1.4 (北京科技大学,2004年)求一个三次多项式 ( ) x f ,使得 ( ) 1 + x f 能 被( ) 21 - x 整除,而 ( ) 1 - x f 能被( ) 21 + x 整除.解 由题知 ( ) 'f x 能被( ) 1 x - 和( ) 1 x + 整除,又由 ( ) f x 是一个三次多项式, 那么 ( ) 'f x 是一个二次多项式,于是可设( ) ( )( ) aax x x a x f - = - + = 2 ' 1 1 积分易得( ) 33a f x x axb =-+ (其中a, b 为常数) 由题设可知 ( ) 1 f x =- ,易解得3 2 0a b ì = ïí ï = î 那么显然有( ) xx x f 2 3 2 1 3 - = .例 1.5(兰州大学,2004)设 () f x 和 () g x 是数域F 上的两个不完全为零的多 项式,令{ [ ]}()()()()(),() I u x f x v x g x u x v x F x =+Î 证明:(1) I 关于多项式的加法和乘法封闭,并且对任意的 () h x I Î 和任意的 [ ] (), k x F x Î 有 ()() h x k x I Î .(2) I 中存在次数最小的首项系数为 1 的多项式 () d x , 并且()((),()) d x f x g x = .证明 (1) 容易证明,略.(2) 考虑{ [ ] 0 (()()()())(),() I u x f x v x g x u x v x F x =¶+Î 且 } ()()()()0 u x f x v x g x +¹ 则 0 I 是非负整数的一个子集,由最小数原理, 0 I 中存在最小数,也就是说,I 中存在次数最小的首项系数为1的多项式:11 ()()()()()d x u x f x v x g x =+ 设 () h x 是 I 中任意多项式,且 ()()()() h x d x q x r x =+ ,其中 ()0 r x = 或者(()) r x ¶< (()) d x ¶ .若 (()) r x ¶< (()) d x ¶ , 则 ()()()() r x h x d x q x =- .由(1)可知 () r x I Î , 与 () d x 是I 中次数最小的多项式矛盾. 故 ()0 r x = ,所以 ()() d x h x .显然 (),() f x g x I Î ,所以 ()() d x f x , ()() d x g x .如果 ()() p x f x , ()() p x g x ,则11 ()()()()()p x u x f x v x g x +即 ()() p x d x ,所以 ()((),()) d x f x g x = .例 1.6(上海交通大学,2004)假设 1 () f x 与 2 () f x 为次数不超过 3 的首项系数为1的互异多项式,若 42343 12 1()() x x f x x f x +++ ,试求 1 () f x 与 2 () f x 的最大公因式.解 由于42 1x x ++ = 22222 (1)(1)(1) x x x x x x +-=++-+ 设它的4个根分别为 1212 ,,, w w e e 其中1212 13131313 ,,, 2222i i i i w w e e -+--+- ==== 由于 4234312 1()() x x f x x f x +++ ,就有 343 12 ()() f x x f x + = 42 (1) x x ++ () g x . 于是有下面的方程组112 122 (1)(1)0 (1)(1)0 f f f f w w += ì í+= î 与 112 122 (1)(1)0 (1)(1)0f f f f e e ---= ì í ---= î 分别解这两个方程组得,12 (1)(1)0 f f == , 12 (1)(1)0f f -=-= 于是有,11 (1)(),(1)() x f x x f x +- , 22 (1)(),(1)() x f x x f x +- .进而有 1 (1)(1)() x x f x +- , 2 (1)(1)() x x f x +- .而 1 () f x , 2 ,() f x 是互异的次数不超过 3 的首系数为 1 的多项式,所以 2 12 ((),())1 f x f x x =- .例 1.7 (浙江大学,2006 年)设 P 为数域, ( ) [] i i f f x p x =Î , ( ) [],1,2 i i g g x p x i =Î= .证明:( )( ) ( )2 1 2 1 2 1 2 1 2 2 1 1 , , , , , g g f g g f f f g f g f = 证明 设 ( )( ), , , , 2 2 2 1 1 1 g f d g f d = = 有( ) ( ) ( ) ( ) ( ) ( ) ( )( )12121212 12121212 1212 1121122 ,,, ,,, , , ,,. f f f g g f g g f f f g g f g g f d g d f g d f g f g = = = = 例 1.8 (哈尔滨工业大学, 2005年) 设 ( ) ( ) x g x f , 都是实数R 上的多项式,R a Î (1) 证明: ( ) ( ) ( ) ( ) ( ) ( ).| a g f x g f a g x g - - (2) 问 ( )( ) a f x f a x - - 33 | 是否成立,为什么?解 (1) 令 ( ), y g x = 考虑多项式( ) ( ) ( ) ( ) a g f y f y h- = 由 ( ) ( ) ( ) ( ) ( ) ( ) 0= - = a g f a g f a g h 可知 ( ) ( ) ( )y h a g y | - 即( ) ( ) ( ) ( ) ( ) ( ) a g f x g f a g x g - - | .(2) 令 3 b a R =Î ,注意用到(1)的结论,将(1)中a 的换成这里的b ,将(1)的( ) g x 换成这里的 3 x ,可得( ) ( ) 33 | x a f x f a -- .例 1.9(上海大学,2005)设22 1231 1(1)()()()() n n n n n nn x x f x xf x x f x x f x - - éù --++++ ëûL ( 2 n ³ )求证: 1() i x f x - (1,2,,1) i n =- L . 证明 由题设易知1222 1231 1()()()()n n n n n n n n x x x f x xf x x f x x f x --- - ++++++++ L L 这里令e 是n 次本原单位根,那么22 1231 22222 1231 11212 1231 (1)(1)(1)(1)0(1)(1)()(1)()(1)0(1)(1)()(1)()(1)0n n n n n n n n n f f f f f f f f f f f f e e e e e e e e e - - - - ---- - ì ++++= ï ++++= ï íï ï ++++= î L L L LL于是关于 1231 (1),(1),(1),,(1) n f f f f - L 的齐次线性方程组的系数行列式为22 22222112121 1()() 0 1()()n n n n n n ee e e e e e e e - - ---- ¹ L L MMMML .故齐次线性方程组只有零解,于是 121 (1)(1)(1)0 n f f f - ==== L ,所以 1()i x f x - (1,2,,1) i n =- L .例 1.10(哈尔滨工业大学,2006 年)已知 ( ) ( ) x g x f , 是数域 P 上两个次数大 于零的多项式,且存在 ( ) ( ) 11 ,[], u x v x p x Î 使得 ( ) ( ) ( ) ( ) 1 1 1 = + x g x v x f x u ,问是否存 在 ( ) ( ) ,[] u x v x p x Î ,使得 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x f x v x g x u x g x v x f x u ¶ < ¶ ¶ < ¶ = + , , 1 . 如果存在,这样是唯一的吗?说明理由.解 由于 ( ) ( ) ( ) 11 ()1 u x f x v x g x += ,若 ( ) 1 u x 的次数大于 ( ) g x 的次数,则由 带余除法得( ) ( ) ( ) ( ) 1 u x g x q x u x =+ , ( ) ( ) ( ) ( )u x g x ¶<¶ 代入上式得( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1f xg x q x u x g x v x ++= 即( ) ( ) ( ) ( ) ( ) () ( ) 1 1 = + + x v x q x f x g x u x f 令 ( ) ( ) ( ) ( ) 1 v x f x q x v x =+ ,则有( ) ( ) ( ) ( )x f x v ¶ > ¶ 否则由比较次数可知上式将不可能成立.关于唯一性的证明,可以假设 ( ) 2 u x , ( ) 2 v x 也满足条件,那么有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1122 1f x u xg x v x f x u x g x v x +=+= 易得( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1221 f x u x u x g x v x v x -=- 由 ( ) f x 与 ( ) g x 互素,可知 ( ) ( ) ( ) ( ) 12 | g x u x u x - .又由 ( ) ( ) ( ) ( ) ( ) 12 u x u x g x ¶-<¶ ,可得 ( ) ( ) 12 0 u x u x -= ,即 ( ) ( ) 12 u x u x = ,这时有( ) ( ) 12 v x v x = .例 1.11(华南理工大学,2005年)证明:如果 ( ) ( )( ) 1 , = x g x f ,那么 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x f x g x g x +++= 证明 由已知条件有 ( ) ( ) ( ) ( ) ,1 f x f x g x += , ( ) ( ) ( ) ( ) ,1 g x f x g x += ,由多 项式互素的性质可得( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x += 于是有( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x ++= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x +++= 综合上述两个等式以及多项式互素的性质有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1 f x g x f x g x f x g x f x g x +++= .例 1.12(苏州大学,2005)设 () f x 是一个整系数多项式,证明:如果存在 一个偶数m 和一个奇数n ,使得 () f m 和 () f n 都是奇数,则 () f x 没有整数根.证明 (反证法) 假设 () f x 有整数根k ,则 ()()() f x x k g x =- ,因为x k - 是 本原多项式,故 () g x 是整系数多项式. 又由于()()() f m m k g m =- , ()()() f n n k g n =- .且 () f m 和 () f n 都是奇数,那么m k - ,n k - 都是奇数,与m 是偶数且n 是 奇数矛盾,所以 () f x 没有整数根.例1.13 (四川大学, 2004年) (1) 设多项式 ( ) ( )( ) ( ) ( ) 1 1 2 2 1 + - - × × × - - = n x x x x f , 其中n 为非负整数. 证明: ( ) x f 在有理数域上一定不可约.(2) 在有理数域上求多项式 ( ) 36 12 11 2 2 3 4 + - - + = x x x x x g 的标准分解式.(1) 证明 假设 ( ) f x 在有理数域上可约, 故 ( ) f x 可分解为两个整系数多项式 的积, 即存在两个整系数多项式 ( ) ( ) , h x k x 使得( ) ( ) ( )f x h x k x = 注意到 ( ) 1,1,2,,21 f i i n ==×××- ,于是( ) ( ) 1,1,2,,21h i k i i n ==×××- 令 ( ) ( ) ( ) l x h x k x =- ,由 ( ) h x 与 ( ) k x 的次数小于21 n - 知 ( ) l x 的次数也小于 21 n - ,但是 ( ) l x 有21 n - 个不同的根为 1,2,,21 x n =×××- ,那么有 ( ) 0 l x º ,于是 ( ) ( ) h x k x = ,推得( ) ( ) ( ) 2f x k x =³ 但是 ( ) 00 f = ,矛盾. 于是 ( ) f x 在有理数域上不可约.(2) 注意到 ( ) ( ) 230 g g =-= ,由综合除法可得( ) ( ) ( )2223 g x x x =-+ 上式为 ( ) g x 在有理数域上的标准分解式.例 1.14(上海大学,2005)设 1 ()2n nf x x x + =+- (1) n ³ ,求 () f x 在有理数域上的不可约因式并说明理由. 解11 ()2(1)(1)n n n nf x x x x x ++ =+-=-+- 112 12 (1)(1)(1)(1) (1)(2222)(1)()n n n n n n n x x x x x x x x x x x x g x --- -- =-++++-+++ =-+++++ =- L L L 对 () g x , 令 2 p = , 用Eisenstein 判别法容易证明 () g x 在有理数域上不可约, 因此 () f x 在有理数域的不可约因式是: 1 x - 及 12 2222 n n n x x x x -- +++++ L .例 1.15(大连理工大学,2004)设R Q 分别表示实数域和有理数域,(),()[] f x g x Q x Î . 证明:(1) 若在 [] R x 中有 ()() g x f x ,则在 [] Q x 中也有 ()() g x f x .(2) () f x 与 () g x 在 [] Q x 中互素,当且仅当 () f x 与 () g x 在 [] R x 中互素.(3) 设 () f x 是 [] Q x 中不可约多项式,则 () f x 的根都是单根.证明 (1)(反证)假设在 [] Q x 中 () g x 不能整除 () f x ,作带余除法有()()()(),(),()[]f x q xg x r x q x r x Q x =+Î 且 (()) r x ¶< (()) g x ¶ .以上带余除法的结果在 [] R x 中也成立,所以在 [] R x 中 () g x 不能整除 () f x , 与在 [] R x 中有 ()() g x f x 矛盾. 因此,结论成立.(2) 如果 () f x 与 () g x 在 [] Q x 中互素,那么存在 (),()[] u x v x Q x Î ,使得()()()()1 f x u x g x v x += .以上等式在 [] R x 中也成立,所以 () f x 与 () g x 在 [] R x 中互素.如果 () f x 与() g x 在 [] Q x 中不互素,那么 () f x 与 () g x 在 [] Q x 存在非零次公因式.即()[] d x Q x Î , (())1,d x ¶³ 1 ()()() f x d x f x = , 1 ()()() g x d x g x = ,11 (),()[]f xg x Q x Î 以上两个等式在 [] R x 中也成立. 因此, () f x 与 () g x 在 [] R x 中不互素. (3) () f x 是 [] Q x 中的不可约多项式 , 则 ' ((),())1 f x f x = , 否则 ' ((),())()1, f x f x d x =¹ 则 () f x 有重因式, 与 () f x 不可约矛盾. 于是 () f x 没有重 因式,所以 () f x 的根都是单根.例 1.16(南京理工大学,2005年)设 p 是奇素数,试证 1 + + px x p 在有理数 域上不可约.证明 令 1 x y =- ,代入 ( ) 1 p f x x px =++ 有( ) ( ) ( ) ( ) ( ) 1111 pg y f x f y y p y ==-=-+-+ .考查多项式 ( ) ( ) ( ) 1! h y p g y =- ,注意到 p 是一个奇素数,那么 ( ) h y 的常数项为 ! p - ,于是对于素数 p 有, |! p p - ,而 2p 不整除 ! p - ,对于 ( ) h y 的首项,显然有 ( ) |1! p p - .对于其他的项,利用二项式定理对( ) ( ) 1!1 pp y -- 展开可知 p 能整除除了首项和 常数项之外的所有项系数. 又 ( ) 1 p y - 中关于 y 的一次项的系数也为 p 的倍数, 于是 p 整除 ( ) h y 的除了首项和常数项之外的所有系数. 利用Eisenstein 判别法可 知 ( ) h y 在有理数域上不可约,即 ( ) g y 在有理数域上不可约,也即 ( ) f x 有理数 域上不可约.例 1.17(陕西师范大学, 2006年) 11 ()()(),()()(), f x af x bg x g x cf x dg x =+=+ 且0 a bc d¹ ,证明: 11 ((),())((),()) f x g x f x g x= . 证明 令 111 ()((),()) d x f x g x = , ()((),()) d x f x g x = .由1 ()()() f x af x bg x =+ (*) 1 ()()()g x cf x dg x =+ (**)于是 1 ()() d x f x , 1 ()() d x g x . 那么 1 ()() d x d x .由式(*)与式(**)可以看成是关于 (),() f x g x 的线性方程组,解得,( ) ( )11 11 1()()() 1()()() g x ag x cf x ad bc f x df x bg x ad bc=- - =- - 于是 11 ()() d x f x , 11 ()() d x g x . 那么 1 ()() d x d x . 显然 1 ()() d x d x .于是11 ((),())((),()) f x g x f x g x = .例 1.18(华南理工大学,2006年)设 ( ) 1 2 34 + + + + = x x x x x f .(1) 将 ( ) x f 在实数域上分解因式.(2) 证明: ( ) x f 在有理数域上不可约. 由此证明 ( ) 5/ 2 cos p 不是有理数. (1) 解 不妨设 2 2 5, i e pa b a == , 于是 ,,, a a b b 是1的四个非实数的 5次方根. 显然有( ) ( )( )( )( )( ) ( ) ( ) ( )2222 11 24 2cos 12cos 1 55 f x x x x x x x x x x x x x a ab b a a b b p p =---- =-++-++ æöæö =-+-+ ç÷ç÷èøèø上式为 ( ) f x 在实数域上的因式分解. (2) 证明 令 1 x y =+ ,代入 ( ) f x .有( ) ( )1 g y f y =+ ( ) ( ) 5432 11 11510105y y y y y y +- =+- =++++ 对素数5 用Eisenstein 判别法可得 ( ) g y 是有理数域上不可约的多项式, 于是 有 ( ) f x 在有理数域上不可约 . 若 ( ) cos 2/5 p 是有理数 , 由 ( ) ( ) 2 cos 4/52cos 2/51 p p =- 可知 ( ) cos 4/5 p 也是有理数.于是由(1)的结论可知( ) 22 24 2cos 12cos 1 55 f x x x x x p p æöæö=-+-+ ç÷ç÷ èøèø.上式为 ( ) f x 在有理数域上的分解,这将导致 ( ) f x 在有理数域上可约,矛盾. 故结论成立.例 1.19(华东师范大学,2005 年)试在有理数域、实数域及复数域上将 ( ) 1 7 8 9 + + × × × + + + = x x x x x f 分解为不可约因式的乘积(结果用根式表示),并简 述理由.解 由( ) ( ) 1011 x f x x -=- ( )( )( )( )1 1 1 1 23 4 2 3 4 + - + - + + + + + - = x x x x x x x x x x 可知它在有理数域上的不可约分解为( ) ( )( )( )432432 111 f x x x x x x x x x x =+++++-+-+ (这里设 ( ) 432 1 1 g x x x x x =++++ ,并取 1 x y =+ 代入,并对素数 5用 Eisenstein 判别法可知 ( ) 1 1 g y + 在有理数域上不可约. 同理设 ( ) 432 2 1 g x x x x x =-+-+ ,并取 1 x y =- 代入,可知 ( ) 2 1 g y - 在有理数域上不可约.)设 243 55551212 ,,, i iii eee e pp ppa ab b ==== ,显然 1 的五次方根为 1122 1,,,, a a a a ;‐1的五次方根为 1122 1,,,, b b b b - . 于是在实数域上 ( ) f x 可分解为( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222 11221122 11111f x x x x x x x x x x a a a a b b b b =+-++-++-++-++ 显然在复数域上 ( ) f x 可分解为( ) ( )( )( )( )( )( )( )( )( ) 112211221 f x x x x x x x x x x a a a a b b b b =+-------- .第二章 行列式例 2.1(兰州大学,2004年) 计算下列行列式的值121 121 121 1231 n n n n n n n n xa a a a a x a a a D a a x a a a a a a x- - - - = L L L M M M M M L 解 将 n D 的第2列到第 1 n +列加到第1列,且提取公因子有 121 21 21 1231 1 1 ()1 1 n n n n nn i n n i n a a a a xa a a D x a a x a a a a a x- - - = - =+ å L L L M M M M M L 121 12121213212 1 00()000 0 n n ni i n n na a a a x a x a a a x a a a a a a a x a - = -- - =+-- ---- å L LL M M M M M L 11()() nni i i i x a x a = = =+- å Õ .例 2.2(中山大学,2009年) 计算n 阶行列式22 111122 2222 22 111122 1...1... ..................1... 1... n n n nn n nn n n n n nn n n nx x x x x x x x D x x x x x x x x - - - ---- - = 解 首先考虑 1 n + 阶范德蒙行列式221 1111 1 221 2222 2 221 1111 1 221 2211... 1... .................. ... () 1... 1 (1)... n n n n n n n n n n n n n n n n n n n n n nn n n x x x x x x x x x x g x x x x x x x x x x x x xx x x-- -- -- ---- - -- -- =213111 3222 ()()...()() .()...()()...()n n n x x x x x x x x x x x x x x x x =---- ---- 从上面 1 n + 阶范德蒙行列式知,多项式 () g x 的 1 n x - 的系数为 21(1) n D D + -=- ;但从上式右端看, 1 n x - 的系数为12 1 (...).()n ji i j nx x x xx £<£ -+++- Õ 二者应相等,故 12 1 (...).() n n ji i j nD x x x xx £<£ =+++- Õ .例 2.3(北京交通大学,2004年)计算n 阶行列式111 23 222341222123 111 122111...11... 1... ............1 (1)... nn n n n n n n n n n nn n C C C C C C D C C C C C C + --- -- --- +- =.解 从最后一行起将每一行减去前面一行便可将行列式降一阶, 再对降一阶的行列式做同样的处理,不断这样下去可得 1 D = .例 2.4(大连理工大学,2005年) n 阶行列式21...11 13 (11) (1)1...11n =+ .解 答案是 1 1!(1) ni n i= + å . 这是因为原式 21...1111...11 13 (1102)...11 (1)1...1101...11n n ==++ 将上述行列式的第二行到 1 n + 行分别减去第一行,可得原式 11...11 11...00 (1)...n- =- 然后依次将第二列乘以1,第三列乘以 1 2 ,........,第 1 n + 列乘以 1n都加到第一列可得1 11 11...1 (11)2 101...00 !(1) ............... 00...0 ni n n i n= ++++ =+ å .例 2.5(南开大学,2003年) 计算下列行列式的值1112121 1212222 1122 ... ... ............... n n n n n n n n n na b c a b c a b c a b c a b c a b c D a b c a b c a b c +++ +++ =+++ 解法 1 将 n D 按第一行拆成两个n 阶行列式相加,并由于 3 n ³ ,故得1211121 12122221212222 11221122 ...... ...... .............................. n n n n n nn n n n n nn n n n n a a a b c b c b c a b c a b c a b c a b c a b c a b c D a b c a b c a b c a b c a b c a b c++++++ =+++++++ 000=+= 解法 2 将原n 阶行列式加边成一个 1 n + 阶行列式11112121 21212222 112 100...0 ... ... ............... ... n nn n nnn n n n n x a b c a b c a b c D x a b c a b c a b c x a b c a b c a b c+++ =+++ +++由于 3 n ³ ,故对上面的 1 n + 阶行列式按第一行展开可知,其每个元素的余子式 都是一个至少有两列元素对应成比例的n 阶行列式,从而都等于零. 因此 0 D = .例 2.6(浙江大学,2004年) 计算n 阶行列式... ... .................. ... ... ... n b b b b a b b b a b D b b a b b b a b b b a b b b b=解 ......() ......0 .................................... ......0 ......0 ......0 n b b b b a b b b b a b b b b b a b b b b a b D b b a b b b b a b b b a b b b b a b b b abbbb a b b b b -+ + == + + + 11 ... ... .................. (1)() ... ... ...n n b b b b b b b b a b a b D b b a b b b a b b b a bbbb+ - =--+(3) 1121 (1)()(1)()n n n n n a b D b a b + +- - =--+-- 注意到 222 D b a=- 递推可得(3) 1 2(1)()((1)) n n n n D a b a n b + - =--+- .例 2.7(复旦大学,2005年) 设 12 ...,0,1,2,... k k kk n s x x x k =+++= , 计算 1 n + 阶行列式11 121122 121 ...1 ... .................. ... n nn n n n n nnn n s s s s s s xD s s s xs s s x- - -- -- = 解 根据 k s 的定义、行列式的乘法以及范德蒙行列式知,所给的 1 n + 阶行列 式D可表示成两个 1 n + 阶行列式相乘111112 221111 112 12 11...11 1...0 ...1...0 ................................ 1...0 ... 00 (01)n n nn n n n n n n n n nnnn n x x x x x x x x D x x x x x x x x x x - - ---- - = 2 11 ()(())nj ji i i j nx x xx =£<£ =-- ÕÕ 211 ()() ni ij i i j nx x xx =£<£ =-- ÕÕ .例 2.8(华东师范大学,2008年) 计算n 阶行列式1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 32 1 L L M M M M M L L L n n n n n n D n- - - - - = ∙ 解 将第2列,第 3列,…,第n 列都加到第 1 列上11 11 01 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 32 2 ) 1 ( L L M M M M M L LL nn nn n n n n D n - - - - - + =111 1 1 1 1 1 11 11 1 1 11 2) 1 ( LL M M MM L L n n n n n n - - - - + = 1111 1 1 1 1 11 11 1 1 1 1 2) 1 ( LL M M MM L L - - - - - - - + = n n n n n111 10 0 0 0 0 00 0 0 2) 1 ( L L M M M ML L - - - - + = n n n n n 2)1 ,2 , 2 , 1 ( ) ( ) 1 ( ) 1 ( 2) 1 ( - - - - × - - + =n n n n n n L t 21 2)2 )( 1 ( ) ( ) 1 ( )1 (2 ) 1 ( - - - - - × - - + = n n n n n n n 2)1 ( )1 ( 1 2)1 ( + ×- = - - n n n n n 1) 2 )]( 1 ( 2 [ - - - = = n x n x 例 2.9(大连理工大学, 2004年) 计算n 阶行列式1 1 1 12 1 2 1 1 12 1 1 1 1 L M M M M M L L nn n D n - - - =解 将第2行,第 3行,…,第n 行都加到第 1 行上1 1 1 12 1 2 1 1 11 1 1 1 1 L M M M M M L L n n D n - - =0 01 0 1 0 0 0 1 1 1 1 1 L M M M M M L L nn - - =1 2) 1 ( )1 ,2 , , 1 , ( 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( - - - - - - = - - = n n n n n n n n L t .例 2.10(北京航空航天大学, 2004年) 计算下列行列式的值.12 12 12... .................. n n n n a a a a a a D a a a l l l+ + =+ 解 将行列式的所有列加到第一列, 并提取公因子 12 (...) n a a a l ++++ 可得1212 1212 1 1212...... ......().............................. n n nn n i i n n a a a a a a a a a a a a a a a a a a a l l l l l l l= ++ ++ =+ ++ å 然后将第 2 列到第n 列依次减去第一列乘以 12 ,,..., n a a a 得到一个下三角的行列式, 易得12 12 1112... ...()............... n nn n i i n a a a a a a a a a a l l ll l- = + + =+ + å 例 2.11(上海交通大学,2004年)求下面多项式的所有根23 2 3 23 2 3 3 2 3 2 22 23 2 2 2 2 3 ) ( nn n n nnna x a a a a a a a a x a a a a a a a a x a a a a x x f - - - - - - - - - - - - - - - - - - - = L MM M M L L L 解 将第一列的 2 a - 倍,3 a - 倍,L , n a - 倍分别加到第 2 列,第3列, L ,第n 列2323 221 3333 100100 ()010(2)010 0101n n n nnx a a a x a a a a a f x a x a a a - ------- -- =-=-- -- L L L L L L M M M M M M M M LL第2列的 2 a 倍,第 3列的 3 a倍,L ,第n 列的 n a 倍都加到第一列 22223 13 0100 ()(2)0010 001n n n x a a a a a f x x - ------ =- L L L L M M M M L1222 (2)(3)n n x x a a - =---- L 所以, 2 x = 是 () f x 的 1 n - 重根, 222 3 n a a +++ L 是 () f x的单根. 例 2.12 (北京交通大学,2005年)计算 1 n + 阶行列式11111 (1)(2)...()(1)(2)...()............... 12... 111 (1)n n n nn n n n n x x x x n x x x x n D x x x x n ---- + +++ +++ = +++ 解 注意到依次把第一行和第 1 n + 行交换次序,第2行和第n 行交换次序, ...,可得2 1 1111111...1 12... (1) ............... (1)(2)...()(1)(2)...() nn n n n n n n n nx x x x n D x x x x n x x x x n + ---- +++ =-+++ +++ 21 (1)(()()) n i j n x j x i £<£ =-+-+ Õ 21 (1)()n i j nj i £<£ =-- Õ 第三章 线 性 方 程 组例 3.1(清华大学,2006 年)设 12 ,,, s a a a L 是一组线性无关的向量,则122311 ,,,, s s s a a a a a a a a - ++++ L 是否线性无关? 证明之.证明 若 112223111()()()()0 s s s s s k k k k a a a a a a a a -- ++++++++= L 将上式展开并利用 12 ,,, s a a a L 的线性无关,可得关于 121 ,,, s s k k k k - L 的线性方程 组为1 2 1 100...10 110...00 ... 011...0... ...............0 00...110 s s k k k k - æö æöæö ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ ç÷ç÷= ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ç÷ ç÷ èøèø èø 令其系数矩阵为 A ,显然有 1 1(1) s A + =+- .当 S 为偶数时 , 0 A = , 则方程组有非零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性相关.当 S 为奇数时 , 0 A ¹ , 则方程组仅有零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性无关.例3.2 (北京科技大学, 2005年) 设 0 h 是线性方程组的一个解, 而 12 th h h L , , , 是它的导出方程组的一个基础解系, 1021010 ,,..., t t g h g h h g h h + ==+=+ .证明:线性方程组的任一解g , 都可表成 112211 ... t t g m g m g m g ++ =+++ , 其中 121 (1)t m m m + +++= . 证明 设 0211 ... t t g h m h m h + =+++ ,令 121 1... t m m m - =--- , 即 121 ...1 t m m m - +++= ,则由于 1021010 ,,..., t t g h g h h g h h + ==+=+ ,1210211 (...)... t t tg m m m h m h m h ++ =++++++ 1021010 ()...() t t m h m h h m h h + =+++++ 112211... t t m g m g m g ++ =+++ 例 3.3(哈尔滨工业大学,2005 年)设 12 ,,, r a a a L 是一组线性无关的向量,1,1,2,..., ri ij j j k i r b a = == å ,证明: 12 ,,, r b b b L 线性相关的充要条件是矩阵11121 21222 12... ... ............ ... r r r r rr k k k k k k K k k k æöç÷ ç÷ = ç÷ ç÷ èø不可逆.证明 12 ,,, r b b b L 线性无关Û 10 ri i b = = å 仅有零解Û 10 rij i j j k x a = = å 仅有零解Û(由 12 ,,, r a a a L 线性无关性仅有零解)方程组 ' 0 K X = 仅有零解Û ' K 可逆Û矩阵 11121 21222 12... ... ............ ... r r r r rr k k k kk k K k k k æöç÷ ç÷ = ç÷ ç÷ èø是可逆的.例 3.4(上海大学,2005 年)设b 是非齐次线性方程组AX b = 的一个解,12 ,,, n r a a a - L 是其导出组的一个基础解系,证明:(1) 12 ,,,, n r a a a b - L 线性无关.(2) 12 ,,,, n r b a b a b a b - +++ L 线性无关.证明 (1) 假定 12 ,,,, n r a a a b - L 线性相关,而 12 ,,, n r a a a - L 线性无关,那么b 可由 12 ,,, n r a a a - L 线性表出,则b 是导出组的一个解与b 是AX b = 的一个解矛 盾.(2)令( ) ( ) ( ) 1122 0n r n r x x x x b a b a b a b -- +++++++= L 于是( ) 112212 0n r n r n r x x x x x x x a a a b --- ++++++++= L L 由 12 ,,,, n r a a a b - L 线性无关,则12 0n r x x x - ==== L 且12 0 n r x x x x - ++++= L ,于是 12 0 n r x x x x - ===== L ,故(2)成立.例 3.5(东北大学, 2003年) 设 1 2 ... r A a aa æö ç÷ ç÷ = ç÷ ç÷ èø是一个r n ´ 阶矩阵() r n < 且秩为r ,已知:b 是 0 AX = 的非零解,讨论 12 ,,, r a a a L 与b 的线性相关性.证明 由于对矩阵A , 有 () r A r = , 记 12 ,,, r U a a a =<> L . 显然有 12 ,,, ra a a L 为空间U 的一组基,由于b 是方程组 0 AX = 的一个非零解,所以有 T b 与12 ,,, r a a a L 相正交,于是有 U b ^^ Î ,对于 12 ,,, r a a a L 与 T b 的线性组合1122 0T r r l l l l a a a b ++++= L 两边同时与 T b 做内积,注意到 T U b ^ ,可得(,)0T T l b b = 由于 0 T b ¹ ,可得 0 l = ,于是1122 0r r l l l a a a +++= L 由 12 ,,, r a a a L 的线性无关性可得0(1,2,...,)i l i r == 即 12 ,,,, r a a a b L 的线性无关.例 3.6(浙江大学,2004 年) 令 12 ,,, s a a a L 是 n R 中s 个线性无关的向量, 证明:存在含n 个未知量的齐次线性方程组,使得 12 ,,, s a a a L 是它的一个基础解 系.证明 以列向量 12 ,,, s a a a L 的转置为行构成矩阵A1 2 TT T s A a a a æö ç÷ ç÷= ç÷ ç÷ ç÷ èøM 考虑以A 为系数矩阵的齐次线性方程组AX = 它的基础解系由 n s - 个 n 维列向量组成,设基础解系为 12 ,,, n s b b b - L 以12 ,,, T T T n s b b b - L 为行构成矩阵B ,则以B 为系数矩阵的齐次线性方程组 0 BX = 满足要求.因为 12 ,,, n s b b b - L 是 0 AX = 的解,则 0,1,,;1,, T j i s j n s a b ===- L L .它同 时说明,作为 n 维向量, 12 ,,, s a a a L 是齐次线性方程组 0 BX = 的解,而() r B n s =- .故 12 ,,, s a a a L 是 0 BX = 的一个基础解系.例 3.7(西安交通大学,2005年)讨论 , a b 为何值时,如下方程组有唯一解?无解?无穷多解? 当有无穷多解时,求出它的通解.1234 234 234 1234 0 221 (3)2 321 x x x x x x x x a x x b x x x ax +++= ì ï ++= ï í-+--= ï ï +++=- î解 将增广矩阵进行初等行变换化为行阶梯形矩阵,有1111011110 0122101221 01320132 321101231 A a b a b a a æöæö ç÷ç÷ ç÷ç÷ =® ç÷ç÷ ------ ç÷ç÷ ---- èøèø11110 01221 00101 00010 a b a æöç÷ ç÷ ® ç÷ -+ ç÷- èø.(1)当 1 a ¹ 时方程组有唯一解. (2)当 1 a = 且 1 b ¹- 时方程组无解. (3)当 1 a = 且 1 b =- 时方程组有无穷多解. 解方程组1234 234 0 221 x x x x x x x+++= ì í++= î 方程组的特解为 0 1 1 0 0 a - æöç÷ç÷ = ç÷ ç÷ èø,导出组的基础解系为 12 11 22 , 10 00 h h æöæö ç÷ç÷ -- ç÷ç÷ == ç÷ç÷ ç÷ç÷ èøèø, 于是通解为 01122 k k a a h h =++ .例 3.8(东南大学,2005年) 问:参数 , a b 取何值时,线性方程组1234 1234 234 1234 1 32 223 54(3)3 x x x x x x x x a x x xx x a x x b +++= ì ï+++= ï í++= ï ï ++++= î有解?当线性方程组有解时,求出其通解.解 将增广矩阵做初等行变换可化为10112 01223 0002 0000 a b a --- æöç÷ç÷ç÷ - ç÷èø. 显然若要方程组有解,必须有 0 a = 且 2 b = , 这时增广矩阵变为10112 01223 0002 0000 a b a --- æöç÷ç÷ ç÷- ç÷èø 方程组的一个特解为 ' (2,3,0,0) - ,基础解系为 ''(1,2,1,0),(1,2,0,1) -- ,于是通解为12 211 322 010 001 x C C - æöæöæöç÷ç÷ç÷ -- ç÷ç÷ç÷ =++ ç÷ç÷ç÷ ç÷ç÷ç÷ èøèøèø. 例 3.9(东南大学,2004年) 已知线性方程组1122 1122 1122 () 0()...0 ........................... ...()0 n n n n n na b x a x a x a x a b x a x a x a x a b x ++++= ì ï++++= ï íï ï ++++= î (*)其中 10 ni i a = ¹ å .试讨论 12 ,,, n a a a L 和b 满足什么条件时,(1)方程组仅有零解.(2)方程组有非零解,此时用基础解系表示所有解.解 由于方程组(*)的系数行列式为2 1 12 12 2 111 ............ ............... ... nin i n n n in i nn nin n i b a a a a b a a a a b a b a a b a a a a bb a a a b = = = + + + ++ =+ ++ å å å .2 2 1111 1100 1 10()()() ............ ............1 (1)0... n nnnn n i i i i i i nn a a a b a bb a b a b a ba a bb- === + =+=+=+ + ååå(1)当 0 b ¹ ,且 1()0 ni i b a = +¹ å 时,方程组(*)的系数行列式不等于零. 于是此方程组只有唯一零解.(2) 当 0 b ¹ ,且 1()0 ni i b a = += å 时,方程组(*)的系数行列式为零. 因此方程组(1)有非零解,它的基础解系为 '(1,1,...,1) ,此时方程组的一切解可表为' (1,1,...,1), k k R Î .(3) 当 0 b = 时,方程组的系数行列式为零. 此时方程组(*)有非零解,并且方 程组等价于1122 0n n a x a x a x +++= (**)由于 10 ni i a = ¹ å ,故在 12 ,,, n a a a L 中必有一个不为零,不妨设 0 ia ¹ ,则有 11 1111 ....... i i n i i i n i i i i a a a a x x x x x a a a a-+ -+ =------ 其中 111 ,...,,,..., i i n x x x x -+ 为自由未知量,因此原方程组的一个基础解系为' 1 1 (1,0,...,0,,0, 0i aah =- ..................................' 11 (0,0,...,1,,0,...,0) i i i a a h - - =-' 11 (0,0,...,0,,1,...,0) i i i a ah + + =-..................................' (0,0,...,0,,0,...,1) nn i a ah =-此时,方程组(*)的一切解可表为111111 ...() i i i i n n i X k k k k k Rh h h h --++ =+++++Î L . 例 3.10(大连理工大学,2004年)设 A 是n 阶矩阵,若 ()1 r A n =- ,且代数 余子式 11 0 A ¹ ,则齐次线性方程组 0 AX = 的通解是.。
一、填空题:(20分)1. 曲线t z t y t x 2,sin ,cos ===在4π=t 处的法平面方徎为________。
2. 点(1,2,1)到平面1022=++z y x 的距离为_______。
3. 设平面过点)2,1,1(),2,2,2(),1,1,1(----.则平面方程为________。
4. 已知x y z arctan =,则yx z∂∂∂2=________。
5. 交换积分⎰⎰1),(y ydx y x f dy 的积分次序为___________。
6. 设∑:2222a z y x =++.则dS z ⎰⎰∑2=_________ 。
7. 函数u=ln(x 2+y 2+z 2), 则div(grad u)= 。
8. 设函数f (x )是以π2为周期,f (x )=2x x +(-ππ≤<x ),f (x)的Fourier 级数为)sin cos (210∑+∞=++n n n nx b nx a a ,则b 3= 。
9. 设函数f (x )是以π2为周期的奇函数,它的Fourier 级数为)sin cos (210∑+∞=++n n n nx b nx a a ,则级数∑∞=0n n a = 。
10.下列四个命题:(1).若级数∑∞=12004n na发散,则级数∑∞=12005n na也发散;(2).若级数∑∞=12005n na发散,则级数∑∞=12006n na也发散;(3).若级数∑∞=12004n na收敛,则级数∑∞=12005n na也收敛;(4).若级数∑∞=12005n na收敛,则级数∑∞=12006n na也收敛。
上述正确的命题是______。
二. (8分)求函数y y y x y x f -+=32),(的极值,并指出是极大值,还是极小值。
三. (8分)求级数∑∞=-11n n nx 的收敛域和它的和函数。
四. (8分)计算⎰Lds y ,其中L 是抛物线2x y =上自点(0,0)到(1,1)的一段弧。