一元二次方程测试题(基础)
- 格式:doc
- 大小:151.50 KB
- 文档页数:4
一元二次方程单元测试题(含答案)第二章一元二次方程测试题(1)一、选择题(每题3分,共30分)1.以下方程属于一元二次方程的是(A)(x-2)·x=x2 (B) ax+bx+c=0 (C) x+=5 (D) x2=02.方程x(x-1)=5(x-1)的解是(C)1或53.2a-1的值是(B)44.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为(B)(x-2)2=45.以下方程中,无实数根的是(D)2x2-x-1=06.今世数式x2+3x+5的值为7时,代数式3x2+9x-2的值是(A)47.方程(x+1)(x+2)=6的解是(D)x1=2,x2=38.若是关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是(C)x2+4x-3=09.某市计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增加率是20%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5,400cm2,设金色纸边的宽为xcm,那么x满足的方程是(A)x2+130x-1,400=0二、填空题(每题3分,共24分)11.方程2x2-x-2=0的二次项系数是2,一次项系数是-1,常数项是-2.1.若方程 $ax^2+bx+c=0$ 的一个根为 $-1$,则 $a-b+c=2a+a-b+c=2a-(-1)^2-b(-1)+c=2a-b+c+1=0$,所以 $2a-b+c=-1$。
2.已知 $x^2-2x-3=x+7$,移项得 $x^2-3x-10=0$,因此$(x-5)(x+2)=0$,所以 $x=5$ 或 $x=-2$。
3.设一元二次方程为 $ax^2+bx+c=0$,两根为 $-2$ 和 $3$,则可以列出方程组:begin{cases}a(-2)^2+b(-2)+c=0 \\a3^2+b3+c=0end{cases}化XXX:begin{cases}4a-2b+c=0 \\9a+3b+c=0end{cases}解得 $a=-1$,$b=2$,$c=-3$,因此所求方程为 $-x^2+2x-3=0$。
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
专题12 一元二次方程(专题测试-基础)学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每小题4分,共48分)1.(2018·湖北中考模拟)已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,则△ABC为()A.等腰三角形B.等边三角形C.直角三角形D.任意三角形【答案】C【解析】根据一元二次方程a(1+x2)+2bx-c(1-x2)=0的两根相等,即△= b2-4ac=(2b)2-4×(a+c)×(a-c)=4b2+4c2-4a2=0,结合勾股定理的逆定理,由b2+c2=a2,所以得到△ABC是直角三角形.故选:C.2.(2018·江苏中考模拟)若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则1111b aa b--+--的值是()A.﹣20B.2C.2或﹣20D.1 2【答案】C【详解】①当a=b时,原式=2;②当a≠b时,根据实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,即可看成a、b是方程x2﹣8x+5=0的解,∴a+b=8,ab=5.则1111b aa b--+--=221111b aa b-+---()()()()=22221a b ab a bab a b+--++-++()()(),把a+b=8,ab=5代入得:=2810162 581--+-+=﹣20.综上可得:1111b aa b--+--的值为2或﹣20.故选C.3.(2019·云南中考模拟)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%【答案】C【解析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选C.4.(2019·新疆中考模拟)用配方法解下列方程,其中应在方程左右两边同时加上4的是()A.x2﹣2x=5B.x2+4x=5C.2x2﹣4x=5D.4x2+4x=5【答案】B【详解】A、因为本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;B、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项正确;C、将该方程的二次项系数化为x 2-2x= 52,所以本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;D、将该方程的二次项系数化为x 2 +x= 54,所以本方程的一次项系数是1,所以等式两边同时加上一次项系数一半的平方14;故本选项错误;故选B.5.(2018·山东中考模拟)已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A.x1+x2=1B.x1•x2=﹣1C.|x1|<|x2|D.x12+x1=1 2【答案】D【详解】根据题意得x1+x2=﹣22=﹣1,x1x2=﹣12,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x 1、x 2异号,且负数的绝对值大,故C 选项错误;∵x 1为一元二次方程2x 2+2x ﹣1=0的根,∴2x 12+2x 1﹣1=0,∴x 12+x 1=12,故D 选项正确, 故选D .6.(2018·邵阳县白仓镇千秋中学中考模拟)方程x 2﹣x+1=0与方程x 2﹣5x ﹣1=0的所有实数根的和是( ) A .6 B .5 C .3 D .2【答案】B【详解】∵方程x 2﹣x+1=0中 △=(-1)2-4×1×1<0,∴方程x 2﹣x+1=0没有实数解,又∵方程x 2﹣5x ﹣1=0的两实数根的和为5,∴方程x 2﹣x+1=0与方程x 2﹣5x ﹣1=0的所有实数根的和是5,故选B .7.(2019·山东中考模拟)若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数 y kx b =+的图象可能是:A .B .C .D .【答案】B【详解】由方程2210x x kb -++=有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即a b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.8.(2018·浙江中考模拟)用配方法解方程2210x x --=,变形结果正确的是( )A .213 ()24x -=B .213 ()44x -=C .2117 ()416x -=D .219 ()416x -= 【答案】D【详解】根据配方法的定义,将方程2210x x --=的二次项系数化为1, 得: 211022x x --=,配方得21111216216x x -+=+, 即:219 ()416x -=. 本题正确答案为D.9.(2019·新疆生产建设兵团第五师八十三团二中中考模拟)关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定【答案】A【详解】()2x k 3x k 0-++=, △=[-(k+3)]2-4k=k 2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.10.(2018·湖南中考模拟)如图,某小区有一块长为30m ,宽为24m 的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地的面积之和为480m 2,两块绿地之间及周边有宽度相等的人形通道,设人行道的宽度为x m ,根据题意,下面所列方程正确的是( )A .(303)(242)480x x --=B .(303)(24)480x x --=C .(302)(242)480x x --=D .(30)(242)480x x --=【答案】A【详解】由题意可得,()()303202480x x --=,故选:A .11.(2011·安徽中考模拟)已知x =2是一元二次方程x 2+mx +2=0的一个根,则m =()A .-3B .3C .0D .0或3【答案】A【详解】解:∵x =2是一元二次方程x 2+mx +2=0的一个解,∴4+2m +2=0,∴m =−3.故选A .12.(2018·河北中考模拟)如果2是方程230x x k -+=的一个根,则常数k 的值为( )A .1B .2C .1-D .2-【答案】B【详解】解:∵2是一元二次方程230x x k -+=的一个根,∴22-3×2+k =0,解得,k =2.故选:B .二、 填空题(共5小题,每小题4分,共20分)13.(2019·山东中考模拟)已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.【答案】2【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.14.(2019·云南中考模拟)一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.【答案】16【解析】∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.15.(2019·四川中考模拟)为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_____. 【答案】12x (x ﹣1)=21 【详解】有x 个队,每个队都要赛(x ﹣1)场,但两队之间只有一场比赛,由题意得:12x (x ﹣1)=21, 故答案为:12x (x ﹣1)=21. 16.(2018·河南中考模拟)方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______. 【答案】3.【详解】 解:根据题意得1232x x +=-,1212x x =-,所以1211x x +=1212x x x x +=3212--=3. 故答案为:3.17.(2019·云南中考模拟)关于x 的一元二次方程kx 2+2x ﹣1=0有两个不相等的实数根,则k 的取值范围是_____.【答案】k>-1且k≠0【详解】∵一元二次方程kx²+2x−1=0有两个不相等的实数根,∴△=b²−4ac=4+4k>0,且k≠0,解得:k>−1且k≠0.故答案为k>−1且k≠0.三、 解答题(共4小题,每小题8分,共32分)18.(2018·湖北中考真题)已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根. (1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.【答案】(1)k≤58;(2)k=﹣1. 【详解】(1)∵关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根,∴△≥0,即[﹣(2k ﹣1)]2﹣4×1×(k 2+k ﹣1)=﹣8k+5≥0,解得k≤58; (2)由根与系数的关系可得x 1+x 2=2k ﹣1,x 1x 2=k 2+k ﹣1,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(2k ﹣1)2﹣2(k 2+k ﹣1)=2k 2﹣6k+3,∵x 12+x 22=11,∴2k 2﹣6k+3=11,解得k=4,或k=﹣1,∵k≤58, ∴k=4(舍去),∴k=﹣1.19.(2019·山东中考模拟)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.20.(2019·山东中考模拟)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【答案】(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【解析】(1)若降价3元,则平均每天销售数量为20+2×3=26件.(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,∴x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.21.(2019·湖北中考模拟)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案】10,8.【解析】设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为8m.。
一元二次方程测试题(含答案) 一元二次方程测试题1.一元二次方程$(1-3x)(x+3)=2x^2+1$化为一般形式为:二次项系数$2$,一次项系数$-7$,常数项$10$。
2.若$m$是方程$x^2+x-1=3mx+1$的一个根,代入可得$m+2\sqrt{m+2013}$的值为$-1$,解得$\sqrt{m+2013}=-\frac{m+1}{2}$,代入可得$m=-2014$。
4.关于$x$的一元二次方程$(a-2)x^2+x+a-4$的一个根为$1$,代入可得$a=5$。
5.若代数式$4x-2x-5$与$2x+1$的值互为相反数,则$x=-\frac{3}{2}$。
6.已知$2y+y-3=2$,代入可得$4y^2+2y+1=27$。
7.若方程$(m-1)x+m\cdot x=1$是关于$x$的一元二次方程,则$m$的取值范围为$m\neq 0$。
8.已知关于$x$的一元二次方程$ax+bx+c(a\neq 0)$的系数满足$a+c=b$,则此方程必有一根为$\frac{c}{a}$。
10.设$x_1,x_2$是方程$x^2+bx+b-1=0$有两个相等的实数根,则$b=2$。
12.若$x=-2$是方程$x^2+mx-6=0$的一个根,则方程的另一个根是$3$。
13.设$m,n$是一元二次方程$x^2+4x+m=0$的两个根,则$m+n=-4$。
14.一元二次方程$(a+1)x^2-ax+a-1=0$的一个根为$1$,代入可得$a=2$。
15.若关于$x$的方程$x^2-2ax+a^2=0$的两个根互为倒数,则$a=\pm\sqrt{2}$。
17.已知关于$x$的方程$x^2-x-2=0$与$2x^2-(a+b)x+ab-1=0$有一个解相同,则$a=1$。
18.$a$是二次项系数,$b$是一次项系数,$c$是常数项,且满足$a-1+(b-2)+|a+b+c|=0$,则满足条件的一元二次方程为$(a-1)x^2+(b-2)x+c=0$。
专题01 一元二次方程(经典基础题7种题型+优选提升题)一元二次方程的定义1.(2022秋广东珠海九年级校考期中)下面关于x 的方程中:①ax 2+bx +c =0;②3(x ﹣9)2﹣(x+1)2=1;③x 2+1x +5=0;④x 2+5x 3﹣6=0;⑤3x 2=3(x ﹣2)2;⑥12x ﹣10=0,是一元二次方程个数是( )A .1B .2C .3D .4 2.(2022秋广西柳州九年级统考期中)方程254(1)20m m m x x +---=是关于x 的一元二次方程,则m的值为( )A .1B .6-C .6D .1或6-一元二次方程的解3.(2023春•玄武区期中)若m 是方程x 2+x ﹣1=0的一个根,则代数式2023﹣m 2﹣m 的值为 .4.(2023春•射阳县校级期中)已知a 是方程x 2﹣2020x +4=0的一个解,则的值为( )A.2023 B.2022 C.2021 D.2020一元二次方程的解法5.(2023春•滨海县期中)如果有理数a、b同时满足(a2+b2+3)(a2+b2﹣3)=16,那么a2+b2的值为()A.±5 B.5C.﹣5 D.以上答案都不对6.(2023春•东台市期中)方程x2+2x=0的根是.7.(2023春•江阴市期中)解方程:x2﹣4x+1=0;8.(2023春•无锡期中)解方程:x2﹣2x﹣4=0;9.(2023春•锡山区期中)解方程:x2﹣6x+5=0;10.(2023春•东台市期中)解方程:3x(x﹣4)=x﹣4.根的判别式11.(2023春•东台市校级期中)关于x的一元二次方程x2+2x+k=0有两个相等的实数根,则k的取值范围是()A.k=﹣1 B.k>﹣1 C.k=1 D.k>112.(2023春•射阳县校级期中)若关于x的方程kx2+4x﹣1=0有实数根,则k的取值范围是.13.(2023春•灌云县期中)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.14.(2023春•海州区校级期中)已知关于x的方程x2﹣4x﹣2k+8=0有两个实数根,则k的取值范围.15.(2023春•清江浦区校级期中)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为.16.(2023春•东台市期中)若关于x的一元二次方程kx2+2x﹣1=0有两个实数根,则实数k的取值范围是.根与系数的关系17.(2023春•鼓楼区期中)设x1,x2是一元二次方程x2﹣5x+4=0的两个实数根,则的值为.18.(2023春•东台市期中)若x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,则x1x2的值是.一元二次方程的实际应用19.(2023春•东台市期中)为了响应全民阅读的号召,某校图书馆利用节假日面向社会开放.据统计,第一个月进馆560人次,进馆人次逐月增加,第三个月进馆830人次.设该校图书馆第二个月、第三个月进馆人次的平均增长率为x,则可列方程为.20.(2023春•东台市期中)某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x,由题意可列得方程:.21.(2023春•东台市校级期中)某地区加大教育投入,2020年投入教育经费2000万元,以后每年逐步增长,预计2022年,教育经费投入为2420万元,则年平均增长率为.配方法的应用22.(2023春•江都区期中)若M=2x2﹣12x+15,N=x2﹣8x+11,则M与N的大小关系为()A.M≥N B.M>N C.M≤N D.M<N23.(2023春•仪征市期中)若代数式x2﹣4x+a可化为(x﹣b)2﹣1,则a+b是()A.5 B.4 C.3 D.224.(2023春•梁溪区校级期中)在求解代数式2a2﹣12a+22的最值(最大值或最小值)时,老师给出以下解法:解:原式=2(a2﹣6a)+22=2(a2﹣6a+9)﹣18+22=2(a﹣3)2+4,∵无论a取何值,2(a﹣3)2≥0,∴代数式2(a﹣3)2+4≥4,即当a=3时,代数式2a2﹣12a+22有最小值为4.仿照上述思路,则代数式﹣3a2+6a﹣8的最值为()A.最大值﹣5 B.最小值﹣8 C.最大值﹣11 D.最小值﹣5 25.(2023春•高邮市期中)若M=2x2﹣12x+15,N=x2﹣8x+11,则M与N的大小关系为.26.(2023春•江都区期中)将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法.这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一.例如,求代数式x2+2x+3的最小值.解:原式=x2+2x+1+2=(x+1)2+2.∵(x+1)2≥0,∴(x+1)2+2≥2.∴当x=﹣1时,x2+2x+3的最小值是2.(1)在横线上添加一个常数项,使代数式x2+10x+25成为完全平方式;(2)请仿照上面的方法求代数式x2+6x﹣1的最小值;(3)已知△ABC的三边a,b,c满足a2﹣6b=﹣14,b2﹣8c=﹣23,c2﹣4a=8.求△ABC的周长.27.(2023春•赣榆区期中)(1)已知3m=6,3n=2,求32m+n﹣1的值;(2)已知a2+b2+2a﹣6b+10=0,求(a﹣b)﹣3的值.28.(2023春•江阴市期中)【阅读材料】初一上学期我们已学过:由(x+3)2+(y﹣1)2=0知,x+3=0,y﹣1=0,∴x=﹣3,y=1.这不禁让人赞叹:精美的包装(数学模型),总可以给人满意的答案.初一下学期:利用完全平方式对上述式子进行变形:由(x+3)2+(y﹣1)2=0知,(x2+6x+9)+(y2﹣2y+1)=0,即x2+y2+6x﹣2y+10=0.反之,若x2+y2+6x﹣2y+10=0,则有(x2+6x+9)+(y2﹣2y+1)=0,即(x+3)2+(y﹣1)2=0,∴x+3=0,y﹣1=0,∴x=﹣3,y=1.精心挑选,合理搭配,让结果精彩纷呈.【知识应用】(1)若x2+y2﹣4x+6y+13=0,求x y的值;(2)若△ABC的三边为a、b、c,且满足4a2+4b2=4ab+18b﹣27,求最长边c的取值范围.29.(2023春•吴江区期中)我们可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,例如x2+4x﹣5=x2+4x+22﹣22﹣5=(x+2)2﹣9,我们把这样的变形叫做多项式ax2+bx+c (a≠0)的配方法.已知关于a,b的代数式满足a2+b2+2a﹣4b+5=0,请你利用配方法求a+b的值.30.(2023春•吴江区期中)阅读材料:若m2﹣2mn+2n2﹣2n+1=0,求m、n的值.解:∵m2﹣2mn+2n2﹣2n+1=0,∴(m2﹣2mn+n2)+(n2﹣2n+1)=0∴(m﹣n)2+(n﹣1)2=0,∴(m﹣n)2=0,(n﹣1)2=0,∴n=1,m=1.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求x、y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b﹣52,且△ABC是等腰三角形,求c 的值.一.选择题(共2小题)1.(2022秋•建邺区期中)关于x的一元二次方程ax2+bx=c(ac≠0)一个实数根为2022,则方程cx2+bx =a一定有实数根()A.2022 B.C.﹣2022 D.﹣2.(2022秋•宿城区期中)要组织一次排球邀请赛,参赛的每两支球队之间都要进行一场比赛,共要比赛28场,参加比赛的球队有x支,则x的值为()A.8 B.9 C.18 D.10二.填空题(共4小题)3.(2023春•溧阳市期中)已知:x2﹣3x+5=(x﹣2)2+a(x﹣2)+b,则a+b=.4.(2022秋•泗洪县期中)如果x满足一元二次方程(x﹣4)(x+5)=0,则代数式x﹣4的值是.5.(2022秋•泗洪县期中)已知x=﹣1是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是.6.(2022秋•句容市期中)为建设美丽句容,改造老旧小区,我市2020年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.求我市改造老旧小区投入资金的年平均增长率.三.解答题(共14小题)7.(2022秋•太仓市期中)某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用40米长的篱笆围成一个矩形花园ABCD(篱笆只围AB,AD两边),设AB=x米.(1)若花园的面积为300米2,求x的值;(2)若在直角墙角内点P处有一棵桂花树,且与墙BC,CD的距离分别是10米,24米,要将这棵树围在矩形花园内(含边界,不考虑树的粗细),则花园的面积能否为400米2?若能,求出x的值;若不能,请说明理由.8.(2022秋•梁溪区校级期中)某玩具销售商试销某一品种的玩具(出厂价为每个30元),以每个40元销售时,平均每月可销售100个,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的试场调查,3月份调整价格后,月销售额达到5760元,已知该玩具价格每个下降1元,月销售量将上升10个.(1)求1月份到3月份销售额的月平均增长率.(2)求三月份时该玩具每个的销售价格.9.(2022秋•高邮市期中)某剧院可容纳1200人,经调研在一场文艺演出中,票价定为每张50元时,可以售出800张门票如果票价每降低1元,那么售出的门票就增加40张.要使门票收入达到47560元,票价应降低多少元?10.(2022秋•邗江区期中)2019年12月以来,湖北省武汉市发现一种新型冠状病毒感染引起的急性呼吸道传染病.(1)在“新冠”初期,有1人感染了“新冠”,经过两轮传染后共有144人感染了“新冠”(这两轮感染因为人们不了解病毒而均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)后来举国上下众志成城,全都隔离在家.小玲的爷爷因为种的水果香梨遇到销滞难题而发愁,于是小玲想到了在微信朋友圈里帮爷爷销售香梨.香梨每斤成本为4元/斤,她发现当售价为6元/斤时,每天可以卖80斤.在销售过程中,她还发现一斤香梨每降价0.5元时,则每天可以多卖出10斤.为了最大幅度地增加销售量,而且每天要达到100元的利润,问小玲应该将售价定为多少元?11.(2021秋•邗江区校级期中)如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A 开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于2cm?(2)在(1)中,△PQB面积能否等于4cm2?请说明理由.12.(2021秋•洪泽区校级期中)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.(1)若现在按每千克60元销售,则月销售量千克,月销售利润元.(2)针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?13.(2021秋•邗江区校级期中)2021年8月,扬州疫情暴发,口罩供不应求,某药店在疫情前恰好新进了一批口罩,若按每个盈利1元销售,每天可售出200个;如果每个口罩的售价每上涨0.5元,则销售量就减少10个.(1)问应将每个口罩涨价多少元,才能让顾客得到实惠的同时每天利润为480元?(2)店主想要获得每天620元的利润,小红同学认为不可能,你同意小红的说法吗?请说明理由.14.(2022春•泗洪县期中)利用完全平方公式(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2的特点可以解决很多数学问题.下面给出两个例子:例1.分解因式:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)例2.求代数式2x2﹣4x﹣6的最小值:2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x2﹣2x+1﹣1)﹣6=2[(x﹣1)2﹣1]﹣6=2(x﹣1)2﹣8又∵2(x﹣1)2≥0∴当x=1时,代数式2x2﹣4x﹣6有最小值,最小值是﹣8.仔细阅读上面例题,模仿解决下列问题:(1)分解因式:m2﹣6m﹣7;(2)当x、y为何值时,多项式2x2+y2﹣8x+6y+20有最小值?并求出这个最小值;(3)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2=8a+6b﹣25,求△ABC周长的最大值.15.(2022秋•苏州期中)如图,一个边长为8m的正方形花坛由4块全等的小正方形组成.在小正方形ABCD中,点G,E,F分别在CD,AD,AB上,且DG=1m,AE=AF=x,在△AEF,△DEG,五边形EFBCG三个区域上种植不同的花卉,每平方米的种植成本分别是20元、20元、10元.(1)当x=2时,小正方形ABCD种植花卉所需的费用;(2)试用含有x的代数式表示五边形EFBCG的面积;(3)当x为何值时,大正方形花坛种植花卉所需的总费用是715元?16.(2020秋•鼓楼区期中)方程是含有未知数的等式,使等式成立的未知数的值称为方程的“解”.方程的解的个数会有哪些可能呢?(1)根据“任何数的偶数次幂都是非负数”可知:关于x的方程x2+1=0的解的个数为;(2)根据“几个数相乘,若有因数为0,则乘积为0”可知方程(x+1)(x﹣2)(x﹣3)=0的解不止一个,直接写出这个方程的所有解;(3)结合数轴,探索方程|x+1|+|x﹣3|=4的解的个数;(写出结论,并说明理由)(4)进一步可以发现,关于x的方程|x﹣m|+|x﹣3|=2m+1(m为常数)的解的个数随着m的变化而变化…请你继续探索,直接写出方程的解的个数与对应的m的取值情况.17.(2022秋•盱眙县期中)已知关于x的一元二次方程(m﹣1)x2+6x+m2﹣1=0的一个根是0,(1)求m的值.(2)求方程的另一根.18.(2023春•邗江区期中)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.19.(2020秋•锡山区期中)小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A、B两地间的路程;(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?20.(2021春•工业园区校级期中)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知等腰△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC 的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.。
一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。
3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。
方程与不等式之一元二次方程基础测试题含解析一、选择题1.已知关于X 的方程x 2 +bx+a=0有一个根是-a (a ≠0),则a-b 的值为( ) A .1B .2C .-1D .0 【答案】C【解析】【分析】由一元二次方程的根与系数的关系x 1•x 2=c a、以及已知条件求出方程的另一根是-1,然后将-1代入原方程,求a-b 的值即可.【详解】∵关于x 的方程x 2+bx+a=0的一个根是-a (a≠0),∴x 1•(-a )=a ,即x 1=-1,把x 1=-1代入原方程,得:1-b+a=0,∴a-b=-1.故选C .【点睛】本题主要考查了一元二次方程的解.解题关键是根据一元二次方程的根与系数的关系确定方程的一个根.2.代数式2x -4x +5的最小值是( )A .-1B .1C .2D .5【答案】B【解析】 2x -4x +5=2x -4x +4-4+5=2(2)x -+1∵2(2)x -≥0,∴2(2)x -+1≥1,∴代数2x -4x +5的最小值为1.故选B.点睛:解这类题时,通常先通过配方把原式化为“一个完全平方式”和“一个常数”的和的形式,再把完全平方式分解因式化为一个代数式的平方的形式,就可由“任何代数式的平方都是非负数”可知原式的最小值就是那个“常数”.3.如果等腰三角形的两边长分别是方程x 2-10x +21=0的两根,那么它的周长为 ( )A .17B .15C .13D .13或17【答案】A【解析】 试题分析:根据题意可得方程的两根为x=3和x=7,3、3、7不能构成三角形,则三角形的三边为3、7、7,则周长为17.考点:一元二次方程、等腰三角形.4.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .()250170x -=B .()250170x += C .()270150x -=D .()270150x += 【答案】B【解析】【分析】根据2019年的产量=2017年的产量×(1+年平均增长率)2,即可列出方程.【详解】解:根据题意可得,2018年的产量为50(1+x ),2019年的产量为50(1+x )(1+x )=50(1+x )2,即所列的方程为:50(1+x )2=70.故选:B .【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程.5.已知直角三角形的两条边长分别是方程x 2-14x+48=0的两个根,则此三角形的第三边是( )A .6或8B .10C .10或8D .【答案】B【解析】【分析】先解方程x 2-14x+48=0求得直角三角形的两条边长,再根据勾股定理即可求得结果.【详解】解:解方程x 2-14x+48=0得x 1=6,x 2=8当8为直角边时,第三边10==当8为斜边长时,第三边==故选B.考点:解一元二次方程,勾股定理点评:分类讨论问题是初中数学学习中的重点和难点,是中考的热点,尤其在压轴题中比较常见,一般难度较大,需特别注意.6.对于一元二次方程ax 2+bx +c =0(a ≠0),下列说法:①若b =ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则方程x 2﹣bx +ac =0也一定有两个不等的实数根;③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立;④若x 0是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2ax 0+b )2,其中正确的( )A .只有①②③B .只有①②④C .①②③④D .只有③④【答案】B【解析】【分析】判断上述方程的根的情况,只要看根的判别式△=-24b ac 的值的符号就可以了.④难度较大,用到了求根公式表示0x .【详解】解:①若b =,方程两边平方得b 2=4ac ,即b 2﹣4ac =0,所以方程ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则b 2﹣4ac >0方程x 2﹣bx +ac =0中根的判别式也是b 2﹣4ac >0,所以也一定有两个不等的实数根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac 2+bc +c =0成立,当c ≠0时ac +b +1=0成立;当c =0时ac +b +1=0不成立;④若x 0是一元二次方程ax 2+bx +c =0的根,可得0x , 把x 0的值代入(2ax 0+b )2,可得b 2﹣4ac =(2ax 0+b )2,综上所述其中正确的①②④.故选:B .【点睛】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示0x ,整体代入求2204(2)b ac ax b -=+.总结:一元二次方程根的情况与判别式△的关系:(1)△0>⇔方程有两个不相等的实数根;(2)△0=⇔方程有两个相等的实数根;(3)△0<⇔方程没有实数根.7.设O e 的半径为3,圆心O 到直线l 的距离OP m =,且m 使得关于x 的方程2610x m -+-=没有实数根,则直线l 与O e 的位置关系为( )A .相离B .相切C .相交D .无法确定【答案】A【解析】【分析】 欲求圆与AB 的位置关系,关键是求出点C 到AB 的距离d ,再与半径r=2进行比较,即可求解.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.【详解】∵关于x 的方程6x 2-43x+m-1=0没有实数根,∴△=b 2-4ac <0,即48-4×6×(m-1)<0,解这个不等式得m >3,又因为⊙O 的半径为3,所以直线与圆相离.故选:A .【点睛】此题考查直线与圆的位置关系,一元二次方程根的判别式.解题关键在于通过比较圆心到直线距离d 与圆半径大小关系完成判断.8.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【解析】【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.故选D .【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.9.若一元二次方程x 2-2x -m =0无实数根,则一次函数y =(m +1)x +m -1的图象不经过第( )象限.A .四B .三C .二D .一【答案】D【解析】【分析】【详解】∵一元二次方程x 2 - 2x - m = 0无实数根∴△=4+4m<0,即m<-1∴一次函数的比例系数m+1<0,图像经过二四象限截距m-1<0,则图象与y 轴交与负半轴,图像过第三象限∴一次函数y =(m+1)x + m - 1的图像不经过第一象限,故选D.10.关于x 的方程x 2+2kx+k ﹣1=0的根的情况描述正确的是( )A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数拫C .k 为任何实数,方程都有两个相等的实数根D .根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【答案】B【解析】∵关于x 的方程x 2+2kx+k ﹣1=0中△=(2k )2﹣4×(k ﹣1)=4k 2﹣4k+4=(2k ﹣1)2+3>0∴k 为任何实数,方程都有两个不相等的实数根故选B .11.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 【答案】D【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根, ∴220(2)4(2)(6)0k k k k V -≠⎧⎨=----⎩…, 解得:32k ≥且k≠2. 故选D .【点睛】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.12.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C.无实数根D.无法确定【答案】A【解析】【分析】利用一次函数性质得出k>0,b≤0,再判断出△=k2-4b>0,即可求解.【详解】解:Q一次函数y kx b=+的图象不经过第二象限,k∴>,0b≤,240k b∴∆=->,∴方程有两个不相等的实数根.故选:A.【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.13.关于方程x2﹣x+9=0的根的情况,下列说法正确的是()A.有两个相等实根B.有两个不相等实数根C.没有实数根D.有一个实数根【答案】C【解析】【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.【详解】这里a=1,,c=9,∵△=b2-4ac=32-36=-4<0,∴方程无实数根.故选:C.【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.已知关于x的一元二次方程230 4x x a--+=有两个不相等的实数根,则满足条件的最小整数a的值为( )A.-1 B.0 C.2 D.1【答案】D【解析】【分析】根据根的判别式即可求出a的范围.【详解】由题意可知:△>0,∴1﹣4(﹣a+34)>0,解得:a>1 2故满足条件的最小整数a的值是1,故选D.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式.15.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定【答案】B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.16.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【答案】D【解析】∵△=24a >0,∴方程有两个不相等的实数根.故选D.17.某新建火车站站前广场绿化工程中有一块长为20米,宽为12米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为112米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是( )A .2米B .323米C .2米或323米D .3米【答案】A【解析】【分析】 根据矩形面积的相关知识进行作答.【详解】设宽度为x ,将大矩形空地划分为两个相等的小矩形绿地和两个相等的细长矩形和三个相等的小细长矩形,运用大矩形空地面积等于划分的几个矩形面积之和建立方程式,即20121123122x 220x ⨯=+⨯-+⨯ ,解出x=2,所以,选A.【点睛】本题考查了矩形面积的相关知识,熟练掌握矩形面积的相关知识是本题解题关18.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .或1B .1或﹣1C .1或1D .或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x =x 2﹣x ﹣1,解得:x =(1<0,不符合舍去);②当﹣x >x ,即x <0时,﹣x =x 2﹣x ﹣1,解得:x =﹣1(1>0,不符合舍去),即方程max {x ,﹣x }=x 2﹣x ﹣1的解为或﹣1,故选:D .【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.19.若关于x 的一元二次方程2304kx x --=有实数根,则实数k 的取值范围是( ) A .0k =B .13k ≥-C .13k ≥-且0k ≠D .13k >- 【答案】C【解析】【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k 的不等式,解得即可,同时还应注意二次项系数不能为0.【详解】∵关于x 的一元二次方程2304kx x --=有实数根, ∴△=b 2-4ac≥0,即:1+3k≥0, 解得:13k ≥-,∵关于x 的一元二次方程kx 2-2x+1=0中k≠0,故选:C .【点睛】本题考查了一元二次方程根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.20.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 【答案】A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14; 当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a 的取值范围为a≥1.故选A .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.。
一元二次方程基础练习50题含详细答案一、单选题1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2B .2C .−4D .42.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( ) A .0B .±1C .1D .1-3.若方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程,则代数式|m -1|的值为( ) A .0B .2C .0或2D .-24.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A .10B .14C .10或14D .8或105.1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b=( ) A .2-B .3-C .4D .6-6.若关于x 的一元二次方程(k+2)x 2﹣3x+1=0有实数根,则k 的取值范围是( ) A .k <14且k≠﹣2 B .k≤14C .k≤14且k≠﹣2 D .k≥147.下列方程有实数根的是 A .4x 20+=B 1=-C .2x +2x −1=0D .x 1x 1x 1=-- 8.关于x 的二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .0.59.已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3B .﹣2C .3D .610.已知x =2是一元二次方程x 2+mx +2=0的一个解,则m 的值是( ) A .﹣3B .3C .0D .0或311.若2x =是关于x 的一元二次方程220180ax bx --=的一个解,则2035-2a +b 的值( ) A .17B .1026C .2018D .405322值( ) A .0B .1或2C .1D .213.把方程x(x+2)=5(x-2)化成一般式,则a 、b 、c 的值分别是( ) A .1,-3,10B .1,7,-10C .1,-5,12D .1, 3,214.关于x 的方程(m+1)21m x ++4x+2=0是一元二次方程,则m 的值为( )A .m 1=﹣1,m 2=1B .m=1C .m=﹣1D .无解15.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( ) A .-1或2B .-1C .2D .016.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m+n 的值为( ) A .1B .2C .-1D .-217.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( ) A .1B .﹣1C .0D .﹣218.如果﹣1是方程x 2﹣3x+k=0的一个根,则常数k 的值为( ) A .4B .2C .﹣4D .﹣219.下列方程中,关于x 的一元二次方程是( ) A .x 2+2y=1B .211x x+﹣2=0 C .ax 2+bx+c=0 D .x 2+2x=120.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( ) A .1B .﹣1C .0D .无法确定21.如果2是方程x 2-3x +k =0的一个根,则常数k 的值为( ) A .2B .1C .-1D .-222.若关于x 的方程2230mx x -+=有实数根,则m 的取值范围是( ) A .m≤13B .m≤13-C .m≥13D .m≤13,且m≠0 23.方程()24310mm x x m ++++=是关于x 的一元二次方程,则( )A .2m =±B .2m =C .2m =-D .2m ≠±24.若关于x 的方程x 2+3x+a=0有一个根为-1,则另一个根为( ) A .-2B .2C .4D .-325.下列方程是一元二次方程的是( ) A .21x+x 2=0 B .3x 2﹣2xy=0 C .x 2+x ﹣1=0D .ax 2﹣bx=0A .2B .0C .0或2D .0或﹣227.方程3x 2﹣8x ﹣10=0的二次项系数和一次项系数分别为( ) A .3和8B .3和﹣8C .3和﹣10D .3和1028.已知一元二次方程2x 6x c 0-+=有一个根为2,则另一根为 A .2B .3C .4D .829.若关于x 的方程(a +1)x 2+2x ﹣1=0是一元二次方程,则a 的取值范围是( ) A .a ≠﹣1B .a >﹣1C .a <﹣1D .a ≠030.若关于x 的一元二次方程()2210k x x k -+-=的一个根为1,则k 的值为( ) A .1-B .0或1C .1D .031.下列方程中一定是一元二次方程的是( ) A .5x 2-2x+2=0 B .ax 2+bx+c=0 C .2x+3=6D .(a 2+2)x 2-2x+3=032.若2x =-是关于x 的一元二次方程22502x mx m -+=的一个根,则m 的值为( ) A .1或4 B .-1或-4C .-1或4D .1或-4二、填空题33.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 34.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =_____. 35.已知m 是关于x 的方程2230x x --=的一个根,则224m m -=______. 36.a 是方程224x x =+的一个根,则代数式242a a -的值是_______.37.已知x=2是关于x 的方程240x x m -+=的一个根,则m =____________. 38.若a 是方程x 2-2x-2015=0的根,则a 3-3a 2-2013a+1=____________. 39.一元二次方程290x 的解是__.40.已知关于x 的方程x 2+3x ﹣m=0的一个解为﹣3,则它的另一个解是_____. 41.若关于x 的一元二次方程(m ﹣1)x 2+x +m 2﹣1=0有一个根为0,则m 的值为_____. 42.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .43.关于x 的方程a(x+m)2+b=0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程a(x+m+2)2+b=0 的解是__________.45.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于_____.46.设m 是一元二次方程x 2﹣x ﹣2019=0的一个根,则m 2﹣m +1的值为___. 47.若a 是方程2320x x --=的根,则2526a a +-=_____.48.若正数a 是一元二次方程x 2﹣5x +m =0的一个根,﹣a 是一元二次方程x 2+5x ﹣m =0的一个根,则a 的值是______.49.已知x=1是一元二次方程x²+ax+b=0的一个根,则代数式a²+b²+2ab 的值是____________.50.关于x 的一元二次方程22(2)620k x x k k ++++-=有一个根是0,则k 的值是_______.参考答案1.B 【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0, 解得k=2. 故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 2.D 【分析】根据一元二次方程的定义,再将0x =代入原式,即可得到答案. 【详解】解:∵关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =, ∴210a -=,10a -≠, 则a 的值为:1a =-. 故选D . 【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义. 3.A 【解析】试题分析:根据一元一次方程的定义知m 2﹣1=0,且﹣m ﹣1≠0,据此可以求得代数式|m ﹣1|的值.解:由已知方程,得(m 2﹣1)x 2﹣(m+1)x+2=0.∵方程(m 2﹣1)x 2﹣mx ﹣x+2=0是关于x 的一元一次方程, ∴m 2﹣1=0,且﹣m ﹣1≠0, 解得,m=1,则|m ﹣1|=0. 故选A .点评:本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1. 4.B 【解析】试题分析: ∵2是关于x 的方程x 2﹣2mx+3m=0的一个根, ∴22﹣4m+3m=0,m=4, ∴x 2﹣8x+12=0, 解得x 1=2,x 2=6.①当6是腰时,2是底边,此时周长=6+6+2=14; ②当6是底边时,2是腰,2+2<6,不能构成三角形. 所以它的周长是14.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质. 5.A 【分析】先把x=1代入方程220x ax b ++=得a+2b=-1,然后利用整体代入的方法计算2a+4b 的值 【详解】将x =1代入方程x 2+ax +2b =0,得a +2b =-1,2a +4b =2(a +2b )=2×(-1)=-2. 故选A. 【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键 6.C 【分析】根据一元二次方程的定义和根的判别式得出k+2≠0且△=(-3)2-4(k+2)•1≥0,求出即可. 【详解】∵关于x 的一元二次方程(k+2)x 2-3x+1=0有实数根,∴k+2≠0且△=(-3)2-4(k+2)•1≥0, 解得:k≤14且k≠-2, 故选C . 【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键. 7.C 【解析】A .∵x 4>0,∴x 4+2=0无解,故本选项不符合题意;B =−1无解,故本选项不符合题意;C .∵x 2+2x −1=0,∆ =8>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意. 故选C . 8.B 【分析】把0x =代入可得210a -=,根据一元二次方程的定义可得10a -≠,从而可求出a 的值. 【详解】把0x =代入()22110a x x a -++-=,得:210a -=,解得:1a =±,∵()22110a x x a -++-=是关于x 的一元二次方程,∴10a -≠, 即1a ≠, ∴a 的值是1-, 故选:B .本题考查了对一元二次方程的定义,一元二次方程的解,以及一元二次方程的解法等知识点的理解和运用,注意隐含条件10a -≠. 9.A 【解析】试题解析:设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3. 故选A .考点:根与系数的关系. 10.A 【分析】直接把x =2代入已知方程就得到关于m 的方程,再解此方程即可. 【详解】解:∵x =2是一元二次方程x 2+mx +2=0的一个解, ∴4+2m +2=0, ∴m =﹣3. 故选:A . 【点睛】本题考查的是一元二次方程的解,难度系数较低,直接把解代入方程即可. 11.B 【分析】把x=2代入方程得2a-b=1009,再代入 20352a b -+,可求得结果. 【详解】因为x 2=,是关于x 的一元二次方程2ax bx 20180--=的一个解, 所以,4a-2b-2018=0, 所以,2a-b=1009,所以,20352a b -+=2035-(2a-b )=2035-1009=1026. 故选B.本题主要考查一元二次方程的根的意义.12.D【分析】把x=0代入已知方程得到关于m的一元二次方程,通过解方程求得m的值;注意二次项系数不为零,即m-1≠0.【详解】解:根据题意,将x=0代入方程,得:m2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,故选:D.【点睛】本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m的值必须满足:m-1≠0这一条件.13.A【分析】方程整理为一般形式,找出常数项即可.【详解】方程整理得:x2−3x+10=0,则a=1,b=−3,c=10.故答案选A.【点睛】本题考查了一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的每种形式. 14.B【解析】【分析】根据一元二次方程未知数项的最高次数是2,可得m2+1=2且m+1≠0,计算即可求解. 【详解】因为一元二次方程的最高次数是2,所以m2+1=2,解得m=﹣1或1,又因为m+1≠0,即m≠﹣1,所以m =1,故选B. 【点睛】本题主要考查一元二次方程的概念:只含有一个未知数(一元),且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程,掌握这个概念是解决此题的关键. 15.B 【分析】首先把x=1代入22(2)40m x x m -+-=,解方程可得m 1=2,m 2=-1,再结合一元二次方程定义可得m 的值 【详解】解:把x=1代入22(2)40m x x m -+-=得:2m 2+4m --=0,2m m 20++=-,解得:m 1=2,m 2=﹣1∵22(2)40m x x m -+-=是一元二次方程, ∴m 20-≠ , ∴m 2≠, ∴1m =-, 故选:B . 【点睛】此题主要考查了一元二次方程的解和定义,关键是注意方程二次项的系数不等于0. 16.D 【分析】将n 代入方程,提公因式化简即可. 【详解】解:∵()n n 0≠是关于x 的方程2x mx 2n 0++=的根, ∴2n mn 2n 0++=,即n(n+m+2)=0, ∵n 0,≠∴n+m+2=0,即m+n=-2,故选D.【点睛】本题考查了一元二次方程的求解,属于简单题,提公因式求出m+n是解题关键.17.A【详解】试题分析:∵关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,∴b2﹣ab+b=0,∵﹣b≠0,∴b≠0,方程两边同时除以b,得b﹣a+1=0,∴a﹣b=1.故选A.考点:一元二次方程的解.18.C【分析】把x=-1代入方程可得到关于k的方程,可求得k的值.【详解】∵-1是方程x2-3x+k=0的一个根,∴(-1)2-3×(-1)+k=0,解得k=-4,故选C.【点睛】考查一元二次方程的解,把方程的解代入得到到关于k的方程是解题的关键.19.D【分析】一元二次方程是指含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,根据定义判断即可.【详解】解:A、含有两个未知数,不是一元二次方程,故本选项不符合题意;B、分母中含有未知数,是分式方程,故本选项不符合题意;C、当a=0时不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故选D.【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.20.B【解析】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B21.A【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【详解】解:∵2是一元二次方程x2-3x+k=0的一个根,∴22-3×2+k=0,解得,k=2.故选:A.【点睛】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.22.A【分析】分m=0和m≠0两种情况求解即可. 当m=0时,方程是一元一次方程,一定有实根;当m≠0时,方程有两个实数根,则根的判别式△≥0,建立关于m的不等式,求得m的取值范围.【详解】当m≠0时,∵a=m,b=−2,c=3 且方程有实数根,∴△=b2−4ac=4−12m≥0∴m≤1 3 .当m=0 时,方程为一元一次方程,仍有解,故m的取值范围是m≤1 3 .故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 23.B【分析】根据次数最高项的次数是2,且次数最高项的系数不为0列式求解即可.【详解】由题意得,2m=,且20m+≠,解之得,2m=.故选B.【点睛】本题考查了一元二次方程的定义,方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程,根据定义解答即可.24.A【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【详解】设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.考点:根与系数的关系.【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4)是整式方程.由这四个条件对四个选项进行验证.【详解】A.不是整式方程,不是一元二次方程;B.含有两个未知数,不是一元二次方程;C.符合一元二次方程的定义,是一元二次方程;D.二次项系数a不知是否为0,不能确定是否是一元二次方程.故选C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.26.A【解析】试题分析:∵x=2是一元二次方程x2﹣2mx+4=0的一个解,∴4﹣4m+4=0,∴m=2.故选A.考点:一元二次方程的解.27.B【解析】【分析】分别确定2x和x的系数,注意符号不要遗漏.【详解】解:由题意得,二次项系数是3,一次项系数为-8,故选择B.【点睛】遗漏系数的符号是本题的易错点.28.C试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=4.考点:根与系数的关系.29.A【分析】根据一元二次方程的定义可得a +1≠0,即可得出答案.【详解】解:由题意得:a +1≠0,解得:a ≠﹣1.故选A .【点睛】本题考查的是一元二次方程的定义:只有一个未知数,并且未知数的最高次数是2次的整式方程.30.D【分析】把x=1代入()2210k x x k -+-=得以k 为未知数的一元二次方程,解方程求得k 值,再由二次项系数不为0 即可解答.【详解】把x=1代入()2210k x x k -+-=得k-1+1-k 2=0,解得k 1=0,k 2=1, 而k-1≠0,所以k=0.故选D .【点睛】本题考查了一元二次方程的解法、一元二次方程的定义.解决本题的关键是解一元二次方程确定k 的值,过程中容易忽略一元二次方程的二次项系数不等于0这个条件.31.D【解析】【分析】根据一元二次方程的定义进行判断即可得.【详解】A. 5x 2-2x+2=0,不是整式方程,故不符合题意; B. 当a=0时,方程ax 2+bx+c=0不是一元二次方程,故不符合题意;C. 2x+3=6是一元一次方程,故不符合题意;D. (a 2+2)x 2-2x+3=0是一元二次方程,故符合题意,故选D.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程是整式方程,含有一个未知数,含有未知数的项的次数最高为2次是解题的关键.32.B【分析】把2x =-代入关于x 的方程22502x mx m -+=,得到2450m m ++=,解关于m 的方程即可.【详解】解:∵2x =-是关于x 的一元二次方程22502x mx m -+=的一个根, ∴2450m m ++=解得121,4m m =-=-故选B .【点睛】本题考查一元二次方程根的定义和一元二次方程的解法,理解方程根的定义得到关于m 的方程是解题关键.33.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.34.﹣2【分析】根据一元二次方程的解的定义把x =2代入x 2+mx +2n =0得到4+2m +2n =0得n +m =−2,然后利用整体代入的方法进行计算.【详解】∵2(n≠0)是关于x 的一元二次方程x 2+mx +2n =0的一个根,∴4+2m +2n =0,∴n +m =−2,故答案为−2.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.35.6.【解析】试题分析:∵m 是关于x 的方程2230x x --=的一个根,∴2230m m --=,∴223m m -=,∴224m m -=6,故答案为6.考点:一元二次方程的解;条件求值.36.8【分析】直接把a 的值代入得出224a a -=,进而将原式变形得出答案.【详解】解:∵a 是方程224x x =+的一个根,∴224a a -=,∴22422(2)248a a a a -=-=⨯=.故答案为8.【点睛】此题主要考查了一元二次方程的解,正确将原式变形是解题关键.37.1【分析】把x =2代入方程得到关于m 的方程,然后解关于m 的方程即可.【详解】解:把x =2+代入方程得2(24(20m -++=,解得m =1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.38.-2014【分析】由题意得:222015,a a -=拆项,运用因式分解方法变形求解.【详解】由题意得:222015,a a -=则:a 3-3a 2-2013a+1=22a(2)20131a a a a ---+()22=20152013121201512014a a a a a --+=--+=-+=-.故答案为-2014.【点睛】考核知识点:因式分解的运用.拆项分组是关键.39.x 1=3,x 2=﹣3.【分析】先移项,在两边开方即可得出答案.【详解】∵290x -=∴2x =9,∴x =±3,即x 1=3,x 2=﹣3,故答案为x 1=3,x 2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.40.0【解析】【分析】设方程的另一个解是n ,根据根与系数的关系可得出关于n 的一元一次方程,解之即可得出方程的另一个解.【详解】设方程的另一个解是n ,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为0.【点睛】本题考查了一元二次方程的解以及根与系数的关系,熟记一元二次方程ax 2+bx+c=0(a≠0)的两根之和等于﹣b a 、两根之积等于c a是解题的关键. 41.﹣1.【分析】根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m 2-1=0,由此可以求得m 的值.【详解】解:把x =0代入(m ﹣1)x 2+x +m 2﹣1=0得m 2﹣1=0,解得m=±1, 而m ﹣1≠0,所以m =﹣1.故答案为﹣1.【点睛】本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.42.15.【详解】解:29180x x -+=,得x 1=3,x 2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15.故答案是:1543.x=-4,x=-1【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2或x+2=1,解得x=-4或x=-1.故方程a(x+m+2)2+b=0的解为x1=-4,x2=-1.故答案为:x1=-4,x2=-1.【点睛】本题考查方程解的定义.注意由两个方程的特点进行简便计算.44.2【解析】试题分析:∵关于x的方程230-+=的一个根是1,∴1﹣3×1+m=0,解得,m=2,x x m故答案为2.考点:一元二次方程的解.45.2028【分析】根据一元二次方程的解的概念和根与系数的关系得出x12-4x1=2020,x1+x2=4,代入原式=x12-4x1+2x1+2x2=x12-4x1+2(x1+x2)计算可得.【详解】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2028,故答案为:2028.【点睛】本题主要考查根与系数的关系,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a . 46.2020.【分析】把x=m 代入方程计算即可求解.【详解】解:把x =m 代入方程得:m 2﹣m ﹣2019=0,即m 2﹣m =2019,则原式=2019+1=2020,故答案为2020.【点睛】本题考查一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 47.1【分析】利用一元二次方程解的定义得到3a 2-a=2,再把2526a a +-变形为()2523a a --,然后利用整体代入的方法计算.【详解】∵a 是方程2320x x --=的根,∴3a 2-a-2=0,∴3a 2-a=2,∴2526a a +-=()2523a a --=5-2×2=1. 故答案为:1.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.48.5试题解析:∵a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,∴a 2-5a+m=0①,a 2-5a-m=0②,①+②,得2(a 2-5a )=0,∵a >0,∴a=5.考点:一元二次方程的解.49.1【分析】把x=1代入x 2+ax+b=0得到1+a+b=0,易求a+b=-1,将其整体代入所求的代数式进行求值即可.【详解】∵x=1是一元二次方程x 2+ax+b=0的一个根,∴12+a+b=0,∴a+b=﹣1.∴a 2+b 2+2ab=(a+b )2=(﹣1)2=1.50.1【分析】把方程的根代入原方程得到220k k +-=,解得k 的值,再根据一元二次方程成立满足的条件进行取舍即可.【详解】∵方程22(2)620k x x k k ++++-=是一元二次方程,∴k+2≠0,即k ≠-2;又0是该方程的一个根,∴220k k +-=,解得,11k =,22k =-,由于k ≠-2,所以,k=1.故答案为:1.【点睛】本题考查了一元二次方程的解.解此类题时,要擅于观察已知的是哪些条件,从而有针对性的选择解题方法.同时要注意一元二次方程成立必须满足的条件,这是容易忽略的地方.。
《一元二次方程》基础知识反馈卡·第一份时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若(a-1)x2+bx+c=0是关于x的一元二次方程,则( )A.a≠0 B.a≠1C.a=1 D.a≠-12.一元二次方程2x2-(m+1)x+1=x(x-1)化成一般形式后二次项的系数为1,一次项的系数为-1,则m的值为( )A.-1 B.1 C.-2 D.2二、填空题(每小题4分,共12分)3.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=_______________.4.若关于x的方程mx2+(m-1)x+5=0有一个解为2,则m的值是______.5.把一元二次方程(x-3)2=5化为一般形式为________________,二次项为________,一次项系数为__________,常数项为________.三、解答题(共7分)6.已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,求m的值.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.用配方法解方程x 2-23x -1=0,正确的配方为( )A.⎝ ⎛⎭⎪⎫x -132=89B.⎝ ⎛⎭⎪⎫x -232=59C.⎝ ⎛⎭⎪⎫x -132+109=0D.⎝⎛⎭⎪⎫x -132=1092.一元二次方程x 2+x +14=0的根的情况是( )A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定二、填空题(每小题4分,共12分)3.方程x 2-4x -12=0的解x 1=________,x 2=________. 4.x 2+2x -5=0配方后的方程为____________. 5.用公式法解方程4x 2-12x =3,得到x =________. 三、解答题(共7分)6.已知关于x 的一元二次方程x 2-mx -2=0.(1)对于任意实数m ,判断此方程根的情况,并说明理由; (2)当m =2时,求方程的根.时间:10分钟 满分:25分一、选择题(每小题3分,共6分) 1.一元二次方程x 2=3x 的根是( ) A .x =3 B .x =0C .x 1=0,x 2=3D .x 1=0,x 2=-32.方程4(x -3)2+x (x -3)=0的根为( )A .x =3B .x =125C .x 1=-3,x 2=125D .x 1=3,x 2=125二、填空题(每小题4分,共12分)3.方程x 2-16=0的解是____________.4.如果(m +n )(m +n +5)=0,则m +n =______. 5.方程x (x -1)=x 的解是________. 三、解答题(共7分)6.解下列一元二次方程:(1)2x 2-8x =0; (2)x 2-3x -4=0.时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1x2的值是( ) A.4 B.3 C.-4 D.-32.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,3二、填空题(每小题4分,共12分)3.已知一元二次方程的两根之和为7,两根之积为12,则这个方程为____________________.4.已知方程x2-3x+m=0的一个根是1,则它的另一个根是______,m的值是______.5.已知x1,x2是方程x2-3x-3=0的两根,不解方程可求得x21+x22=________.三、解答题(共7分)6.已知关于x的一元二次方程x2+(2m-3)x+m2=0的两个不相等的实数根α,β满足1α+1β=1,求m的值.时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A.173(1+x%)2=127 B.173(1-2x%)=127C.173(1-x%)2=127 D.127(1+x%)2=1732.某城市为绿化环境,改善城市容貌,计划经过两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A.19% B.20% C.21% D.22%3.一个面积为120 cm2的矩形花圃,它的长比宽多2 m,则花圃的长是( ) A.10 m B.12 m C.13 m D.14 m二、填空题(每小题4分,共8分)4.已知一种商品的进价为50元,售价为62元,则卖出8件所获得的利润为__________元.5.有一个两位数等于其数字之和的4倍,其十位数字比个位数字小2,则这个两位数是________.三、解答题(共8分)6.某西瓜经营户以2元/千克的进价购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天赢利200元,应将每千克小型西瓜的售价降低多少元?参考答案基础知识反馈卡·21.11.B 2.B 3.2 4.-125.x 2-6x +4=0 x 2 -6 4 6.解:把x =-1代入原方程,得2m -1-3m +5=0,解得m =4. 基础知识反馈卡·21.2.1 1.D 2.B 3.6 -24.(x +1)2=6 5.3±2 326.解:(1)Δ=b 2-4ac =m 2+8, ∵对于任意实数m ,m 2≥0, ∴m 2+8>0.∴对于任意的实数m ,方程总有两个不相等的实数根.(2)当m =2时,原方程变为x 2-2x -2=0, ∵Δ=b 2-4ac =(-2)2-4×1×(-2)=12,∴x =2±122.解得x 1=1+3,x 2=1- 3. 基础知识反馈卡·21.2.2 1.C 2.D3. x =±44.0或-55.0或2 6.(1)x 1=0,x 2=4 (2)x 1=4,x 2=-1基础知识反馈卡·*21.2.3 1.B 2.A3.x 2-7x +12=0(答案不唯一) 4.2 2 5.156.解:∵方程有两个不相等的实数根,∴Δ>0.∴(2m -3)2-4m 2>0.解得m <34.∵1α+1β=1,即α+βαβ=1. ∴α+β=αβ.又α+β=-(2m -3),αβ=m 2. 代入上式,得3-2m =m 2. 解得m 1=-3,m 2=1.∵m 2=1>34,故舍去.∴m =-3.基础知识反馈卡·21.31.C 2.B 3.B 4.96 5.24 6.解:设每千克小型西瓜的售价降低x 元,根据题意,得(3-2-x )·⎝ ⎛⎭⎪⎫200+x0.1×40-24=200,整理,得50x -25x +3=0, 解得x 1=0.2,x 2=0.3.答:应将每千克小型西瓜的售价降低0.2元或0.3元.。
一元二次方程训练题50道理解一元二次方程是解决数学问题的基础,因此训练题对于加深理解和掌握解题方法非常重要。
以下是50道一元二次方程的训练题:1. 解方程,x^2 4x + 4 = 0。
2. 解方程,2x^2 7x + 3 = 0。
3. 解方程,3x^2 + 5x 2 = 0。
4. 解方程,4x^2 12x + 9 = 0。
5. 解方程,x^2 + 6x + 9 = 0。
6. 解方程,2x^2 + 3x 2 = 0。
7. 解方程,x^2 5x + 6 = 0。
8. 解方程,3x^2 8x 3 = 0。
9. 解方程,4x^2 + 4x + 1 = 0。
10. 解方程,x^2 3x 10 = 0。
11. 解方程,2x^2 11x + 5 = 0。
12. 解方程,3x^2 + 7x 6 = 0。
13. 解方程,x^2 9 = 0。
14. 解方程,2x^2 18 = 0。
15. 解方程,3x^2 27 = 0。
16. 解方程,x^2 2x + 1 = 0。
17. 解方程,2x^2 8x + 8 = 0。
18. 解方程,3x^2 + 6x + 3 = 0。
19. 解方程,x^2 7x + 10 = 0。
20. 解方程,2x^2 5x 3 = 0。
21. 解方程,3x^2 + 4x 4 = 0。
22. 解方程,x^2 4 = 0。
23. 解方程,2x^2 8 = 0。
24. 解方程,3x^2 12 = 0。
25. 解方程,x^2 6x + 9 = 0。
26. 解方程,2x^2 + 2x 4 = 0。
27. 解方程,3x^2 3x 6 = 0。
28. 解方程,x^2 8x + 16 = 0。
29. 解方程,2x^2 12x + 18 = 0。
30. 解方程,3x^2 + 9x + 6 = 0。
31. 解方程,x^2 5 = 0。
32. 解方程,2x^2 20 = 0。
33. 解方程,3x^2 45 = 0。
34. 解方程,x^2 5x + 6 = 0。
一元二次方程测试题
一、选择题(3分×8=24分)
1. 下列方程中,是关于x 的一元二次方程的是 ( )
A.()()12132+=+x x
B.02112=-+x
x C.02=++c bx ax D. 1222-=+x x x
2、方程x x 22=的解为( )
A.x =2
B. x 1=2-,x 2=0
C. x 1=2,x 2=0
D. x =0
3. 下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( )
A . 若x 2=4,则x =2
B .方程x (2x -1)=2x -1的解为x =1
C .若x 2
+2x +k =0有一根为2,则8=-k D .若分式1232-+-x x x 值为零,则x =1,2 4.用配方法解下列方程是,配方错误的是 ( )
A 、100)1(099222=+=-+x x x 化为
B 、465)27(04722=
-=--m m m 化为 C 、25)4(09822=+=++x x x 化为 D 、9
10)32
(024322=-=--x x x 化为 2
A 0.11
B 1.6
C 1.7
D 1.19
7、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )
A .2±=m
B .m=2
C .m= —2
D .2±≠m
8、((2011山东潍坊)关于x 的方程2210x kx k ++-=的根的情况描述正确的是( )
A . k 为任何实数,方程都没有实数根
B . k 为任何实数,方程都有两个不相等的实数根
C . k 为任何实数,方程都有两个相等的实数根
D. 根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种
9、关于x 的一元二次方程013)1(22=-++-m x x m 的一根为0,则m 的值是( )
A 、1±
B 、2±
C 、-1
D 、-2
10.如图,在矩形ABCD 中,AB=1,BC=2,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为( ) A .
212- B. 213- C. 215- D.2
16- 二、填空题(3分×8=24分)
11. 方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。
12.方程(x ﹣1)(x + 2)= 2(x + 2)的根是 .
13、在实数范围内定义一种运算“#”,其规则为a#b=a 2-b 2,根据这个规则,方程(x-3)#5=0的解为 .
14. 我国政府为解决老百姓看病难问题,决定下调药品价格。
某种药品经过两次降价,由每盒60元调至52元。
若设每次降价的百分率为x ,则由题意可列方程为 .
15. 已知三角形的两边的长分别为2和8,第三边是方程070172=+-x x 的两根之一,则此三角形的周长是 ;
三、计算题(每小题5分,共35分)
17、用开平方法解方程:4)1(2
=-x
18、用配方法解方程:x 2 —4x +1=0
(20题图)
19、用公式法解方程:3x2 + 5(2x +1)=0
20、2
5x
+(不能用公式法解,否则不给分)
x=
3
2
22.如图所示,某小区规划在一个长为40 m、宽为26 m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积为144 m2,求甬路的宽度.
21、参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?
23、(2011山东日照)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.。