ANSYS第三讲_Standard 中的非线性分析
- 格式:ppt
- 大小:470.00 KB
- 文档页数:32
ANSYS教程,非线性结构分析过程尽管非线性分析比线性分析变得更加复杂,但处理基本相同。
只是在非线形分析的适当过程中,添加了需要的非线形特性。
非线性结构分析的基本分析过程也主要由建模、加载并求解和观察结果组成。
下面来讲解其主要步骤和各个选项的处理方法。
建模这一步对线性和非线性分析都是必需的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实(或对数)应变表示。
加载求解在建立好有限元模型之后,将进入ANSYS求解器(GUI:Main Menu | Solution),并根据分析的问题指定新的分析类型(ANTYPE)。
求解问题的非线性特性在ANSYS中是通过指定不同的分析选项和控制选项来定义的。
非线性分析不同于线性分析之处在于,它通常要求执行多荷载步增量和平衡迭代。
下面就详细讲解一下进行非线性结构分析需要定义的各个求解选项、分析选项和控制选项是如何设置的,以及他们的意义是什么。
求解控制对于一些基本的非线性问题的分析选项,可以通过ANSYS提供的求解控制对话框中的选项设置来完成。
选择菜单路径:Main Menu | Solution | Analysis Type | Sol’n Controls,将弹出求解控制(Solution Controls)对话框,如下图所示。
从图中可以看出该对话框主要包括5个选项卡:基本选项(Basic)、瞬态选项(Transient)、求解选项(Sol’n Options)、非线性选项(Nonlinear)和高级非线性选项(Advanced NL)。
如果开始一项新的分析,在设置分析类型和非线性选项时,选择“Large Displacement Static”选项(不是所有的非线性分析都支持大变形)。
如果想要重新启动一个失败的非线性分析,则选择“Restart Current Analysis”选项。
选中下面的“Calculate prestress effects”单选按钮用于有预应力的模态分析时的预应力计算,具体内容见模态分析部分。
ANSYS几何非线性概述一、什么是非线性什么是非线性(non-linear)?按照百度百科的解释,非线性是指变量之间的数学关系不是直线而是曲线、曲面或不确定的属性。
而对于工程结构而言,非线性或者说非线性行为,是指外部荷载引起工程结构刚度显著改变的一种行为。
如果绘制一个非线性结构的荷载-位移曲线,则力与位移的曲线为非线性函数。
ANSYS非线性主要分为以下三大类:1、几何非线性大应变、大位移、大旋转2、材料非线性塑性、超弹性、粘弹性、蠕变3、状态改变非线性接触、单元生死其中几何非线性和材料非线性是土木工程结构计算中最为常见的两种类型。
二、结构几何非线性概念理解如果一个结构在受荷的过程经历了大变形,则变化后的几何形状能引起非线性行为。
例如,上述例子,杆梢在轻微横向作用下是柔软的,当外部横向荷载加大时,杆的几何形状发生改变,力矩臂减小,引起杆的刚化响应。
几何非线性主要分为如下三种现象:1.单元的形状改变(面积、厚度),其单独的单元刚度也将改变2.单元的取向发生转动,其局部刚度在转化为全局分量时将会发生变化。
3.单元应变产生较大的平面内应力状态引起平面法向刚度的改变。
随着垂直挠度UY 的增加,较大的膜应力SX 将会导致刚化效应。
上述三种情况的关系如下:应力刚化三、ANSYS几何非线性注意事项1、建模注意事项 (a )单元选择注意事项在定义单元类型时,应明白如果分析的过程中有几何非线性,应确保所选单元类型支持相应的几何非线性效应。
例如shell63单元支持应力刚化和大挠度,但不支持大应变;而shell181则支持所有的三类几何非线性,可在单元描述的特殊特征列表中找到类似信息。
特别是在选择接触单元的时候应慎重,有的接触单元是没有任何非线性能力,例如CONTAC52.同时应注意剪切锁定以及体积锁定等不可压缩性所带来的收敛困难。
(b )预见网格扭曲ANSYS 在第一迭代之前,会检查网格的质量;在大应变分析中,迭代计算过后的网格或许会变得严重扭曲,为防止出现不良形状,可以预见网格扭曲从而修改原始网格。
第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。
混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。
11.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。
一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。
二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。
(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。
ANSYS非线性分析(控制选项)1、非线性分析(1)牛顿-拉普森选项(NROPT)仅在非线性分析中使用这个选项,。
这个选项制定在求解期间每隔多长时间修正一次正切矩阵。
可以指定下列值中的一个: 程序选择(NROPT,AUTO)。
程序根据模型中存在的非线性种类自动选用这些选项中的一个。
在需要时牛顿-拉普森方法将自动激活自适应下降。
完全牛顿-拉普森选项(NROPT,FULL)。
程序使用完全的牛顿-拉普森处理方法,在这种处理方法中每进行一次平衡迭代都修改刚度矩阵一次。
如果自适应下降是关闭的,程序每一次平衡迭代都使用正切刚度矩阵。
如果自适应下降是打开的,只要迭代保持稳定,程序仅适用正切刚度矩阵。
如果在某一次迭代过程中检测到发散倾向,程序将抛弃发散的迭代并重新开始求解,此时应用正切和正割刚度矩阵的加权组合。
当迭代重新回到收敛模式是程序将重新开始使用正切刚度矩阵。
对复杂的非线性问题自适应下降统称能提高程序获得收敛的能力。
修正牛顿-拉普森选项(NROPT,MODL)。
程序使用修正的牛顿-拉普森方法,在这种方法中正切刚度矩阵在每一步中都被修正,在一个子步的平衡迭代期间矩阵不被改变。
这个选项不适应于大变形分析,而且无法使用自适应下降。
初始刚度(NROPT,INIT)。
程序在每一次平衡迭代中都使用初始刚度矩阵,该选项可以使迭代过程更容易收敛,但需要更多迭代次数得到收敛。
该选项不适用于大变形分析,求自适应下降不可用。
(2)指定载荷步选项这些选项可以在任何载荷中改变。
下列选项适用于非线性分析:l 普通选项在普通选项包括:Time(TIME)。
ANSYS程序借助在每一个载荷步末端指定TIME参数识别出载荷步和子步。
使用TIME命令可以用来定义受某些实际物理量限制的TIME值。
程序通过这个选项来指定载荷步的末端时间。
时间步的数目(NSUBST)和时间步长(DELTIM)。
非线性分析要求在每一个载荷步内有多个子步或时间步,从而ANSYS可以逐渐施加所给定的载荷,逐步得到精确解。
ansys非线性接触分析中接触行为接触是状态改变非线性,经典ANSYS版本中共提供了7种接触行为,每一种都有其特点及相应的应用范围,在选用的时候应该谨慎。
(1)标准接触行为(standard)该接触行为包括了法向接触闭合和分开行为,在该接触模式中既考虑粘着摩擦同时也考虑了滑动摩擦。
如图上,AB与BC本来是分开的,中间通过B点连接,当在A点施加力F,AB慢慢贴近BC,最终靠在一起。
但F撤销后,AB在恢复力的作用下慢慢回复到初始分开状态。
标准接触行为包括了分开状态→闭合状态→分开状态。
当AB与BC靠在一起时,既存在正压力,同时还有沿BC圆弧切线方向的摩擦力。
(2)粗糙接触行为(rough)该接触行为包括了法向接触闭合和分开行为,但滑动行为在此是不会发生的。
原因是所有参与接触的表面都被假定为非常粗糙,以致于可以认为摩擦力无穷大而不能够产生相对滑动。
在这种接触行为中,接触的两个物体或部件之间,除了存在正压力外,还有切向摩擦力,但是接触部分之间不可以产生相对滑动。
(3)绑定接触行为(bonded)是指一旦接触关系建立,那么目标面及接触面就被假定为粘结在一起(不可以分开)。
(4)绑定接触行为(始终)(bonded(always))任何初始时在许可接触容差范围内探测到的接触点或者是那些即将进入接触的点在后续的分析中将被绑定在一起。
这种接触行为的典型应用,如在组装分析中将两种不同网络的组件“加”在一起。
线性静态分析也可以用该种接触行为来解决,虽然由于有接触单元的存在,分析中将会提示为非线性分析,但往往只要一步迭代就完成了。
(5)绑定接触行为(初始接触)(bonded(initial))绑定仅发生在初始状态下就接触的面上,初始状态下没有接触的部分将继续保持分开。
典型的例子是通过焊接连接在一起的两个物体,焊接部分始终保持连接,没有焊接的部分保持分离状态。
(6)不分开型(no separation)一旦接触关系建立,目标面及接触面便被约束在一起了,但还是允许接触面之间有滑动。
非线性结构分析非线性结构的定义在日常生活中,会经常遇到结构非线性。
例如,无论何时用钉书针钉书,金属钉书钉将永久地弯曲成一个不同的形状。
(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。
(看图1─1(b))。
当在汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。
(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性.图1─1 非线性结构行为的普通例子非线性行为的原因引起结构非线性的原因很多,它可以被分成三种主要类型:状态变化(包括接触)许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。
轴承套可能是接触的,也可能是不接触的,冻土可能是冻结的,也可能是融化的。
这些系统的刚度由于系统状态的改变在不同的值之间突然变化。
状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。
ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。
接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。
几何非线性如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。
一个例的垂向刚性)。
随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。
图1─2 钓鱼杆示范几何非线性材料非线性非线性的应力──应变关系是结构非线性名的常见原因。
许多因素可以影响材料的应力──应变性质,包括加载历史(如在弹─塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)。
牛顿一拉森方法ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。
然而,非线性结构的行为不能直接用这样一系列的线性方程表示。
需要一系列的带校正的线性近似来求解非线性问题。