高考模拟题复习试卷习题资料高考数学试卷理科附详细答案12826
- 格式:doc
- 大小:600.02 KB
- 文档页数:31
2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
高考复习试卷习题资料之高考数学试卷(理科)高考模拟卷 (12)一、选择题:本答题共有10小题,每小题5分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2}B.{2}C.{﹣2,2}D.∅2.(5分)如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.AB.BC.CD.D3.(5分)一个几何体的三视图如图所示,则该几何体的直观图可以是()A. B. C. D.4.(5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则()A.¬p:∀x∈A,2x∉BB.¬p:∀x∉A,2x∉BC.¬p:∃x∉A,2x∈BD.¬p:∃x∈A,2x∉B5.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.6.(5分)抛物线y2=4x的焦点到双曲线x2﹣=1的渐近线的距离是()A. B. C.1 D.7.(5分)函数y=的图象大致是()A. B. C.D.8.(5分)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb的不同值的个数是()A.9B.10C.18D.209.(5分)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A. B. C. D.10.(5分)设函数f(x)=(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是()A.[1,e]B.[e﹣1﹣1,1]C.[1,e+1]D.[e﹣1﹣1,e+1]二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)二项式(x+y)5的展开式中,含x2y3的项的系数是(用数字作答).12.(5分)在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.13.(5分)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.14.(5分)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2﹣4x,那么,不等式f(x+2)<5的解集是.15.(5分)设P1,P2,…Pn为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…Pn的距离之和最小,则称点P为P1,P2,…Pn的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A、B、C、D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项,公差及前n项和.17.(12分)在△ABC中,2cos2cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣.(1)求cosA的值;(2)若a=4,b=5,求在方向上的投影.18.(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生(I)分别求出按程序框图正确编程运行时输出y的值为i的概率pi(i=1,2,3);(II)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.甲的频数统计图(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30 14 6 10…………2100 1027 376 697 乙的频数统计图(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30 12 11 7…………2100 1051 696 353当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合要求的可能系较大;(III)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(Ⅰ)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(Ⅱ)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.20.(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.(Ⅰ)求椭圆C的离心率:(Ⅱ)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.21.(14分)已知函数,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.高考复习试卷习题资料之高考数学试卷(理科)高考模拟卷 (12)参考答案与试题解析一、选择题:本答题共有10小题,每小题5分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2}B.{2}C.{﹣2,2}D.∅【分析】分别求出两集合中方程的解,确定出A与B,找出A与B的公共元素即可求出交集.【解答】解:由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.AB.BC.CD.D【分析】直接利用共轭复数的定义,找出点A表示复数z的共轭复数的点即可.【解答】解:两个复数是共轭复数,两个复数的实部相同,虚部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.故选:B.【点评】本题考查复数与共轭复数的关系,复数的几何意义,基本知识的考查.3.(5分)一个几何体的三视图如图所示,则该几何体的直观图可以是()A. B. C. D.【分析】首先由几何体的俯视图断定原几何体的最上面的平面图形应是圆,再由俯视图内部只有一个虚圆,断定原几何体下部分的图形不可能是棱柱,由此可排除前三个选项. 【解答】解:由俯视图可知,原几何体的上底面应该是圆面,由此排除选项A和选项C.而俯视图内部只有一个虚圆,所以排除B.故选:D.【点评】本题考查了简单空间几何体的三视图,由三视图还原原几何体,首先是看俯视图,然后结合主视图和侧视图得原几何体,解答的关键是明白三种视图都是图形在与目光视线垂直面上的投影,此题是基础题.4.(5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则()A.¬p:∀x∈A,2x∉BB.¬p:∀x∉A,2x∉BC.¬p:∃x∉A,2x∈BD.¬p:∃x∈A,2x∉B【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可.【解答】解:因为全称命题的否定是特称命题,所以设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则¬p:∃x∈A,2x∉B.故选:D.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.5.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.【分析】根据函数在同一周期内的最大值、最小值对应的x值,求出函数的周期T==π,解得ω=2.由函数当x=时取得最大值2,得到+φ=+kπ(k∈Z),取k=0得到φ=﹣.由此即可得到本题的答案.【解答】解:∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ)又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z)∵,∴取k=0,得φ=﹣故选:A.【点评】本题给出y=Asin(ωx+φ)的部分图象,求函数的表达式.着重考查了三角函数的图象与性质、函数y=Asin(ωx+φ)的图象变换等知识,属于基础题.6.(5分)抛物线y2=4x的焦点到双曲线x2﹣=1的渐近线的距离是()A. B. C.1 D.【分析】根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.【解答】解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B.【点评】本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.7.(5分)函数y=的图象大致是()A. B. C.D.【分析】根据函数的定义域,取值范围和取值符号,进行排除即可.【解答】解:函数的定义域为{x|x≠0},排除A.当x→﹣∞时,y→+∞,排除B,当x→+∞时,x3<3x﹣1,此时y→0,排除D,故选:C.【点评】本题主要考查函数图象的识别,根据函数的性质结合极限思想是函数图象的基本方法.8.(5分)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb的不同值的个数是()A.9B.10C.18D.20【分析】因为lga﹣lgb=,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb的不同值的个数可看作共可得到多少个不同的数,从1,3,5,7,9这五个数中任取2个数排列后(两数在分子和分母不同),减去相同的数字即可得到答案.【解答】解:首先从1,3,5,7,9这五个数中任取两个不同的数排列,共有种排法,因为,,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb的不同值的个数是:20﹣2=18.故选:C.【点评】本题考查了排列、组合及简单的计数问题,解答的关键是想到把相等的数字去掉,属基础题.9.(5分)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A. B. C. D.【分析】设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,要满足条件须|x﹣y|≤2,作出其对应的平面区域,由几何概型可得答案.【解答】解:设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,它们第一次闪亮的时候相差不超过2秒,则|x﹣y|≤2,由几何概型可得所求概率为上述两平面区域的面积之比,由图可知所求的概率为:=故选:C.【点评】本题考查几何概型,涉及用一元二次方程组表示平面区域,属基础题.10.(5分)设函数f(x)=(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是()A.[1,e]B.[e﹣1﹣1,1]C.[1,e+1]D.[e﹣1﹣1,e+1]【分析】考查题设中的条件,函数f(f(y0))的解析式不易得出,直接求最值有困难,考察四个选项,发现有两个特值区分开了四个选项,0出现在了B,D两个选项的范围中,e+1出现在了C,D两个选项所给的范围中,故可通过验证参数为0与e+1时是否符合题意判断出正确选项【解答】解:曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则y0∈[﹣1,1]考查四个选项,B,D两个选项中参数值都可取0,C,D两个选项中参数都可取e+1,A,B,C,D四个选项参数都可取1,由此可先验证参数为0与e+1时是否符合题意,即可得出正确选项当a=0时,,此是一个增函数,且函数值恒非负,故只研究y0∈[0,1]时f (f(y0))=y0是否成立由于是一个增函数,可得出f(y0)≥f(0)=1,而f(1)=>1,故a=0不合题意,由此知B,D两个选项不正确当a=e+1时,此函数是一个增函数,=0,而f(0)没有意义,故a=e+1不合题意,故C,D两个选项不正确综上讨论知,可确定B,C,D三个选项不正确,故A选项正确故选:A.【点评】本题是一个函数综合题,解题的关键与切入点是观察出四个选项中同与不同点,判断出参数0与e+1是两个特殊值,结合排除法做题的技巧及函数的性质判断出正确选项,本题考查了转化的思想,观察探究的能力,属于考查能力的综合题,易因为找不到入手处致使无法解答失分,易错二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)二项式(x+y)5的展开式中,含x2y3的项的系数是10(用数字作答). 【分析】利用二项式(x+y)5的展开式的通项公式Tr+1=x5﹣r•yr,结合题意即可求得答案.【解答】解:设二项式(x+y)5的展开式的通项公式为Tr+1,则Tr+1=x5﹣r•yr,令r=3,则含x2y3的项的系数是=10.故答案为:10.【点评】本题考查二项式系数的性质,着重考查二项展开式的通项公式的应用,考查分析与运算能力,属于中档题.12.(5分)在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.【分析】依题意,+=,而=2,从而可得答案.【解答】解:∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴+=,又O为AC的中点,∴=2,∴+=2,∵+=λ,∴λ=2.故答案为:2.【点评】本题考查平面向量的基本定理及其意义,属于基础题.13.(5分)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.【分析】已知等式左边利用二倍角的正弦函数公式化简,根据sinα不为0求出cosα的值,由α的范围,利用同角三角函数间的基本关系求出sinα的值,进而求出tanα的值,所求式子利用二倍角的正切函数公式化简后,将tanα的值代入计算即可求出值.【解答】解:∵sin2α=2sinαcosα=﹣sinα,α∈(,π),∴cosα=﹣,sinα==,∴tanα=﹣,则tan2α===.故答案为:【点评】此题考查了二倍角的正弦、正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.14.(5分)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2﹣4x,那么,不等式f(x+2)<5的解集是(﹣7,3).【分析】由偶函数性质得:f(|x+2|)=f(x+2),则f(x+2)<5可变为f(|x+2|)<5,代入已知表达式可表示出不等式,先解出|x+2|的范围,再求x范围即可.【解答】解:因为f(x)为偶函数,所以f(|x+2|)=f(x+2),则f(x+2)<5可化为f(|x+2|)<5,即|x+2|2﹣4|x+2|<5,(|x+2|+1)(|x+2|﹣5)<0,所以|x+2|<5,解得﹣7<x<3,所以不等式f(x+2)<5的解集是(﹣7,3).故答案为:(﹣7,3).【点评】本题考查函数的奇偶性、一元二次不等式的解法,借助偶函数性质把不等式具体化是解决本题的关键.15.(5分)设P1,P2,…Pn为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…Pn的距离之和最小,则称点P为P1,P2,…Pn的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A、B、C、D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是①④(写出所有真命题的序号).【分析】对于①若三个点A、B、C共线,C在线段AB上,则线段AB上任一点都为“中位点”,C也不例外,则C是A,B,C的中位点,正确;对于②举一个反例,如边长为3,4,5的直角三角形ABC,此直角三角形的斜边的中点到三个顶点的距离之和为5+2.5=7.5,而直角顶点到三个顶点的距离之和为7,据此进行判断即可;对于③若四个点A、B、C、D共线,则它们的中位点是中间两点连线段上的任意一个点,从而它们的中位点存在但不唯一;④如图,在梯形ABCD中,对角线的交点O,P是任意一点,利用根据三角形两边之和大于第三边得梯形对角线的交点是该梯形四个顶点的唯一中位点.【解答】解:①若三个点A、B、C共线,若C在线段AB上,则线段AB上任一点都为“中位点”,C也不例外,则C是A,B,C的中位点,①正确;②举一个反例,如边长为3,4,5的直角三角形ABC,此直角三角形的斜边的中点到三个顶点的距离之和为5+2.5=7.5,而直角顶点到三个顶点的距离之和为7,所以直角三角形斜边的中点不是该直角三角形三个顶点的中位点,故②错误;③若四个点A、B、C、D共线,则它们的中位点是中间两点连线段上的任意一个点,故它们的中位点存在但不唯一,故③错误;④如图,在梯形ABCD中,对角线的交点O,P是任意一点,则根据三角形两边之和大于第三边得PA+PB+PC+PD≥AC+BD=OA+OB+OC+OD,所以梯形对角线的交点是该梯形四个顶点的唯一中位点,故④正确.故答案为:①④.【点评】本小题主要考查命题的真假判断与应用、新定义的应用、三角形的性质等基础知识,考查数形结合思想、化归与转化思想.属于中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项,公差及前n项和.【分析】设该数列的公差为d,前n项和为Sn,则利用a1+a3=8,且a4为a2和a9的等比中项,建立方程,即可求得数列{an}的首项,公差;利用等差数列的前n项和公式可求和.. 【解答】解:设该数列的公差为d,前n项和为Sn,则∵a1+a3=8,且a4为a2和a9的等比中项,∴2a1+2d=8,(a1+3d)2=(a1+d)(a1+8d)解得a1=4,d=0或a1=1,d=3∴前n项和为Sn=4n或Sn=.【点评】本题主要考查等差数列、等比中项等基础知识,考查运算能力,考查分类与整合等数学思想,属于中档题.17.(12分)在△ABC中,2cos2cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣.(1)求cosA的值;(2)若a=4,b=5,求在方向上的投影.【分析】(Ⅰ)由已知条件利用三角形的内角和以及两角差的余弦函数,求出A的余弦值,然后求sinA的值;(Ⅱ)利用,b=5,结合正弦定理,求出B的正弦函数,求出B的值,利用余弦定理求出c的大小.【解答】解:(Ⅰ)由可得,可得,即,即,(Ⅱ)由正弦定理,,所以=,由题意可知a>b,即A>B,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=ccosB=.【点评】本题考查两角和的余弦函数,正弦定理以及余弦定理同角三角函数的基本关系式等基本知识,考查计算能力转化思想.18.(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生(I)分别求出按程序框图正确编程运行时输出y的值为i的概率pi(i=1,2,3);(II)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.甲的频数统计图(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30 14 6 10…………2100 1027 376 697乙的频数统计图(部分)运行次数输出y的值为1的输出y的值为2的输出y的值为3的n 频数频数频数30 12 11 7…………2100 1051 696 353当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合要求的可能系较大;(III)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.【分析】(I)变量x是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能,由程序框图可得y值为1,2,3对应的情况,由古典概型可得;(II)由题意可得当n=2100时,甲、乙所编程序各自输出的y值为1,2,3时的频率,可得答案;(III)随机变量ξ的可能取值为:0,1,2,3,分别求其概率可得分布列和期望.【解答】解:(I)变量x是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能,当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出的y值为1,故P1==;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出的y值为2,故P2==;当x从6,12,18,24这4个数中产生时,输出的y值为3,故P3==;故输出的y值为1的概率为,输出的y值为2的概率为,输出的y值为3的概率为;(II)当n=2100时,甲、乙所编程序各自输出的y值为i(i=1,2,3)的频率如下:输出y值为2的频率输出y值为3的频率输出y值为1的频率甲乙比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大;(III)随机变量ξ的可能取值为:0,1,2,3,P(ξ=0)==,P (ξ=1)==P(ξ=2)==,P(ξ=3)==,故ξ的分布列为:ξ 0 1 2 3P所以所求的数学期望Eξ==1【点评】本题考查离散型随机变量及其分布列,涉及程序框图和数学期望的求解,属中档题.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(Ⅰ)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(Ⅱ)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.【分析】(I)在平面ABC内过点P作直线l∥BC,根据线面平行的判定定理得直线l∥平面A1BC.由等腰三角形“三线合一”得到AD⊥BC,从而得到AD⊥l,结合AA1⊥l且AD、AA1是平面ADD1A1内的相交直线,证出直线l⊥平面ADD1A1;(II)连接A1P,过点A作AE⊥A1P于E,过E点作EF⊥A1M于F,连接AF.根据面面垂直判定定理,证出平面A1MN⊥平面A1AE,从而得到AE⊥平面A1MN,结合EF⊥A1M,由三垂线定理得AF⊥A1M,可得∠AFE就是二面角A﹣A1M﹣N的平面角.设AA1=1,分别在Rt△A1AP中和△AEF中算出AE、AF的长,在Rt△AEF中,根据三角函数的定义算出sin∠AFE的值,结合同角三角函数的平方关系算出cos∠AFE的值,从而得出二面角A﹣A1M﹣N的余弦值.【解答】解:(I)在平面ABC内,过点P作直线l∥BC∵直线l⊄平面A1BC,BC⊂平面A1BC,∴直线l∥平面A1BC,∵△ABC中,AB=AC,D是BC的中点,∴AD⊥BC,结合l∥BC得AD⊥l∵AA1⊥平面ABC,l⊂平面ABC,∴AA1⊥l∵AD、AA1是平面ADD1A1内的相交直线∴直线l⊥平面ADD1A1;(II)连接A1P,过点A作AE⊥A1P于E,过E点作EF⊥A1M于F,连接AF由(I)知MN⊥平面A1AE,结合MN⊂平面A1MN得平面A1MN⊥平面A1AE,∵平面A1MN∩平面A1AE=A1P,AE⊥A1P,∴AE⊥平面A1MN,∵EF⊥A1M,EF是AF在平面A1MN内的射影,∴AF⊥A1M,可得∠AFE就是二面角A﹣A1M﹣N的平面角设AA1=1,则由AB=AC=2AA1,∠BAC=120°,可得∠BAD=60°,AB=2且AD=1又∵P为AD的中点,∴M是AB的中点,得AP=,AM=1Rt△A1AP中,A1P==;Rt△A1AM中,A1M=∴AE==,AF==∴Rt△AEF中,sin∠AFE==,可得cos∠AFE==即二面角A﹣A1M﹣N的余弦值等于.【点评】本题在直三棱柱中求证线面垂直,并求二面角的余弦值.着重考查了空间线面平行、线面垂直的判定与性质,考查了三垂线定理和面面垂直的判定与性质等知识,属于中档题.21.(14分)已知函数,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.【分析】(I)利用二次函数的单调性和对数函数的单调性即可得出;(II)利用导数的几何意义即可得到切线的斜率,因为切线互相垂直,可得,即(2x1+2)(2x2+2)=﹣ 1.可得,再利用基本不等式的性质即可得出;(III)当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.分别写出切线的方程,根据两条直线重合的充要条件即可得出,再利用导数即可得出.. 【解答】解:(I)当x<0时,f(x)=(x+1)2+a,∴f(x)在(﹣∞,﹣1)上单调递减,在[﹣1,0)上单调递增;当x>0时,f(x)=lnx,在(0,+∞)单调递增.(II)∵x1<x2<0,∴f(x)=x2+2x+a,∴f′(x)=2x+2,∴函数f(x)在点A,B处的切线的斜率分别为f′(x1),f′(x2),∵函数f(x)的图象在点A,B处的切线互相垂直,∴,∴(2x1+2)(2x2+2)=﹣1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当﹣(2x1+2)=2x2+2=1,即,时等号成立.∴函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值为1. (III)当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2. 当x1<0时,函数f(x)在点A(x1,f(x1)),处的切线方程为,即.当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为,即.函数f(x)的图象在点A,B处的切线重合的充要条件是,由①及x1<0<x2可得﹣1<x1<0,由①②得=.∵函数,y=﹣ln(2x1+2)在区间(﹣1,0)上单调递减,∴a(x1)=在(﹣1,0)上单调递减,且x1→﹣1时,ln(2x1+2)→﹣∞,即﹣ln(2x1+2)→+∞,也即a(x1)→+∞.x1→0,a(x1)→﹣1﹣ln2.∴a的取值范围是(﹣1﹣ln2,+∞).【点评】本题主要考查了基本函数的性质、利用导数研究函数的单调性、导数的几何意义、基本不等式的性质、直线的位置关系等基础知识,考查了推理论证能力、运算能力、创新意识,考查了函数与方程、分类与整合、转化与化归等思想方法.20.(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.(Ⅰ)求椭圆C的离心率:(Ⅱ)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.【分析】(I)由题设条件结合椭圆的性质直接求出a,c的值,即可得到椭圆的离心率;(II)由题设过点A(0,2)的直线l与椭圆C交于M,N两点,可设出直线的方程与椭圆的方程联立,由于两曲线交于两点,故判断式大于0且可利用根与系数的关系建立M,N 两点的坐标与直线的斜率k的等量关系,然后再设出点Q的坐标,用两点M,N的坐标表示出,再综合计算即可求得点Q的轨迹方程.【解答】解:(I)∵椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.∴c=1,2a=PF1+PF2==2,即a=∴椭圆的离心率e===…4分(II)由(I)知,椭圆C的方程为,设点Q的坐标为(x,y)(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,﹣1)两点,此时点Q 的坐标为(0,2±)(2)当直线l与x轴不垂直时,可设其方程为y=kx+2,因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则,,又|AQ|2=(1+k2)x2,∴,即=…①将y=kx+2代入中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2﹣24(2k2+1)>0,得k2>由②知x1+x2=﹣,x1x2=,代入①中化简得x2=…③因为点Q在直线y=kx+2上,所以k=,代入③中并化简得10(y﹣2)2﹣3x2=18由③及k2>可知0<x2<,即x∈(﹣,0)∪(0,)由题意,Q(x,y)在椭圆C内,所以﹣1≤y≤1,又由10(y﹣2)2﹣3x2=18得(y﹣2)2∈(,)且﹣1≤y≤1,则y∈[,2﹣]综上得,点Q的轨迹方程为10(y﹣2)2﹣3x2=18,其中x∈(﹣,),y∈[,2﹣]…13分【点评】本题主要考查直线、椭圆、曲线与方程等基础知识,考查推理论证能力,运算求解能力,考查数形结合、转化化归、分类与整合等数学思想,并考查思维的严谨性.本题是圆锥曲线中的常见题型,所考查的解题方式较为典型,本题运算量较大易因为运算失误造成丢分.高考模拟复习试卷试题模拟卷【考情解读】1.判断函数的奇偶性;2.利用函数的奇偶性求参数;3.考查函数的奇偶性、周期性和单调性的综合应用.【重点知识梳理】一、函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称二、周期性1.周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【高频考点突破】考点一判断函数的奇偶性例1、判断下列函数的奇偶性:(1)f(x)=9-x2+x2-9;(2)f(x)=(x+1) 1-x 1+x;(3)f(x)=4-x2|x+3|-3.。
高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。
答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。
2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。
答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。
3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。
答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。
4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。
答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。
5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。
答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。
二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。
答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。
高考数学(理科)模拟考试卷(附参考答案与解析)一、单选题(本大题共12小题,共60.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若复数z满足iz=4+3i,则复数z在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知集合A={(x,y)|x2+y2=1}和B={(x,y)|y=x},则A∩B中元素的个数为( )A. 3B. 2C. 1D. 03. 已知向量a⃗,b⃗⃗满足|a⃗|=1,|b⃗⃗|=√ 3和|a⃗⃗−2b⃗⃗|=3,则a⃗⃗⋅(a⃗⃗+b⃗⃗)=( )A. −2B. −1C. 1D. 24. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如16=3+13.在不超过16的素数中,随机选取两个不同的数,其和等于16的概率是( )A. 15B. 215C. 115D. 255. 的展开式中x3y3的系数为40,则实数a的值为( )A. 4B. 2C. 1D. 126. 设椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1和F2,离心率为√ 22,P是C上一点,且F1P⊥F2P.若△PF1F2的面积为2,则a=( )A. 1B. 2C. √ 2D. 47. 在△ABC中cosC=23,AC=4和BC=3则cos A2=( )A. √ 306B. √ 33C. 13D. 568. 如图,四边形ABCD为正方形,ED⊥平面ABCD,FB//ED和AB=ED=2FB=2,则三棱锥F−ACE 的体积为( )A. 23B. 43C. 2D. √ 39. 在正方体AC1中,点M为平面ABB1A1内的一动点,d1是点M到平面ADD1A1的距离,d2是点M到直线BC的距离,且d1=λd2(λ>0)(λ为常数),则点M的轨迹不可能是( )A. 圆B. 椭圆C. 双曲线D. 抛物线10. 已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于x=1对称.若f(1)=3,则f(2)+f(3)+⋯+f(50)=( )A. 3B. 2C. 0D. 5011. 设A,B,C,D是同一个半径为4的球的球面上四点,AB=AC=2√ 3和BC=6,则三棱锥D−ABC 体积的最大值为( )A. 3√ 3B. 6√ 3C. 12√ 3D. 18√ 312. 已知a∈R,设函数若关于x的不等式f(x)≥0在R上恒成立则a 的取值范围为( )A. [0,e2] B. [0,2] C. [0,1] D. [0,e]二、填空题(本大题共4小题,共20.0分)13. 已知等差数列{a n}前9项的和为27,且a10=8,则a15=______ .14.15. 在直线l:y=−2上取一点D作抛物线C:x2=4y的切线,切点分别为A,B,直线AB与圆E:x2+ y2−4x−2018=0交于M,N两点,当|MN|最小时,则D的横坐标是______ .16. 已知函数f(x)=sin(ωx+φ)(ω>0),下述四个结论:①若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,2π)有且仅有3个极大值点;②若φ=π4,且f(x)在[0,2π]有且仅有4个零点,则f(x)在[0,2π]有且仅有2个极大值点; ③若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,π10)上单调递增; ④若φ=π3,且f(x)在(0,π)有且仅有2个零点和3个极值点,则ω的范围是(136,83). 其中所有正确结论的编号是______ .三、解答题(本大题共7小题,共82.0分。
高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9}.【分析】由条件利用补集的定义求得∁UA,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁UA)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值. 【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,].【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X 1 2 3P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题.19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an﹣1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1﹣1)2=(an﹣1)2+1,∴{(an﹣1)2}是首项为0,公差为1的等差数列;∴(an﹣1)2=n﹣1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.高考数学高三模拟试卷试题压轴押题期末考试数学试题分类汇编导数及其应用一、填空题1、((无锡市高三上期末)过曲线1(0)y x x x=->上一点00(,)P x y 处的切线分别与x 轴,y 轴交于点A 、B ,O 是坐标原点,若OAB ∆的面积为13,则0x =填空题答案1二、解答题1、(常州市高三上期末)已知,a b 为实数,函数3()f x ax bx =-。
高三下学期数学(理科)模拟考试卷-附参考答案注意事项:1.答卷前,考生务必将自己的姓名、班级和考号填写在答题卡上.2.回答选择题时,则选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,则将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合{}{220,M xx x N x y =--<==∣∣,则M N ⋃=( ) A.(],e ∞- B.()0,2 C.(]1,e - D.()1,2- 2.已知复数z 满足()12i 34i z -=-,则z 的共轭复数z =( )A.12i --B.12i -+C.12i -D.12i +3.2023年3月24日是第28个“世界防治结核病日”,我国的宣传主题是“你我共同努力,终结结核流行”,呼吁社会各界广泛参与,共同终结结核流行,维护人民群众的身体健康.已知某种传染疾病的患病率为5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人诊断为阳性,患者中有2%的人诊断为阴性.若随机抽取一人进行验血,则其诊断结果为阳性的概率为( )A.0.46B.0.046C.0.68D.0.0684.过抛物线2:4C y x =焦点F 的直线交抛物线C 于()()1122,,,A x y B x y 两点,以线段AB 为直径的圆的圆心为1O ,半径为r ,点1O 到C 的准线l 的距离与r 的积为25,则()12r x x +=( )A.40B.30C.25D.205.根据《民用建筑工程室内环境污染控制标准》,文化娱乐场所室内甲醛浓度30.1mg /m为安全范围.已知某新建文化娱乐场所施工中使用了甲醛喷剂,处于良好的通风环境下时,则竣工1周后室内甲醛浓度为36.25mg /m ,3周后室内甲醛浓度为31mg /m ,且室内甲醛浓度()t ρ(单位:3mg /m )与竣工后保持良好通风的时间t (*t ∈N )(单位:周)近似满足函数关系式()eat bt ρ+=,则该文化娱乐场所的甲醛浓度若要达到安全开放标准,竣工后至少需要放置的时间为( ) A.5周 B.6周 C.7周 D.8周6.在轴截面顶角为直角的圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆柱的底面半径与圆锥的底面半径的比值为( )A.14 B.4 C.12 D.27.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 是双曲线右支上一点,且12MF MF ⊥,延长2MF 交双曲线C 于点P .若12MF PF =,则双曲线C 的离心率为( )8.在ABC 中90,4,,A AB AC P Q ===是平面ABC 上的动点,且2AP AQ PQ ===,M 是边BC 上一点,则MP MQ ⋅的最小值为( )A.1B.2C.3D.4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列结论正确的有( )A.若随机变量,ξη满足21ηξ=+,则()()21D D ηξ=+B.若随机变量()23,N ξσ~,且(6)0.84P ξ<=,则(36)0.34P ξ<<=C.若样本相关系数r 的绝对值越接近1,则成对样本数据的线性相关程度越强D.按从小到大顺序排列的两组数据:甲组:27,30,37,,40,50m ;乙组:24,,33,44,48,52n .若这两组数据的第30百分位数、第50百分位数都分别对应相等,则67m n +=10.2022年12月,神舟十四号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆(都包含,M N 点)组成的“曲圆”,半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点()0,3F ,椭圆的短轴长等于半圆的直径,如图,在平面直角坐标系中下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则( )A.椭圆的离心率为12B.AFG 的周长为6+C.ABF 面积的最大值是92D.线段AB长度的取值范围是6,3⎡+⎣11.如图,四棱柱1111ABCD A B C D -的底面是边长为1AA ⊥底面ABCD ,三棱锥1A BCD -的体积是3,底面ABCD 和1111A B C D 的中心分别是O 和1,O E 是11O C 的中点,过点E 的平面α分别交11111,,BB B C C D 于点,,F N M ,且BD ∥平面,G α是线段MN 上任意一点(含端点),P 是线段1A C 上任意一点(含端点),则( )A.侧棱1AAB.四棱柱1111ABCD A B C D -的外接球的表面积是40πC.当1125B F BB =时,则平面α截四棱柱所得的截面是六边形 D.PO PG +的最小值是512.已知()()e e ,, 1.01,1e 1e 0.9911a bc d a b c d c d a b >>==-=-=++,则( )A.0a b +>B.0c d +>C.0a d +>D.0b c +>三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中角α的顶点为O ,始边与x 轴的非负半轴重合,终边与圆229x y +=相交于点5t ⎛⎫ ⎪ ⎪⎝⎭,则sin 22πα⎛⎫+= ⎪⎝⎭__________. 14.已知多项式5625601256(2)(1)x x a a x a x a x a x -+-=+++++,则1a =__________.15.已知函数()()2e 2ln x f x k x x x =+-和()2e xg x x=,若()g x 的极小值点是()f x 的唯一极值点,则实数k 的最大值为__________.16.“0,1数列”是每一项均为0或1的数列,在通信技术中应用广泛.设A 是一个“0,1数列”,定义数列()f A :数列A 中每个0都变为“1,0,1”,A 中每个1都变为“0,1,0”,所得到的新数列.例如数列:1,0A ,则数列():0,1,0,1,0,1f A .已知数列1:1,0,1,0,1A ,且数列()1,1,2,3,k k A f A k +==,记数列k A 的所有项之和为k S ,则1k k S S ++=__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)如图,在平面四边形ABCD中3,,sin AC AB DAC BAC BAC ∠∠∠====.(1)求边BC ; (2)若23CDA π∠=,求四边形ABCD 的面积. 18.(本小题满分12分)在各项均为正数的数列{}n a 中()21112,2n n n n a a a a a ++==+. (1)求数列{}n a 的通项公式; (2)若n b =,数列{}n b 的前n 项和为n S ,证1n S <19.(本小题满分12分)2023年3月某学校举行了普通高中体育与健康学业水平合格性考试,考试分为体能测试和技能测试,其中技能测试要求每个学生在篮球运球上篮、羽毛球对拉高远球和游泳3个项目中任意选择一个参加.某男生为了在此次体育学业考试中取得优秀成绩,决定每天训练一个技能项目.第一天在3个项目中任意选一项开始训练,从第二天起,每天都是从前一天没有训练的2个项目中任意选一项训练.(1)若该男生进行了3天训练,求第三天训练的是“篮球运球上篮”的概率;(2)设该男生在考前最后6天训练中选择“羽毛球对拉高远球”的天数为X ,求X 的分布列及数学期望. 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,,F F P 是椭圆上一动点(与左、右顶点不重合),12PF F的内切圆半径的最大值是312.(1)求椭圆C 的方程;(2)过()4,0H 作斜率不为0的直线l 交椭圆于,A B 两点,过B 作垂直于x 轴的直线交椭圆于另一点Q ,连接AQ ,设ABQ 的外心为G ,求证:2AQ GF 为定值.21.(本小题满分12分)在三棱台111A B C ABC -中1AA ⊥平面111111,2,1,ABC AB AC AA A B AB AC ====⊥,E F 分别是1,BC BB 的中点,D 是棱11A C 上的动点.(1)求证:1AB DE ⊥(2)若D 是线段11A C 的中点,平面DEF 与11A B 的交点记为M ,求平面AMC 与平面AME 夹角的余弦值.22.(本小题满分12分)已知函数()ln 1f x x ax =-+有两个零点12,x x ,且122x x >. (1)求实数a 的取值范围;(2)证明:222112e x x x x ⎛⎫⋅+>⎪⎝⎭参考答案1.【答案】C 解析:2201,2M xx x =--<=-∣,由1ln 0x -,得0e x <,则{0,e]N x y ===∣,所以(]1,e M N ⋃=-.故选C.2.【答案】C 解析:因为()12i 34i 5z -=-==,可得()()()512i 512i 12i 12i 12i z +===+--+,所以12i z =-.故选C. 3.【答案】D 解析:设随机抽取一人进行验血,其诊断结果为阳性为事件A ,设随机抽取一人为患者为事件B ,随机抽取一人为非患者为事件B ,则()()()()()0.980.050.020.95P A P A B P B P A B P B =+=⨯+⨯=∣∣0.068.故选D.4.【答案】A 解析:由抛物线的性质知,点1O 到C 的准线l 的距离为12AB r =,依题意得2255r r =⇒=,又点1O 到C 的准线l 的距离为()121252x x r ++==,则有128x x +=,故()1240r x x +=.故选A.5.【答案】B 解析:由题意可知()()()()32341e6.25,3e 1,e 125a ba b a ρρρρ++======解得2e 5a=.设该文化娱乐场所竣工后放置0t 周后甲醛浓度达到安全开放标准,则()()0001102e e e6.255t a t at b a b t ρ--++⎛⎫==⋅=⨯ ⎪⎝⎭0.1,整理得01562.52t -⎛⎫ ⎪⎝⎭.设1562.52m -⎛⎫= ⎪⎝⎭ 因为455562.522⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,所以415m <-<,即56m <<,则011t m --,即0t m 故竣工后至少需要放置的时间为6周.故选B.6.【答案】D 解析:设圆柱和圆锥底面半径分别为,r R ,因为圆锥轴截面的顶角为直,设圆柱高为h ,则,h R r h R r R R-==-,由题意得()222R r r R r πππ⨯=+⨯-,解得2r R=.故选D .7.【答案】D 解析:设1(2)MF t t a =>,由双曲线的定义可得22MF t a =-,又21PF MF t == 则12PF t a =+,由12MF MF ⊥,可得22211||MF MP PF +=,即222(22)(2)t t a t a +-=+,解得3t a =.又2221221MF MF F F +=,即222(3)4a a c +=即c =,所以c e a ==.故选D.8.【答案】B 解析:取PQ 的中点N ,则,MP MN NP MQ MN NQ MN NP =+=+=-,可得()()2221,MP MQ MN NP MN NP MN NP MN MN MA AN MA AN ⋅=+⋅-=-=-=+-当且仅当点N 在线段AM 上时,则等号成立,故|||||||||||3|MN MA AN MA -=-显然当AM BC ⊥时,则MA 取到最小值|||||3||233|MN MA ∴--=故21312MP MQ MN ⋅=--=.故选B.9.【答案】BC 解析:对于A ,由方差的性质可得()()()224D D D ηξξ==,故A 错误;对于B ,由正态密度曲线的对称性可得(36)(6)0.50.34P P ξξ<<=<-=,故B 正确;对于C ,由样本相关系数知识可得,样本相关系数r 的绝对值越接近1,则成对样本数据的线性相关程度越强,故C 正确;对于D ,甲组:第30百分位数为30,第50百分位数为372m +,乙组:第30百分位数为n ,第50百分位数为33447722+=,则30,3777,22n m =⎧⎪⎨+=⎪⎩解得30,40,n m =⎧⎨=⎩故70m n +=,故D 错误.故选BC. 10.【答案】BD 解析:由题知,椭圆中的几何量3b c ==,所以a =则离心率2c e a ===故A 不正确;因为3AB OB OA OA =+=+由椭圆性质可知332OA ,所以6332AB +故D 正确;设,A B 到y 轴的距离分别为12,d d则()1212113222ABFAOFOBFSSSd OF d OF d d =+=⋅+⋅=+当点A在短轴的端点处时,则12,d d 同时取得最大值3,故ABF 面积的最大值是9,故C 不正确;由椭圆定义知2AF AG a +==AFG 的周长6AFGCFG =+=+B 正确.故选BD.11.【答案】BCD 解析:对于选项A ,因为三棱锥1A BCD -的体积111323V AA=⨯⨯=解得1AA=A错误;对于选项B,外接球的半径满足22221440R AB AD AA=++=故外接球的表面积2440S Rππ==,故选项B正确;对于选项D,因为BD∥平面1111,,BD B D B Dα⊄∥平面α,所以11B D∥平面α,又平面1111A B C D⋂平面11,MN B Dα=⊂平面1111A B C D,所以11B D MN∥,又因为四边形1111A B C D是正方形1111A CB D⊥,所以11AC MN⊥,因为侧棱1AA⊥底面1111,A B C D MN⊂底面1111A B C D 所以1AA MN⊥,又1111AC AA A⋂=,所以MN⊥平面11AAC C,垂足是E,故对任意的G,都有PG PE,又因为1111114OO O E AC===,故215PO PG PO PE OE OO++==,故选项D正确;对于选项C,如图,延长MN交11A B的延长线于点Q,连接AQ交1BB于点F,在平面11CC D D内作MH AF∥交1DD于点H,连接AH,则平面α截四棱柱所得的截面是五边形AFNMH,因为1112B Q B N AB==,所以此时1113B FBB=,故11113B FBB<<时截面是六边形,1113B FB<时截面是五边形,故选项C正确.故选BCD.12.【答案】AD 解析:对于A,e e1.010,1,111a ba ba b==>∴>->-++令()e(1)1xf x xx=>-+则()2e1)xxf xx=+'所以()f x在()1,0-上单调递减,在()0,∞+上单调递增,且()01f=,又()1 1.01f>故01,10a b<<-<<令()()()()()()ln ln2ln1ln1,1,1h x f x f x x x x x=--=-++-+∈-,则()2112220111h xx x x-=-+=-<+-+-',所以()h x在()1,1-上单调递减,且()()00,1,0h b=∈-()()()()()()ln ln0,,,f b f b f b f b f af b a b∴-->∴>-∴>-∴>-即0a b+>,故选项A 正确;对于B ,()()1e 1e 0.990,1,1c d c d c d -=-=>∴<< 令()()1e (1)x g x x x =-<,则()e x g x x '=-,所以()g x 在(),0∞-上单调递增,在()0,1上单调递减,且()01g =,又()10.99g -<,故01,10c d <<-<<.令()()()()()()()ln ln 2ln 1ln 1,1,1m x g x g x x x x h x x =--=-++-+=∈-,所以()m x 在()1,1-上单调递减,且()()()()()()00,0,1,ln ln 0,m c g c g c g c g c =∈∴--<∴<- ()(),g d g c d c ∴<-∴<-,即0c d +<,故选项B 错误;对于C ,()()()()()()()11100,0.99,1,0,101f xg a a g a g d g x f a =∴-==>-∈-∴->- 又()g x 在(),0∞-上单调递增 ,0a d a d ∴->∴+< 故选项C 错误;对于D ,由C 可知 ()()(),0,1g b g c b ->-∈ 又()g x 在()0,1上单调递减,b c ∴-< 即0b c +>,故选项D 正确.故选AD.13.【答案】35- 解析:因为角α的终边与圆229x y +=相交于点t ⎫⎪⎪⎝⎭,所以cos 3α=÷=223sin 2cos22cos 12125πααα⎛⎫+==-=⨯-=- ⎪⎝⎭⎝⎭. 14.【答案】74 解析:对于5(2)x -,其二项展开式的通项为515C (2)r r r r T x -+=-,令51r -=,得4r =,故4455C (2)80T x x =-=,对于6(1)x -,其二项展开式的通项为616C (1)k k k k T x -+=- 令61k -=,得5k =,故5566C (1)6T x x =-=-,所以180674a =-=.15.【答案】2e 4 解析:由()2e x g x x =可得()()22442e e e 2x x x x x x x g x x x'-⋅-⋅==,当0x <或2x >时,则()0g x '>,当02x <<时,则()0g x '<,所以()g x 的极小值点是2.由()()2e 2ln xf x k x x x=+-可得()()()()432e 2e 12,0,xx x x k f x k x x x x x x ∞-⎛⎫⎛⎫=+-='--∈+ ⎪ ⎪⎝⎭⎝⎭,因为()f x 的唯一极值点为2,所以3e 0x k x x -或3e 0x k x x -恒成立,所以2e x k x 或2e xk x在()0,∞+上恒成立,因为()2e xg x x=在()0,2上单调递减,在()2,∞+上单调递增,当x ∞→+时,则()g x ∞→+,所以2e x k x 在()0,∞+上恒成立,则()2min e ()24k g x g ==.16.【答案】1103k -⨯ 解析:设数列k A 中0的个数为,1k a 的个数为k b ,则112,2k k k k k k a a b b a b ++=+=+,两式相加,得()113k k k k a b a b +++=+,又115,a b +=∴数列{}k k a b +是以5为首项,3为公比的等比数列153k k k a b -∴+=⨯两式相减,得17.【答案】解:(1)因为sin 14BAC BAC ∠∠=为锐角,所以cos 14BAC ∠==.因为3AC AB ==,在ABC 中由余弦定理得2222cos BC AC AB AC AB BAC ∠=+-⋅⋅即279231BC =+-=,得1BC =. (2)在ADC 中由正弦定理得sin sin CD AC DAC ADC∠∠==,所以1CD =.在ADC 中由余弦定理得222cos 2AD CD AC ADC AD CD ∠+-=⋅,即211722AD AD+--=,解得2AD =.因为121331273,12sin 214423ABCACDSS π=⨯⨯⨯==⨯⨯⨯=所以34ABCACDABCD S SS=+==四边形. 18.【答案】解:(1)()()()211112,20n n n n n n n n a a a a a a a a ++++=+∴-+=,则120n n a a +-=或10n n a a ++= 10,2n n n a a a +>∴=∴数列{}n a 为等比数列,公比为12,2,a =∴数列{}n a 的通项公式为2n n a =.(2)证明:由(1)得112,2n n n n a a ++==则n b ======∴数列{}n b 的前n项和为11n S n =+-=-1n S ∴<当2n时,则10,n n n S S b --===>∴当*n ∈N 时,则{}n S 为递增数列1n S S ∴n S1n S <19.【答案】解:(1)当第一天训练的是“篮球运球上篮”且第三天训练的也是“篮球运球上篮”为事件A ;当第一天训练的不是“篮球运球上篮”且第三天训练的是“篮球运球上篮”为事件B . 由题知,3天的训练过程中总共的可能情况为32212⨯⨯=种 所以,()()12112111,126126P A P B ⨯⨯⨯⨯==== 所以,第三天训练的是“篮球运球上篮”的概率()()13P P A P B =+=.(2)由题知,X 的可能取值为0,1,2,3考前最后6天训练中所有可能的结果有53296⨯=种当0X =时,则第一天有两种选择,之后每天都有1种选择,所以,()5521210329648P X ⨯====⨯; 当1X=时,则共有24444220+++++=种选择,所以()20519624P X ===; 当3X =时,则共有844824+++=种选择,所以()2413964P X ===; 所以()()()()5025210139648P X P X P X P X ==-=-=-=== 所以,X 的分布列为所以()1012324824484E X =⨯+⨯+⨯+⨯=. 20.【答案】解:(1)由题意知1,22c a c a =∴=,又222b a c =-,则,b =设12PF F 的内切圆半径为r ,则()()()121212112222PFF SPF PF F F r a c r a cr =++⋅=+⋅=+⋅. 故当12PF F 面积最大时,则r 最大,即点P 位于椭圆短轴顶点时r = )a c bc +=,把2,a c b ==代入,解得2,1a b c === 所以椭圆C 的方程为22143x y +=.(2)由题意知,直线AB 的斜率存在且不为0,设直线AB 的方程为4x ty =+代入椭圆方程得()()()222223424360,Δ(24)1443414440t y ty t t t +++==-+=-> 设()()1122,,,A x y B x y ,则1212222436,3434t y y y y t t -+==++ 因此可得1223234x x t +=+ 所以AB 中点的坐标为221612,3434t t t -⎛⎫ ⎪++⎝⎭因为G 是ABQ 的外心,所以G 是线段AB 的垂直平分线与线段BQ 的垂直平分线的交点,由题意可知,B Q 关于x 轴对称,故()22,Q x y -AB 的垂直平分线方程为2216123434tt x y t t ⎛⎫--=+ ⎪++⎝⎭ 令0y =,得2434x t =+,即24,034G t ⎛⎫⎪+⎝⎭,所以2222431,3434t GF t t =-=++ 又AQ ==221234t t ==+ 故24AQ GF =,所以2AQGF 为定值,定值为4. 21.【答案】解:(1)证明:取线段AB 的中点G ,连接1,A G EG ,如图所示 因为,E G 分别为,BC AB 的中点,所以EG AC ∥在三棱台111A B C ABC -中11AC AC ∥ 所以,11EG AC ∥,且11D A C ∈ 故1,,,E G A D 四点共面.因为1AA ⊥平面,ABC AG ⊂平面ABC ,所以1AA AG ⊥ 因为1111111,,AA A B AG AG A B AA AG ===⊥∥ 所以四边形11AA B G 是正方形,所以11AB AG ⊥. 又1111111111,,,AB AC AC AG A AC AG ⊥⋂=⊂平面1A DEG 所以1AB ⊥平面1A DEG .因为DE ⊂平面1A DEG ,所以1AB DE ⊥.(2)延长EF 与11C B 相交于点Q ,连接DQ ,则11DQ A B M ⋂=. 因为,F E 分别为1BB 和BC 的中点1B Q BE ∥,所以111B Q B FBE BF== 则11112B Q BE BC B C ===,所以,1B 为1C Q 的中点. 又因为D 为11A C 的中点,且11A B DQ M ⋂=,则M 为11A C Q 的重心 所以1112233A M AB == 因为1AA ⊥平面,ABC AC ⊂平面ABC ,所以1AA AC ⊥.因为11111,AB AC AC AC ⊥∥,所以1AB AC ⊥. 又因为1111,,AA AB A AA AB ⋂=⊂平面11AA B B 所以AC ⊥平面11AA B B ,所以1,,AC AB AA 两两垂直以A 为原点,1,,AC AB AA 所在直线分别为,,x y z 轴建立如图所示空间直角坐标系则()()()()20,0,0,0,2,0,2,0,0,1,1,0,0,,13A B C E M ⎛⎫ ⎪⎝⎭所以()()22,0,0,0,,1,1,1,03AC AM AE ⎛⎫=== ⎪⎝⎭. 设平面AMC 的法向量为()1,,n a b c =则1120,20,3n AC a n AM b c ⎧⋅==⎪⎨⋅=+=⎪⎩取3b =-,则()10,3,2n =-. 设平面AME 的法向量为()2,,n x y z =则220,20,3n AE x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩取3y =-,可得()23,3,2n =-. 所以,12121213cos ,2213n n n n n n ⋅===⨯ 故平面AMC 与平面AME 夹角的余弦值为22. 22.【答案】解:(1)()ln 1f x x ax =-+的定义域为()()110,,ax f x a x x∞-+=='- 当0a 时,则()0f x '>恒成立,所以()f x 在()0,∞+上单调递增,()f x 不可能有两个零点,故舍去;当0a >时,则令()0f x '>,解得10x a <<,令()0f x '<,解得1x a> 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递减 所以max 11()ln f x f a a ⎛⎫==⎪⎝⎭. 要使()f x 有两个零点,则max 1()ln 0f x a=>,解得01a <<. 又22111444242ln 10,ln 1110e e e e a f a f a a a a a a ⎛⎫⎛⎫=-⋅+=-<=-+<-+=-< ⎪ ⎪⎝⎭⎝⎭所以当01a <<时,则()f x 在11,e a ⎛⎫ ⎪⎝⎭和214,a a ⎛⎫⎪⎝⎭上各有一个零点21,,x x 且122x x >,所以1122ln 10,ln 10,x ax x ax -+=⎧⎨-+=⎩由fx 的单调性知,当()21,x x x ∈时,则()0f x > 当()1,x x ∞∈+时,则()0f x <.因为2212x x x <<,所以()220f x >,即()2222ln 221ln 1x ax x ax -+>-+ 所以2ln2ax <,而22ln 1x ax +=,即2ln 1ln2x +<,所以220ex <<,而22ln 1x a x +=.令()ln 12,0,e x h x x x +⎛⎫=∈ ⎪⎝⎭,则()221ln 1ln x x h x x x -'--== 因为20,e x ⎛⎫∈ ⎪⎝⎭,所以2ln ln 0ex ->->,所以()0h x '> 所以()h x 在20,e ⎛⎫⎪⎝⎭上单调递增所以()2ln2eln22e 2eh x h ⎫<==⎪⎭,所以eln20,2a ⎛⎫∈ ⎪⎝⎭.(2)因为1220x x >>,所以22211212e e 2x x x x x x ⎛⎫⋅+⋅ ⎪⎝⎭,当且仅当12x x =时取等号 而1220x x >>,故222112e e x xx x ⎛⎫⋅+>⋅⎪⎝⎭要证222112e x x x x ⎛⎫⋅+>⎪⎝⎭2e 42⋅,即证1228e x x ,即证1228ln ln e x x 即证12ln ln 3ln22x x +-.设12x t x =,因为1220x x >>,所以2t > 由(1)得1122ln 1,ln 1,x ax x ax +=⎧⎨+=⎩,两式作差,化简得21ln ln ln 1,ln 1ln 11t tx x t t t =-=-+-- 所以122ln ln ln ln 21tx x t t +=+--. 令()2ln ln 2,21tg t t t t =+->-,则()2212ln (1)t t t g t t t '--=-. 令()212ln t t t t ϕ=--,则()()2222ln ,20t t t t tϕϕ'=---''=>,易知()t ϕ'在()2,∞+上单调递增故()()222ln20t ϕϕ'>'=->,所以()t ϕ在()2,∞+上单调递增,所以()()234ln20t ϕϕ>=->所以()g t 在()2,∞+上单调递增,所以()()23ln22g t g >=-,即12ln ln 3ln22x x +>-得证.所以不等式222112e x x x x ⎛⎫⋅+> ⎪⎝⎭.。
高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9}.【分析】由条件利用补集的定义求得∁UA,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁UA)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值. 【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,].【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X 1 2 3P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题.19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an﹣1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1﹣1)2=(an﹣1)2+1,∴{(an﹣1)2}是首项为0,公差为1的等差数列;∴(an﹣1)2=n﹣1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.高考数学高三模拟试卷试题压轴押题期末考试数学试题分类汇编概率与统计一、填空题1、(常州市高三上期末)某地区有高中学校10所,初中学校30所,小学学校60所,现采用分层抽样的方法从这些学校中抽取20所学校对学生进行体质健康检查,则应抽取初中学校所。
高考数学模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (6)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3iB.2﹣3iC.3+2iD.3﹣2i2.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}3.(5分)已知a=,b=log2,c=log,则()A.a>b>cB.a>c>bC.c>a>bD.c>b>a4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{an}的公差为d,若数列{}为递减数列,则()A.d<0B.d>0C.a1d<0D.a1d>09.(5分)将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,]上单调递减C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A. B. C. D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A. B. C. D.二、填空题:本大题共4小题,每小题5分。
高考数学(理科)模拟试题(含答案)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 复数z 满足()11i z i +=-,则z =( )A .1i -B .1i +C .22- D .22+ 2. 已知集合12x X x e ⎧⎫=>⎨⎬⎩⎭,2}6{|0Y x x x =+-≤,则()R C X Y ⋂=( ) A .[)3,2ln -- B .[]2,2ln -- C .[]3,2ln -- D .[]2,2ln - 3. 已知等差数列{}n a 的前项n 和为n S ,且314,,3S a a 成公比为q 的等比数列,则q 等于( ) A.1或2 B .2 C .1 D .2或4 4. 若365sin πθ⎛⎫-= ⎪⎝⎭,则26sin πθ+⎛⎫⎪⎝⎭=( ) A .2425-B .2425 C.725- D .7255. 已知0,0x y >>,且191x y+=,则x y +的最小值为( ) A .12 B .16 C.20 D .246. 若函数()x sinx f =在区间[],a b 上是减函数,且()()22a f f b ==-,则函数()g x cosx =在区间[],a b 上( )A .是增函数B .是减函数 C. 可以取得最大值2 D .可以取得最小值-2 7. 已知0.320.20.3,3,0.2a log b log c ===,则,,a b c 的大小关系为( ) A .c b a >> B.b a c >> C.c a b >> D .a c b >>8. 已知曲线()3:3C f x x x =-,直线:l y ax =-,则6a =是直线l 与曲线C 相切的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件 9. 鲁班锁是中国古代传统土木建筑中常用的固定结合器,也是广泛流传于中国民间的智力玩具,它起源于古代中国建筑首创的機卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看上去是严丝合缝的十字几何体,其上下、左右、前后完全对称,十分巧妙.鲁班锁的种类各式各样,其中以最常见的六根和九根的鲁班锁最为著名九根的鲁班锁由如图所示的九根木榫拼成,每根木榫都是由一.根正四棱柱状的木条挖-些凹槽而成若九根正四棱柱底面边长均为1,其中六根短条的高均为3,三根长条的高均为5,现将拼好的鲁班锁放进一个圆柱形容器内,使鲁班锁最高的一个正四棱柱形木榫的上、下底面分别在圆柱的两个底面内,则该圆柱形容器的体积(容器壁的厚度忽略不计)的最小值为( )A .1354π B .652π C.135π D .1254π 10. 已知()f x 是定义在R 上的函数()'f x 是函数()f x 的导函数,且(),'1x R f x ∀∈>,且()10f =,则( ) A .()1f e e <- B .()01f >- C.() 01f <- D .()()0f e f e <+11. 如图, ,M N 分别为边长为1的正方形ABCD 的边BC CD 、的中点,将正方形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,以下结论错误的是( )A .//MN 平面ABDB .异面直线AC 与BD 所成的角为定值C. 存在某个位置,使得直线AD 与直线BC 垂直D .三棱锥M ACN -体积的最大值为24812. 已知函数()x sinx n f si x =⋅,给出下列结论: ①()f x 是周期函数;②()f x 是奇函数:③,22ππ⎡⎤-⎢⎥⎣⎦是函数()f x 的一个单调递增区间;④若()()12f x f x =-,则()12x x k k Z π+=∈;⑤不等式22cos2cos2sin x sin x x x ππππ⋅>⋅的解集为15,88k x k k Z x ⎧⎫⎨+<+∈⎩<⎬⎭,则正确结论的序号是( )A .①②④B .①②③④ C.②③ D .①②③⑤ 二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若向量,a b r r 满足()2,a b a a b =⊥+r r r r r ,则向量,a b r r的夹角为.14. 已知实数,x y 满足2302501x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则z x y =-的取值范围为 .15. 已知函数()1,0,0x x mx x xex e mx x xf ⎧-<⎪⎪=⎨⎪->⎪⎩,若函数()f x 有且只有4个不同的零点,则实数m 的取值范围是 .16. 已知数列{}n a 的各项均为正数,且*n N ∀∈,33332123...2n n n a a a S S ++++=+a ,其中n S 为数列{}n a 的前n 项和,设32nn n S b n ⎛⎫= ⎪ ⎪⎝⎭g ,则2n b 的最大值为_ . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC V 中,角A B C 、、所对边的长分别为a b c 、、,且cos cos sin A B Ca b c+=(1)求sinCsinA sinBg 的值;(2)若ABC V 的面积14S =,ABC V 的外接圆的直径为1,求ABC V 的周长L .18. 已知数列{}n a 和2n a n ⎧⎫⎨⎬⎩⎭均为等差数列112a =, (1)求数列{}n a 的通项公式; (2)设数列{}n b 满足()()4111n nn a b n n =+-+g,求数列{}n b 的前n 项和n S .19. 如图,已知四棱锥P ABCD -的底面是边长为2的正方形,M N 、分别是棱AB PD 、的中点,,PA PB AD PB =⊥,直线MN 与平面PAB 所成的角的正弦值为23(1) 证明://MN 平面PBC ;(2) 求二面角C MN D --的余弦值.20. “双十一”期,某电商店铺A 的活动为:全场商品每满60元返5元的优惠券(例如:买130元的商品,可用两张优惠券,只需付13013051305212060⎡⎤⎢-⨯=⨯⎥=⎣⎦-(元).其中[]x 表示不大于x 的最大整数).此外,在店铺优惠后,电商平台全场还提供每满400元减40元的优惠(例如:店铺A 原价880元的一单,最终价格是880514402730-⨯-⨯=(元),店铺优惠后不满400元则不能享受全场每满400元减40元的优惠活动(1)小明打算在店铺A 买一款250元的耳机和一款650元的音箱,是下两单(即耳机、音箱分两次购买) 划算?还是下一单(即耳机、音箱一起购买)划算?(2)小明打算趁“双十一”囤积某生活日用品若干,预算不超过700元,该生活日用品在店铺A 的售价为30元/件试计算购买多少件该生活日用品平均价格最低?最低平均价格是多少? 21. 已知函数()()20()f x ln ax ax x a =-+≠.(1)讨论函数()f x 的极值点个数;(2)若函数()f x 有且只有一个极值点o x ,且()00f x ≤,求实数a 的取值集合. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线l 的参数方程为,415315x t y t⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),以直角坐标系的原点为极点,以x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为(24)sin πρθ=-.(1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于,A B 两点,试求,A B 两点间的距离. 23.选修4-5:不等式选讲设函数()()20f x x a x a a =-++>. (1)当2a =时,求函数()f x 的最小值; (2)若关于x 的不等式()1f x a x <+在区间1,32⎡⎤⎢⎥⎣⎦上有解,求实数a 的取值范围.参考答案一、选择题1. C解析:)()())1111111222i i izi i i i---=====-+++-2. C解析:集合{}2,X x x ln=>-,2,3{}{|2}RC X x x ln Y x x=≤-=-≤≤所以()3{}2RC X Y x x ln⋂=-≤≤-3. A解析:314,,3Sa aQ,成公比为q的等比数列,23143Sa a⎛⎫∴=⋅⎪⎝⎭,又{}n aQ为等差数列,()()1112.3a d a a d∴+=+即()1d d a-=,即0d=或1d a=.公比2111a aqa a∴==或1121aa=或24. D解析: 2226266sin sin cosππππθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝+=--=⎭⎣⎦-=2187122162525sinπθ⎛⎫=-⎪⎭=⎝--【命题意图】基本量的简单运算.5. B解法一:由题得()199191916y xx y x yx y x y⎛⎫+=++=+++≥+=⎪⎝⎭,取等条件为1919xyx yy xx y>⎧⎪>⎪⎪+=⎨⎪⎪=⎪⎩,即412xy=⎧⎨=⎩,故选B解法二:由191x y+=得90x y xy+-=即()()199x y--=,又1,9x y>>Q.()()1190x y x y∴+=-++-1016≥=,取等条件为191193xyx yx y>⎧⎪>⎪⎪⎨+=⎪⎪-=-=⎪⎩,即412xy=⎧⎨=⎩,故选B6. D 解析:()23f x sin x π=+⎛⎫⎪⎝⎭,()22323g x cos x sin x πππ=+=⎛⎫⎛⎫ ⎪⎝⎭+ ⎝+⎪⎭,()g x 的图像由()f x 的图像向左平移2π所得.()f x 在区间[],a b 上是减函数,且()()2, 2f a f b ==-.令3x t π+=,则可取3,22t ππ⎡⎤∈⎢⎥⎣⎦,向左平移2π,即14个周期,可得在3,22t ππ⎡⎤∈⎢⎥⎣⎦时()g x 可以取得最小值2-. 7. A 解析:220.30.51a log log =<=-,0.20.2351b log log =>=-且00b c <>,,所以, , a b c 的大小关系为c b a >>.【命题意图】利用对数函数的单调性进行估算.8. A 解析:()2 '33f x x =-,直线:3l y ax a =-过定点()3,0,且曲线C 也过点()3,0.若直线l 与曲线C 相切,设切点横坐标为o x ,则切线为()2300332y x x x =--,则20303323x a x a⎧-=⎪⎨=⎪⎩,解之036x a ⎧=⎪⎨=⎪⎩或03234x a ⎧=-⎪⎪⎨⎪=-⎪⎩,所以6a =是直线l 与曲线C 相切的充分不必要条件.9. B c 解析:设圆柱的底面半径为r ,用平行于圆柱的底面的平面截圆柱和中间横向最长,木条的截面图如图所示,则2221513222r ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,∴圆柱体积为2652V r h ππ==g10. C 解析:令()() g x f x x =-,则()()''10g x f x =->,所以()g x 在R 上单调递增.由()()1g e g >可得()()111f e e f ->-=-,得()1f e e >-,故选项A 不正确.由()()0 1g g <可得()()0111f f <-=-,故选项B不正确选项C 正确,同理可判断选项D 不正确.11. C 解析:选项A ,因为// MN BD ,所以//MN 平面ABD ,故选项A 正确;选项B ,取AC 中点O ,连接,OB OD ,则AC OB ⊥,且AC OD ⊥,所以AC ⊥平面OBD ,所以AC BD ⊥,异面直线AC 与BD 所成的角为90︒,为定值,故选项B 正确;选项,C 若直线AD 与直线BC 垂直,因为直线AB 与直线BC 也垂直,则直线BC ⊥平面ABD ,所以直线BC ⊥直线BD ,又因为BD AC ⊥,所以BD ⊥平面ABC ,所以BD OB ⊥而OBD V 为等腰三角形,这显然不可能,故选项C 不正确;选项D ,M ACN N ACM V V --=,当平面DAC ⊥平面ABC 时取最大值,()max 1134448N ACM V -=⋅⋅=,故选项D 正确. 12. D 解析:因为()()2f x f x π+=,所以2π是()f x 的一个周期,选项①正确:因为()()f x f x -=-,所以()f x 是奇函数,选项②正确;当0,2x π⎡⎤∈⎢⎥⎣⎦时,()21cos 22x f x sin x -==单调递增,又因为()f x 是奇函数且过原点,所以,22ππ⎡⎤-⎢⎥⎣⎦是函数()f x 的一个单调递增区间,选项③正确;由②③可画出函数()f x 在上的图像,又因为 22f x f x ππ+=-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图像关于2x π=对称,可画出函数()f x 在3,22ππ⎡⎤⎢⎥⎣⎦上的图像,即得到函数()f x 在3,22ππ⎡⎤-⎢⎥⎣⎦上的图像,即一个周期的图像,在3,22ππ⎡⎤-⎢⎥⎣⎦上的对称中心为()0,0和(),0π,所以在整个定义域上对称中心为()(,0)k k Z π∈,即若()()12f x f x =-,则12()2x x k k Z π+=∈,选项④不正确;先求不等式||2222sin x sin x cos x cos x ππππ>g g 在一个周期内的解集,取区间[]0,2π,因为2222sin x sin x cos x cos x ππππ>g g ()222f x f x πππ⎛⎫⇔>+ ⎪⎝⎭,则247224x x πππππ⎧>⎪⎪⎨⎪+<⎪⎩,在整个定义域上则22472224x k x k πππππππ⎧>+⎪⎪⎨⎪+<+⎪⎩,解得15,88k x k k Z +<<+∈,故选项⑤正确,综上,①②③⑤正确.. 【命题意图】三角函数是高中阶段周期函数的代表,与其他函数研究的方法也不太一样.本题旨在考查学生的思想方法,如何运用研究正弦函数、余弦函数的哪种方法,去研究新的、没见过的周期函数,考查学生是否真的理解、能否学以致用,只靠刷题或者死记硬背不行.为了降低难度,①②③引导学生先画出一个周期的函数图像,进而得到整个函数图像,为④⑤服务.选项的设置实际上告诉了学生②的正确性,同时引导学生重点需要判断④⑤,④⑤只需要准确判断其中一个,就能选出正确答案,降低了难度. 二、填空题 13.o120解析:由()a a b ⊥+r r r 得()20a a b a a b ⋅+=+=r r r r r r g,所以2,a b a ⋅=r r r 1,22a b a cos a b a b a a-<>===-r r rr r g r r r r g g ,向量,a b r r 的夹角为o 120 14.70,2⎡⎤⎢⎥⎣⎦解析:画出可行域,z =(),x y 到直线0x y -=的距离的最值,观察可最小值为0,最大值为230x y -+≥与250x y +-≤的交点(1,42)到直线的距离,为72,故取值范围为70,2⎡⎤⎢⎥⎣⎦【命题意图】目标函数加了一个绝对值,不同的学生就会有不同的做法,好学生转化成点到直线的距离,直接可以观察最小值是0,只用求最大值,算一个交点就可以了;一般的学生可以先求z x y =-的范围,再求绝对值的范围,那就要多算一个交点的坐标;当然,也可以分两类确定z x y =-的符号后再求具体范围, 工作量就要大一些了.15.24e m >解析:() f x 有且只有4个不同的零点等价于偶函数()1,0,0xx x g x e e x ⎧<⎪=⎨⎪>⎩与偶函数2y mx =的图象有且只有4个不同的交点,即2xe mx =有两个不等正根,即2xe m x=有两个不等正根.令()2xe h x x=,则()()32x e x h x x -'=,它在()0,2内为负,在(2,)+∞内为正,()h x ∴在()0,2上单调递减,在(2,)+∞上单调递增,又Q 当0x →时,()h x →+∞,当x →+∞时,()h x →+∞24e m ∴>16.6332解析:由333321232n n n a a a a S S ++++=+g g g 得()3333212311122n n n a a a a S S n ---++++=+≥g g g两式相减得()()3221112222n n n n n n n n n a S S S a S S a n S ---=+--=+≥+,()1222n n n S S a n -∴++=≥()211223n n n a S S n ---∴=++≥,两式相减有()12213n n n n a a a n a --+-=≥Q 数列{}n a 各项均为正数,13(1)n n a a n --=≥∴,而21321a a -=-=,∴数列{}n a 是公差为1的等差数列,()2111n a n n ∴=+-=+⨯,()32n n n S +∴=2222232323n n n n S n b n ⎛⎛⎫+∴== ⎪ ⎪⎝⎭⎝⎭g g,令2222251232n n b n b n +⎛⎫+=⋅> ⎪ ⎪+⎝⎭,解得32n < 24468,b b b b b ∴<>>>⋅⋅⋅,2n b ∴的最大值46332b ==【命题意图】本题常规题,考查知识点有:递推数列、等差数列通项、求和公式、数列单调性和最值,虽然都是常规知识点,但融合到一起要想顺利解决,需要对这些知识点深刻理解、熟练掌握. 三、解答题17.解:()1cos cos sin A B C a b c +=Q,由正弦定理可得cos cos sin sin sin sin A B CA B C+=即cos sin cos sin 1sin sin A B B A A B +=,即sin 1sin sin C A B=⋅(2)ABC QV 外接圆直径为1,,,a sinA b sinB c sinC ∴===,又由(1)得sinC sinA sinB c ab =∴=g ,∴ABC V 的面积211112224S absinC csinC c ====,sin 2c C ∴== 由余弦定理得2222222222a b abcosC c ccosC c sinCcosC c sin C c +=+=+=+=+2312c =±+=或12-(12-舍) ()()222212121a b c ab c c c +=++=++=+∴ABC V 的周长.211L a b c c =++=+=18.解:()1Q 数列2n a n ⎧⎫⎨⎬⎩⎭为等差数列,2223212213a a a ∴⋅=+ 又Q 数列{}n a 为等差数列,()()12121223a d a d a ++=+∴即()210a d -=即1a d =又112a =Q ,()111222n n a n ∴=+-⋅= ()2由(1)及题设得()()()()211111111111nn nn n n b n n n n +⎛⎫=+=-+=--+-⋅ ⎪++⎝⎭g g ()()11111111111112233411n n n S n n n ⎛⎫⎛⎫⎛⎫⎛⎫∴=-+++-++⋅⋅⋅+-+=-+-⋅ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭注:第(2)问如果学生n 分为奇数还是偶数进行讨论,只要结果正确也给满分,如果学生归纳猜想,结果正确,但没有证明,只得3分.【命题意图】本题重点考查裂项相消求和,但又不是学生通常几乎都会背的那种裂项相消,考查学生对裂项相消求和方法的理解.19. 解法一(非向量法): (1)方法一:在平面ABCD 内延长DM 交CB 的延长线于FM Q 是正方形ABCD 中AB 边的中点,M ∴是DF 的中点又N Q 是PD 的中点,// MN PF ∴又MN ⊄Q 平面, PBC PF ⊂平面PBC ,//MN ∴平面PBC . 方法二:取PC 的中点G,N G Q 分别是PD PC 、的中点,//12NG CD ∴=又M Q 是正方形ABCD 中边AB 的中点,//12BM CD ∴=,//12GN BM ∴=BMNG ∴是平行四边形,// MN BG ∴又MN ⊄Q 平面PBC ,BG ⊂平面PBC ,//MN ∴平面PBC .方法三:取PA 中点,E E N Q ,分别是PA PD 、的中点,// EN AD ∴ 同理// EM PB底面是正方形,//AD BC ∴,又// EN AD Q ,// EN BC ∴ 又EN ⊄Q 平面PBC ,BC ⊂平面PBC ,//EN ∴平面PBC .同理//EM 平面PBC ,又,EN EM E EN ⋂=⊂Q 平面,EMN EM ⊂平面EMN∴平面//EMN 平面PBC .又MN ⊂Q 平面EMN .∴//MN 平面PBC(2),,AD PB AD AB PB AB B ⊥⊥⋂=Q ,PB ⊂平面PAB ,AB ⊂平面PAB ,AD ∴⊥平面PAB又//EN AD Q ,EN ∴⊥平面PAB ,EMN ∴∠为直线MN 与平面PAB 所成的角.23EN sin EMN MN ∴∠==,又E M N Q 、、分别为PA AB PD 、、的中点,底面边长为2,PA PB =3,2MN ME PM AB ∴==⊥.且2PM === AD ⊥Q 平面PAB ,AD ⊂平面ABCD ,∴平面PAB ⊥平面ABCD ,且交线为AB又PM AB ⊥Q ,且PM ⊂平面PAB ,PM ∴⊥平面ABCD在平面ABCD 内作CH MD ⊥于点H ,则CH PM ⊥又MD PM M ⋂=Q ,MD ⊂平面MND ,PM ⊂平面MND ,CH ∴⊥平面MND再作HI MN ⊥于点I ,则CIH ∠是二面角D MN C --的一个平面角在正方形ABCD中可求得CH MH ==,23HI MHsin DMN MHsin MDN =∠=∠== ∴二面角的余弦值5IH IC ===. 解法三(向量法):AD PB ⊥Q , AD AB ⊥,PB AB B ⋂=,PB ⊂平面PAB ,AB ⊂平面PAB .AD ∴⊥平面PAB ,又PM ⊂Q 平面PAB ,AD PM ∴⊥ ①,PA PB M =Q 是AB 的中点,PM AB ∴⊥,设J 为BD 的中点,则同①得PM MJ ⊥则MJ MA MP 、、两两垂直,∴可分别以MJ MA MP 、、为轴,,x y z 建立空间直角坐标系设()0,0,P p()1()()112,1,00,0,1,,222p MN p ⎛⎫=+=⎡⎤ ⎪⎣⎦⎝⎭u u u u r Q ()()()0,0,0,1,00,1,BP p p =--=u u u r()()()2,1,00,1,02,0,0BC =---=u u u r1122MN BP BC ∴=+u u u u r u u u r u u u r 在平面PBC 内作1122BK BP BC =+u u u r u u u r u u u r ,则BK MN =u u u r u u u u r // , BK MN MN ∴⊄平面PBC ,BK ⊂平面PBC ,//MN ∴平面PBC()211,,22p MN ⎛⎫= ⎪⎝⎭u u u u r Q ,()2,0,0MJ =u u u r 是平面PAB 的一个法向量 22221120022,)51122(2p MN MJ cos MN MJ MN MJ p p ⨯+⨯+⨯⋅∴===⋅+⎛⎫⎛⎫++⋅ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r u u u u r u u u r u u u u r u u u r 又Q 直线MN 与平面PAB 所成的角的正弦值为23,2235p =+2p =±即(负舍) 11,,12MN ⎛⎫∴= ⎪⎝⎭u u u u r ,()2,1,0MD =u u u u r ,()2,1,0MC =-u u u u r 设(), , a x y z =⊥r 平面DMN ,则10220a MN x y z a MD x y ⎧⋅=++=⎪⎨⎪⋅=+=⎩r u u u u r r u u u u r 即20y x z =-⎧⎨=⎩,令1x =得()1,2,0a =-r 设(), , b r s t =⊥r 平面CMN ,则10220b MN r s t b MC r s ⎧⋅=++=⎪⎨⎪⋅=-=⎩r u u u u r r u u u u r 即22s r t r =⎧⎨=-⎩,令1r =得()1,2,2b =-r ()()2222221122025,)5120122(a b cos a b a b ⨯+-⨯+⨯-⋅∴===-⋅+-+⋅++-r r r r r r又a r Q 指向二面角,b r 指向二面角,∴20. 解: (1)若下两单,耳机优惠后实际付款为25054230-⨯= (元)音响优惠后实际付款为650510401560-⨯-⨯=(元)耳机和音响优惠后一共实际付款230560790+=元若下一单,耳机和音响优惠后一共实际付款()250650515402745+-⨯-⨯= (元)∴下一单划算(2)方法一:假设购买*()x x N ∈件,平均价格为y 元/件由于不能超过700元预算,最多只能购买26件,且当114x ≤≤时不能享受满400元减40元的优惠,当1526x ≤≤时能享受一次每满400元减40元的优惠 1︒当114x ≤≤时不能享受每满400元减40元的优惠, 则130530530602x x y x x x ⎛⎫⎡⎤⎡⎤=-⨯=-⨯= ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭530,22,530,2121n x n n n N n x n n ⎧-⨯=⎪⎪∈⎨⎪-⨯=+⎪+⎩当2x n =时,1272y =. 当21x n =+时,()551302722212y k =-+>+ ∴当114x ≤≤时购买偶数件该生活日用品的平均价格最低,最低平均价格为27.5元/件.2°当1526x ≤≤时能享受一次每满400元减40元的优惠, 则1305403054030602x x y x x x x ⎛⎫⎡⎤⎡⎤=-⨯-=-⨯-= ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭54030,222,54030,212121n x n n n k N n x n n n ⎧-⨯-=⎪⎪∈⎨⎪-⨯-=+⎪++⎩当2x n =时,120272y n=-.当8,16n x ==时,25min y = 当21x n =+时,()()5405753030212221n y n n +=-=--++,当7,15n x ==时,25min y = 综上,购买15件或16件该生活日用品的平均价格最低,最低平均价格为25元/件.方法二:设购买*()x x N ∈件应付款为y 元,平均价格为z 元/件则30305,0400603030540,36070060x x y y x x y ⎧⎡⎤-<<⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪-⨯-≤≤⎢⎥⎪⎣⎦⎩552,04005530,21,0400=5540,2,3607005510,21360700n x n y n x n y n x n y n x n y =<<⎧⎪+=+<<⎪⎨-=≤≤⎪⎪-=+≤≤⎩,,,552,1,2,,75530,21,1,2,,65540,2,8,9,,135510,217,8,,12n x n n n x n n n N n x n n n x n n ==⋅⋅⋅⎧⎪+=+=⋅⋅⋅⎪∈=⎨-==⋅⋅⋅⎪⎪-=+=⋅⋅⋅⎩,,()()27.5,2,1,2,,7527.5,21,1,2,,62212027.5,2,8,9,,137527.5,217,8,,12221x n n x n n n y z x x n n n x n n n ==⋅⋅⋅⎧⎪⎪+=+=⋅⋅⋅+⎪⎪∴=⎨-==⋅⋅⋅⎪⎪⎪-=+=⋅⋅⋅⎪+⎩, 第一段: 27.5;第二段:大于 27.5第三段:当8n =时,取最小值25=;第四段:当7n =时,取最小值25=综上,购买15件或16件该生活日用品的平均价格最低,最低平均价格为25元/件.说明:对用列举法的评分,若列举完整、计算正确,则不扣分.21. 解: (1)由题得()()2121210ax x f x a ax ax ax x-++'=⋅-+=> 1︒若0a <,则函数定义域为(0),-∞① 810a =+≤V 即18a ≤-时则在(0),-∞内()'0f x ≤且不连续取0,()f x 在(0),-∞单调递减此时()f x 在定义域(0),-∞内没有极值点..② 810a =+>V 即108a -<< 则2210ax x ++=-在(0),-∞内有两个根()1212,0x x x x <<当1),(x x ∈-∞时,()()'0,f x f x <∴单调递减,当()12,x x x ∈时,()'0f x >,() f x ∴单调递增当()2,0x x ∈时,()'0f x <,() f x ∴单调递减∴当108a -<<时()f x 在(0),-∞内有且只有2个极值点.2︒若0a >,则函数定义域为(0),-∞二次函数()221g x ax x =-++的开口向下,对称轴104x a=>,()010g =>,判别式810a =+>V ()0g x ∴=在(0),-∞只有一个根0x 当0(0),x x ∈时,()()'0,f x f x <∴单调递增,当()0,x x ∈+∞时,()'0f x >,() f x ∴单调递减 综上,当18a ≤-时()f x 在(0),-∞内没有极值点,当108a -<<时()f x 在(0),-∞内有且只有2个极值点. 当0a >时()f x 在(0,)+∞内有且只有1个极值点.(2)方法一:若函数()f x 有且只有一个极值点o x则由(1)知0a >,且00(),x ∈+∞且200210ax x -++=即02012x a x += 由()00f x ≤得()()200000002011ln 22x x f x ln ax ax x x x ++=-+=-+002011ln 022x x x +-=-≤① 令()()211ln 022x x h x x x +-=->,则()()()()12'21x x h x x x -+=+ ∴当()0,1x ∈时,()()'0,h x h x <∴单调递减,当,()1x ∈+∞时,()() '0,h x h x >∴单调递增∴()()010h x h ≥=.又由知()00,1h x x ≤∴=,020112x a x +∴== ∴实数a 的取值集合为{}1.方法二: 若函数()f x 有且只有一个极值点o x则由(1)知0a >,且00(),x ∈+∞且200210ax x -++=即()0104x a a=> 由()00f x ≤得()()20000f x ln ax ax x =-+0000011ln ln 22x x ax x ax +-=-+=-141048a a a=-≤ ①令t =, ()()22111132ln ln 141421(t)t t t t t i t t t ---++-=-=->--则()()()()()()()2211313411142111t t t t i t t t t ⋅---⋅-=⋅-=+-+-在(1)3,内为负,在(3)+∞,内为正 ()i t ∴在(1)3,内单调递减,在(3)+∞,内单调递增,()min [(3]0t)i i ==∴()00f x i ∴=≥又Q 由①得()00f x i =≤3=,即1a =,∴实数a 的取值集合为{}1.【命题意图】本题主要考查分类讨论、导数的应用,中偏难,与21题一起双压轴.第一问的亮点是0a >和0a <时定义城不一样,确定定义城是研究函数的第一步,这对不喜欢考虑定义城的学生是一个教训.第一问题讨论的侧重点放在了对二次函数正负的讨论,需要从开口、对称轴、判别式、端点函数值符号四个方面控制,是二次函数研究的重点,同时也是学生比较熟悉的函数类型,所有学生都能上手,但不一定都能做对.第二问也不难,解二元的不等式,先消元,利用单调性解不等式,再代回两个元之间的关系式求出a 的取值集合.22. 解: (1)直线11:4355x y l +-=-,即3410x y +-=即3410cos sin ρθρθ+-= 曲线:C sin cos ρθθ=-即2sin cos ρρθρθ=- (原式中ρ可以为θ,故两边乘以ρ不扩大范围)即22x y y x +=-即2211()2212y x ⎛⎫+-= +⎪⎝⎭ 直线l 的极坐标方程为3410cos sin ρθρθ+-=,曲线C 的普通方程为220x y x y ++-= 说明:后者写成22 0x y x y ++-=和2211()2212y x ⎛⎫+-= +⎪⎝⎭中的任何一个都给全分. (2)方法一:将直线l 的参数方程415315x t y t ⎧=--⎪⎪⎨⎪=+⎪⎩代入曲线C 的普通方程22 0x y x y ++-=得2705t t += 即0t =或75- A B ∴、两点间的距离1275AB t t =-=方法二:由(1) 知曲线C 是一个圆,其圆心到直线l的距离110d == A B ∴、两点间的距离75AB ===23. 解: (1)当2a =时,()3,1 2224,213,2x x f x x x x x x x ≥⎧⎪=-++=--≤<⎨⎪-<-⎩[]()min 1()3f x f =-∴(2)方法一:当1,32x ⎡⎤∈⎢⎥⎣⎦且0a >时,原不等式可化为12x a x a a x -++<+. 即12x a x x -<-即112x x a x x x ⎛⎫--<-<- ⎪⎝⎭即113x a x x x -<<+. ∴题设等价于1,32x ⎡⎤∃∈⎢⎥⎣⎦,113x a x x x -<<+且0a > 令132113x x x x x ⎧≤≤⎪⎪⎨⎪-<+⎪⎩得112x ≤<∴题设等价于1,12x ⎡⎤∃∈⎢⎥⎣⎦,113x a x x x -<<+且0a > 即min max 113x a x x x ⎛⎫⎛⎫-<<+ ⎪ ⎪⎝⎭⎝⎭且0a > 即a 的取值范围50,2⎛=⎫ ⎪⎝⎭. 方法二: 6分处同方法一如图,画出函数()13g x x x =-和()1h x x x =+在区间1,32⎡⎤⎢⎥⎣⎦的图象.可知a 的取值范围50,2⎛=⎫ ⎪⎝⎭方法三:当1,32x⎡⎤∈⎢⎥⎣⎦且0a>时,原不等式可化为12x a x a ax-++<+即12x a xx-<-令132113xx xx x⎧≤≤⎪⎪⎨⎪-<+⎪⎩得112x≤<∴题设等价于1,12x⎡⎤∃∈⎢⎥⎣⎦,113x a xx x-<<+且0a>即a的取值范围50,2⎛=⎫ ⎪⎝⎭.说明: (1)三种方法中的“6分”档处的“2分”做到了的一定要给到.(2)答案为15,22⎛⎫- ⎪⎝⎭扣1分;答案为(100,3)扣2分;答案为110,23⎛⎫- ⎪⎝⎭扣3分。
FEDCBA 数学科试题〔理科〕考前须知:1.本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答复第一卷时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.答复第二卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并收回。
一.选择题:本大题共12个小题,每题5分,共60分。
在每题给出的四个选项中只有一项为哪一项符合题目要求的1.集合}032{2>--=x x x A ,}4,3,2{=B ,那么B A C R ⋂)(=A .}3,2{B .}4,3,2{C .}2{D .φ2.i 是虚数单位,iz +=31,那么z z ⋅= A .5B .10C .101D .51 3.执行如下图的程序框图,假设输入的点为(1,1)P ,那么输出的n 值为A .3B .4C .5D .6〔第3题〕 〔第4题〕4.如图,ABCD 是边长为8的正方形,假设13DE EC =,且F 为BC 的中点,那么EA EF ⋅=A .10B .12C .16D .205.假设实数y x ,满足⎪⎩⎪⎨⎧≥≤-≤+012y x y y x ,那么yx z 82⋅=的最大值是A .4B .8C .16D .326.一个棱锥的三视图如右图,那么该棱锥的外表积为 A .3228516++ B .32532+C .32216+D .32216516++7. 5张卡片上分别写有0,1,2,3,4,假设从这5张卡片中随机取出2张,那么取出的2张卡片上的数字之和大于5的概率是 A .101 B .51 C .103 D .54 8.设n S 是数列}{n a 的前n 项和,且11-=a ,11++⋅=n n n S S a ,那么5a = A .301 B .031- C .021 D .201- 9. 函数()1ln1xf x x-=+的大致图像为10. 底面为矩形的四棱锥ABCD P -的体积为8,假设⊥PA 平面ABCD ,且3=PA ,那么四棱锥ABCD P -的外接球体积最小值是 A .π625 B .π125 C .π6251 D .π25 11. 抛物线()220y px p =>,过焦点且倾斜角为30°的直线交抛物线于A,B 两点,以AB 为直径的圆与抛物线的准线相切,切点的纵坐标是3,那么抛物线的准线方程为 A .1x =- B .32x =-C .33x =- D .3x =- 12. 函数x x x f ln )(2-=〔22≥x 〕,函数21)(-=x x g ,直线t y =分别与两函数交于B A ,两点,那么AB 的最小值为 A .21B .1C .23D .2二.填空题:本大题共4小题,每题5分,共20分.13. 设样本数据1x ,2x ,...,2018x 的方差是5,假设13+=i i x y 〔2018,...,2,1=i 〕,那么1y ,2y ,...,2018y 的方差是________14. 函数x x x f ωωcos 3sin )(-=〔0>ω〕,假设3=ω,那么方程1)(-=x f 在),0(π的实数根个数是_____15. 我国的【洛书】中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯ 的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图〕.一般地,将连续的正整数1,2,3,…, 2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),那么5N =_______16.ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1c =,π3C =. 假设sin sin()sin 2C A B B +-=,那么ABC ∆的面积为三、解答题:本大题共6小题,其中17-21小题为必考题,每题12分,第22—23题为选考题,考生根据要求做答,每题10分. 17.(本小题总分值12分)设数列}{n a 是公差为d 的等差数列. (Ⅰ) 推导数列}{n a 的通项公式;(Ⅱ) 设0≠d ,证明数列}1{+n a 不是等比数列.18.(本小题总分值12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如下图的频率分布直方图.(Ⅰ)写出女生组频率分布直方图中a 的值;(Ⅱ)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取2人,并用X 表示随机抽取的2人中男生的人数,求X 的分布列和数学期望.C 1B 1A 1CBA19.(本小题总分值12分)在直三棱柱111C B A ABC -中,21===AA AC AB ,CA BA ⊥。
高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 6 .【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i 的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].【分析】画出函数f(x)的图象,由 f(f(a))≤2,可得 f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P (m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,A P′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…an=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{an}为等比数列,且a1=2,∴{an}的公比为q,则=4,由题意知an>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…an=(n∈N*)得:,,∴bn=n(n+1)(n∈N*).(Ⅱ)(i)∵cn===.∴Sn=c1+c2+c3+…+cn====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,cn<0,综上,对任意n∈N*恒有S4≥Sn,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.高考数学高三模拟试卷试题压轴押题课时跟踪检测(十二) 定积分的简单应用1.在下面所给图形的面积S 及相应的表达式中,正确的有( )A .①③B .②③C .①④D .③④解析:选D ①应是S =⎠⎛a b [f(x)-g(x)]dx ,②应是S =⎠⎛0822xdx -⎠⎛48(2x -8)dx ,③和④正确.故选D.2.一物体以速度v =(3t2+2t)m/s 做直线运动,则它在t =0 s 到t =3 s 时间段内的位移是( )A .31 mB .36 mC .38 mD .40 m解析:选B S =⎠⎛03(3t2+2t)dt =(t3+t2)30=33+32=36(m),故应选B. 3.如图所示,阴影部分的面积是( ) A .2 3 B .2-3 C.323D.353解析:选C S =⎠⎛31(3-x2-2x)dx ,即F(x)=3x -13x3-x2,则F(1)=3-13-1=53,F(-3)=-9+9-9=-9.∴S =F(1)-F(-3)=53+9=323.故应选C.4.由y =x2,y =14x2及x =1围成的图形的面积S =( )A.14B.12C.13D .1解:选A 图形如图所示, S =⎠⎛01x2dx -⎠⎛0114x2dx =⎠⎛0134x2dx =14x3⎪⎪⎪10=14. 5.曲线y =x3-3x 和y =x 围成的图形面积为( ) A .4 B .8 C .10D .9解析:选 B 由⎩⎪⎨⎪⎧y =x3-3x ,y =x ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2,y =2或⎩⎪⎨⎪⎧x =-2,y =-2.∵两函数y =x3-3x 与y =x 均为奇函数,∴S =2⎠⎛02[x -(x3-3x)]dx =2·⎠⎛02(4x -x3)dx =2⎝⎛⎭⎪⎫2x2-14x4⎪⎪⎪20=8,故选B.6.若某质点的初速度v(0)=1,其加速度a(t)=6t ,做直线运动,则质点在t =2 s 时的瞬时速度为________.解析:v(2)-v(0)=⎠⎛02a(t)dt =⎠⎛026tdt =3t2⎪⎪⎪20=12,所以v(2)=v(0)+3×22=1+12=13. 答案:137.一物体沿直线以速度v =1+t m/s 运动,该物体运动开始后10 s 内所经过的路程是______.解析:S =⎠⎛0101+tdt =23(1+t)32⎪⎪⎪100=23⎝ ⎛⎭⎪⎫1132-1. 答案:23⎝ ⎛⎭⎪⎫1132-18.由y =1x,x =1,x =2,y =0所围成的平面图形的面积为________.解析:画出曲线y =1x (x>0)及直线x =1,x =2,y =0,则所求面积S 为如图所示的阴影部分面积.∴S =⎠⎛121x dx =ln x ⎪⎪⎪21=ln 2-ln 1=ln 2.答案:ln 29.计算曲线y =x2-2x +3与直线y =x +3所围图形的面积.解:由⎩⎪⎨⎪⎧y =x +3,y =x2-2x +3,解得x =0及x =3.从而所求图形的面积S =⎠⎛03[(x +3)-(x2-2x +3)]dx =⎠⎛03(-x2+3x)dx =⎝ ⎛⎭⎪⎫-13x3+32x2⎪⎪⎪30=92. 10. 设y =f(x)是二次函数,方程f(x)=0有两个相等的实根,且f ′(x)=2x +2. (1)求y =f(x)的表达式;(2)求y =f(x)的图象与两坐标轴所围成图形的面积. 解:(1)∵y =f(x)是二次函数且f ′(x)=2x +2, ∴设f(x)=x2+2x +c. 又f(x)=0有两个等根,∴4-4c =0,∴c =1,∴f(x)=x2+2x +1.(2)y =f(x)的图象与两坐标所围成的图形的面积S =⎠⎛10(x2+2x +1)dx =13x3+x2+x ⎪⎪⎪01=13. 层级二 应试能力达标1.一物体在力F(x)=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F(x)所做的功为( )A .8 JB .10 JC .12 JD .14 J解析:选 D 由变力做功公式有:W =⎠⎛13(4x -1)dx =(2x2-x)⎪⎪⎪31=14(J),故应选D.2.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =36t,那么从3小时到6小时期间内的产量为( ) A.12 B .3-322C .6+3 2D .6-32解析:选D ⎠⎛3636tdt =6t ⎪⎪⎪63=6-32,故应选D.3.以初速40 m/s 竖直向上抛一物体,t s 时刻的速度v =40-10t2,则此物体达到最高时的高度为( )A.1603 mB.803 m C.403m D.203m 解析:选A 由v =40-10t2=0,得t2=4,t =2. ∴h =⎠⎛02(40-10t2)dt =⎝ ⎛⎭⎪⎫40t -103t3⎪⎪⎪20=80-803=1603(m).故选A.4.(山东高考)直线y =4x 与曲线y =x3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .42 C .2D .4解析:选D 由4x =x3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x3在第一象限内围成的封闭图形的面积为⎠⎛024x -x3dx=⎝⎛⎭⎪⎫2x2-14x4⎪⎪⎪20=4.5.椭圆x216+y29=1所围区域的面积为________.解析:由x216+y29=1,得y =±3416-x2. 又由椭圆的对称性知,椭圆的面积为S =4⎠⎛043416-x2dx=3⎠⎛0416-x2dx.由y = 16-x2,得x2+y2=16(y ≥0).由定积分的几何意义知⎠⎛0416-x2dx 表示由直线x =0,x =4和曲线x2+y2=16(y ≥0)及x 轴所围成图形的面积,∴⎠⎛0416-x2dx =14×π×16=4π,∴S =3×4π=12π.答案:12π6.如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为____________.解析:∵S 阴=2⎠⎛01(e -ex)dx =2(ex -ex)⎪⎪⎪10=2,S 正方形=e2,∴P =2e2.答案:2e27.求由曲线xy =1及直线x =y ,y =3所围成平面图形的面积.解:作出曲线xy =1,直线x =y ,y =3的草图,所求面积为图中阴影部分的面积.求交点坐标:由⎩⎪⎨⎪⎧xy =1,y =3,得⎩⎪⎨⎪⎧x =13,y =3,故A ⎝ ⎛⎭⎪⎫13,3;由⎩⎪⎨⎪⎧xy =1,y =x ,得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1(舍去),故B(1,1);由错误! 得错误!故C(3,3),8.函数f(x)=ax3+bx2-3x ,若f(x)为实数集R 上的单调函数,且a ≥-1,设点P的坐标为(b ,a),试求出点P 的轨迹所形成的图形的面积S.解:当a =0时,由f(x)在R 上单调,知b =0.当a ≠0时,f(x)在R 上单调⇔f ′(x)≥0恒成立或f ′(x)≤0恒成立.∵f ′(x)=3ax2+2bx -3,∴⎩⎪⎨⎪⎧ Δ=4b2+36a ≤0,a ≥-1.∴a ≤-19b2且a ≥-1. 因此满足条件的点P(b ,a)在直角坐标平面xOy 的轨迹所围成的图形是由曲线y =-19x2与直线y =-1所围成的封闭图形.联立⎩⎪⎨⎪⎧ y =-19x2,y =-1,解得⎩⎪⎨⎪⎧ x =-3,y =-1或⎩⎪⎨⎪⎧ x =3,y =-1,如图,其面积S =⎠⎛3-3⎝ ⎛⎭⎪⎫1-19x2dx =⎝ ⎛⎭⎪⎫x -x327⎪⎪⎪ 33=(3-1)-(-3+1)=4.。