4 圆周角定理及其推论的应用
- 格式:ppt
- 大小:725.00 KB
- 文档页数:44
24.1.4 圆周角【知识与技能】理解圆周角的概念.探索圆周角与同弧所对的圆心角之间的关系,并会用圆周角定理及推论进行有关计算和证明.【过程与方法】经历探索圆周角定理的过程,初步体会分类讨论的数学思想,渗透解决不确定的探索型问题的思想和方法,提高学生的发散思维能力.【情感态度】通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验.【教学重点】圆周角定理及其推论的探究与应用.【教学难点】圆周角定理的证明中由一般到特殊的数学思想方法以及圆周角定理及推论的应用.一、情境导入,初步认识如图是一个圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物,同学甲站在圆心O的位置.同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?[相同,2∠ACB=2∠AEB=2∠ADB=∠AOB]【教学说明】教师出示海洋馆图片,引导学生思考,引出课题,学生观察图形、分析,初步感知角的特征.二、思考探究,获取新知1.圆周角的定义探究1 观察下列各图,图(1)中∠APB的顶点P在圆心O的位置,此时∠APB 叫做圆心角,这是我们上节所学的内容.图(2)中∠APB的顶点P在⊙O上,角的两边都与⊙O相交,这样的角叫圆周角.请同学们分析(3)、(4)、(5)、(6)是圆心角还是圆周角.【教学说明】设计这样的一个判断角的问题,是再次强调圆周角的定义,让学生深刻体会定义中的两个条件缺一不可.【归纳结论】圆周角必须具备两个条件:①顶点在圆上;②角的两边都与圆相交.二者缺一不可.2.圆周角定理探究2如图,(1)指出⊙O中所有的圆心角与圆周角,并指出这些角所对的是哪一条弧?(2)量一量∠D、∠C、∠AOB的度数,看看它们之间有什么样的关系?(3)改变动点C在圆周上的位置,看看圆周角的度数有没有变化?你发现其中有规律吗?若有规律,请用语言叙述.解:(1)圆心角有:∠AOB圆周角有:∠C、∠D,它们所对的都是AB(2)∠C=∠D=1/2∠AOB.(3)改变动点C在圆周上的位置,这些圆周角的度数没有变化,并且圆周角的度数恰好等于同弧所对圆心角度数的一半.【教学说明】教师利用几何画板测量角的大小,移动点C,让学生观察当C点位置发生改变过程中,图中有哪些不变,从而交流总结,找出规律,同时引导学生观察圆心与圆周角的位置关系,为定理分情况证明作铺垫.为了进一步研究上面发现的结论,如图,在⊙O上任取一个圆周角∠ACB,将圆对折,使折痕经过圆心O和∠ACB的顶点C.由于点C的位置的取法可能不同,这时折痕可能会:(1)在圆周角的一条边上;(2)在圆周角的内部;(3)在圆周角的外部.已知:在⊙O中,AB所对的圆周角是∠ACB,圆心角是∠AOB,求证:∠ACB=1/2∠AOB.[提示分析:我们可按上面三种图形、三种情况进行证明.]如图(1),圆心O在∠ACB的边上,∵OB=OC,∴∠B=∠C,而∠BOA=∠B+∠C,∴∠B=∠C=1/2∠AOB.图(2)(3)的证明方法与图(1)不同,但可以转化成(1)的基本图形进行证明,证明过程请学生们讨论完成.得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.注意:①定理应用的条件是“同圆或等圆中”,而且必须是“同弧或等弧”,如下图(1).②若将定理中的“同弧或等弧”改为“同弦或等弦”结论就不成立了.因为一条弦所对的圆周角有两种情况,它们一般不相等(而是互补).如下图(2).【教学说明】在定理的证明过程中,要使学生明确,要不要分情况来证明.若要分情况证明,必须要明白按什么标准来分情况,然后针对各种不同的情况逐个进行证明.在证明过程中,第(1)种情况是特殊情况,是比较容易证明的,经过添加直径这条辅助线将(2)、(3)种情况转化为第(1)种情况,体现由一般到特殊的思想方法。
人教版初三上册数学第24章知识点复习:
圆周角定理及推论
一、圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
①定理有三方面的意义:
a.圆心角和圆周角在同一个圆或等圆中;(相关知识点如何证明四点共圆 )
b.它们对着同一条弧或者对的两条弧是等弧
c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.
②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.
二、圆周角定理的推论
推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等
推论2:半圆(或直径)所对的圆周角等于90°;90°的圆周角所对的弦是直径
推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形
三、推论解释说明
圆周角定理在九年级数学知识点中属于几何部分的重要内容。
①推论1是圆中证明角相等最常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个.
②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”
③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件
④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.
以上就是为大家整理的人教版初三上册数学第24章知识点复习:圆周角定理及推论,大家还满意吗?希望对大家有所帮助!。
圆周角定理及其推论的证明和应用圆周角定理是数学中一个最重要的定理。
它解释了多边形与圆的关系,是众多大学数学课程中的重要内容之一。
圆周角定理的证明和应用在不同的领域都有广泛的使用。
本文将讨论圆周角定理本身的证明,以及它的推论在数学和物理领域的应用。
一、圆周角定理圆周角定理告诉我们,对于任意多边形,其顶点和圆心之间的夹角之和等于$360^{circ}$。
它用数学语言来表达就是:若多边形$ABC…N$的顶点在圆心O的同一侧,则有$A + B + C + + N =360^{circ}$。
也就是说,当多边形的顶点位于同一侧的O时,其顶点到圆心O的角度之和等于$360^{circ}$。
二、证明圆周角定理圆周角定理通常用几何证明。
以正多边形为例,证明其顶点到圆心O的角度之和等于$360^{circ}$。
首先,画出多边形然后证明相邻边之间的夹角等于$180^{circ}$。
其次,当多边形向内折叠时,所有相邻边夹角之和等于其内角之和,因此折叠完成后,所有内角的和为$180^{circ} times n$,其中$n$是正多边形的边数。
此时,由于所有内角之和为$180^{circ} times n$,而多边形上的所有角之和为$360^{circ}$,因此所有顶点夹角之和等于$360^{circ}$。
三、圆周角定理的应用1、数学领域:圆周角定理在数学中的应用很广泛。
它可以用来求正n边形的面积,平均线长,内接圆半径,外接圆半径等。
此外,它还可以用来解决给定多边形的顶点或边,求其它顶点和边的问题。
2、物理领域:在物理领域,圆周角定理也有一些应用。
圆周角定理可以用来研究多体系统,如物体在圆周上运动时,其加速度可以根据圆周角定理求得。
圆周角定理也可以用来计算静电场,求出电荷的等值压力等。
四、总结本文讨论了圆周角定理的证明与应用。
圆周角定理表明正多边形的顶点到圆心O的角度之和等于$360^{circ}$。
圆周角定理在数学和物理领域都有广泛的应用,可以用来求正n边形的面积,平均线长,内接圆半径,外接圆半径,研究多体系统,求出电荷的等值压力等。