初二上册三角形证明题大全
- 格式:doc
- 大小:520.50 KB
- 文档页数:9
八年级数学上册三角形全等证明题专项练习1、如图,已知: AD是BC上的中线,且DF=DE.求证:BE∥CF.2、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE ≌△CDF.3、如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。
求证:AM是△ABC的中线。
4、已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DE F.5、如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。
求证:AE=AF6、如图:DF=CE,AD=BC,∠D=∠C。
求证:△AED≌△BFC。
7、如图:在△ABC中,BA=BC,D是AC的中点。
求证:BD⊥AC。
8、已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE BF.求证:AB CD∥.ADECBFM FE CB ADCBACMFEFED CBA9、如图,已知∠1=∠2,∠3=∠4,求证:AB=CD10、如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.11、如图,已知AB =DC ,AC =DB ,BE =CE ,求证:AE =DE.12、如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .13、已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C15、P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB16、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE17、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DCDCBA FEA BC DP DACBACEDBABECD.3421DCBAABC DE F图918、如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.19、如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA20. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
D1. 已知:AB=4,AC=2,D 是 BC 中点,111749AD 是整数,求 ADAB CD 解:延长 AD 到 E,使 AD=DE∵D 是 BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即 4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是 AB 中点,∠ACB=90°,求证: CD 1AB 2AC B延长 CD 与 P ,使 D 为 CP 中点。
连接 AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是 CD 中点,求证:∠1=∠2A 12BE CF D证明:连接BF 和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED。
∴ ∠ABE=∠AEB。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2) 。
4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD➴△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD 平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB 取点E,使AE=AC,连接DE∵AD 平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC 平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC 平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE7.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求ADAB CD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCDBD=DC∴△ACD ➴△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=28. 已知:D 是 AB 中点,∠ACB=90°,求证: CD 1AB 2AC B解:延长 AD 到 E,使 AD=DE∵D 是 BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ➴△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=29. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是 CD 中点,求证:∠1=∠2A12B EC F D证明:连接BF 和EF。
初二数学全等三角形证明经典例题1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD第1题图 第2题图 第3题图2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC第4题图 第5题图 第6题图4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5、已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD7、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C第7题图 第8题图 第9题图8、 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
9、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C第10题图 第11题图 第12题图10、P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB11、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BEF A E D C B PD A CB C D B AD B C B A C D F 2 1E ABC D E F 21 AD B CA B C D A12、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC第13题图 第14题图 第15题图 第16题图13、如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .14、.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA15、如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .16.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):17.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .第17题图 第18题图 第19题图 第20题图18、如图:DF=CE ,AD=BC ,∠D=∠C 。
全等三角形的证明1、如图,AB =AD ,∠BAD =∠CAE ,AC=AE ,求证:BC=DE2、如图,AF=DB ,BC=EF ,AC=DE ,求证:BC∠EF 。
3、已知:如图,∠ABC =∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线. 求证:AB =DC .4、如图,∠DCE =90°,CD =CE ,AD∠AC ,BE∠AC ,垂足分别为A 、B . 求证:AD +AB =BE .ABCDE5、已知,AC∠CE ,AC=CE , ∠ABC=∠EDC=900,证明:BD=AB+ED 。
6、如图,在∠ABC 中,D 为BC 边的中点,过D 点分别作DE ∠AB 交AC 于点E , DF ∠AC 交AB 于点F .求证:BF=DE 。
7、如图,点E 在AB 上,AC=AD ,请你添加一个条件,使图中存在全等三角形,并给予证明。
所添条件为 ,你得到的一对全等三角形是∆ ∆≅ .证明:ABCDE8、如图,AD 平分∠BAC ,DE∠AB 于E ,DF∠AC 于F ,且DB=DC ,求证:EB=FC.9、如图,AE 是∠BAC 的平分线,AB=AC 。
若点D 是AE 上任意一点,请证明:∠ABD∠∠ACD ;10、(1)把一大一小两个等腰直角三角板(即EC=CD,AC=BC )如图1放置,点D 在BC上,连结BE ,AD ,AD 的延长线交BE 于点F . 求证:(1)ΔACD∠ΔBCE (2)AF∠BE .FE D CB AECDBABACDEFB DE A(2)把左边的小三角板逆时针旋转一定的角度如图2放置,问AF与BE是否垂直?并说明理由.图2。
八年级上册数学全等三角形证明题一、全等三角形证明题1 20题及解析。
(一)题目1。
1. 题目。
已知:如图,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE = AC,延长BE交AC于F。
求证:AF = EF。
2. 解析。
证明:延长AD到G,使DG = AD,连接BG。
因为AD是BC边上的中线,所以BD = CD。
在△BDG和△CDA中,BD = CD,∠BDG = ∠CDA(对顶角相等),DG = DA。
根据SAS(边角边)全等判定定理,可得△BDG≌△CDA。
所以BG = AC,∠G = ∠CAD。
又因为BE = AC,所以BG = BE。
所以∠G = ∠BEG。
因为∠BEG = ∠AEF(对顶角相等),所以∠AEF = ∠CAD。
所以AF = EF。
(二)题目2。
1. 题目。
如图,在△ABC和△DEF中,AB = DE,BE = CF,∠B = ∠DEF。
求证:AC = DF。
2. 解析。
因为BE = CF,所以BE + EC = CF+EC,即BC = EF。
在△ABC和△DEF中,AB = DE,∠B = ∠DEF,BC = EF。
根据SAS全等判定定理,可得△ABC≌△DEF。
所以AC = DF。
(三)题目3。
1. 题目。
已知:如图,AB = CD,AE = DF,CE = FB。
求证:AF = DE。
2. 解析。
因为CE = FB,所以CE + EF = FB + EF,即CF = BE。
在△AEB和△DFC中,AB = CD,AE = DF,BE = CF。
根据SSS(边边边)全等判定定理,可得△AEB≌△DFC。
所以∠B = ∠C。
在△ABF和△DCE中,AB = CD,∠B = ∠C,BF = CE。
根据SAS全等判定定理,可得△ABF≌△DCE。
所以AF = DE。
(四)题目4。
1. 题目。
如图,在Rt△ABC中,∠ACB = 90°,CA = CB,D是AC上一点,E在BC的延长线上,且AE = BD,BD的延长线与AE交于点F。
1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2AD BC证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CGB ACDF21E∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCAD BCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+2 1<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF 和EF 。
《全等三角形》证明题题型归类训练题型1:全等+等腰性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .题型2:两次全等1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CFFDCBA2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分O C E BDAA B E O F D C3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型3:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.AFCBDEG3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AE4、在△ABC 中,=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.5、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。
全等三角形
3、(1)已知△ABC中,AB=4cm ,BC=6cm ,BD是△ABC
的中线,求BD的取值范围.
(2)在△ABC中,AC=5,中线AD=7,则AB边的取值
范围是( )
A.1<AB<29
B.4<AB<24
C.5<AB<19
D.9<AB<19
5、如图,已知在△ABC中,∠BAC为直角,AB=AC,D
为AC上一点,CE⊥BD于
(1)若BD平分∠ABC,求证CE=1
2 BD;
(2)若D为AC上一动点,∠AED如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
E
D
C
B A
7、在△ABC中,,AB=AC,在AB边上取点D,在AC 延长线上了取点E ,使CE=BD ,连接DE交BC于点F,求证DF=EF .
F
C
B
A
E
D
13、如图A D∥BC ,∠1=∠2 ,∠3=∠4 ,直线DC过E点并交AD于D,交BC 于C 。
求证:AD+BC=AB
、
15、在四边形ABCD中,AC平分∠BAD ,C E⊥AB于E ,并且AE=1/2(AB+AD),求证:∠B+∠D=180°。
E
A
B
D
C
16、如图:四边形ABCD中,AD∥BC ,AB=AD+BC ,E是CD的中点,求证:AE ⊥BE 。
A
B
E
17、如图所示,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE, 垂足为F,过B作BD⊥BC交CF的延长线于D.
求证:(1)AE=CD;(2)若AC=12cm,求BD的长.
E
D
C
B
A
F
18、在△ABC 中,AB=AC ,∠BAC=90°,BD 是中线,AF ⊥BD ,F 是垂足,过点C 作AB 的平行线交AF 的延长线于点E 。
求证:(1)∠ABD=∠FAD ;(2)AB=2CE
D
19、在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE 。
(1)求证:CE=CF 。
(2)在图中,若G 点在AD 上,且∠GCE=45° ,则GE=BE+GD 成立吗?为什么?
21、如图,在△ABC 中,D 是BC 的中点,E 、F 分别是AB 、AC 上的点,且FD ⊥ED , 求证:BE+CF ﹥EF
B
22、如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH=EB=3,AE=4,则CH 的长是多少?
H
E
B C
23、如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E
(1)试说明: BD=DE+CE.
(2) 若直线AE绕A点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD与DE、CE的关系如何? 为什么?
(3) 若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何? 请直接写出结果, 不需说明.
27、如图所示:以△ABC的边BC、AC为边,向外侧作两个等腰直角三角形△ACE 和△BCD,C为直角顶点,求证:AD⊥EB 。
A B
C
E D
28、如图23,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF
⑴求证:BG=CF
⑵请你判断BE+CF与EF的大小关系,并说明理由。
30、在△ABC中∠BAC是锐角,AB=AC,AD和BE是高,它们交于点H,且AE=BE;(1)求证:AH=2BD;
(2)若将∠BAC改为钝角,其余条件不变,上述的结论还成立?若成立,请证明;若不成立,请说明理由;
31.如图所示,已知D是等腰△ABC底边BC上的一点,它到两腰AB、AC的距离分别为DE、DF,CM⊥AB,垂足为M,请你探索一下线段DE、DF、CM三者之间的数量关系, 并给予证明.
E
C
B
A
M
F
34、如图所示:A B∥CD ,AD∥BC ,E、F分别在分别在AB、CD上,DF=BE,AC 与EF相交于点M ,求证:AC、EF互相平分。
H
E
A
B
M
D C
A B
F
E
37、如图,已知AB=DC,AD=BC,DE=BF,AD//BC,AB//DC,证:BE=DF
38.如图,∠ACB=90°,AC=BC,D为AB上一点,AE⊥CD于E,BF⊥DC交CD的延长线于F.求证:BF=CE.
39、(2009宁夏)如图,ABC
△的周长为32,且AB AC AD BC
=⊥
,于D,ACD
△
的周长为24,那么AD的长为.
40、如图,ABCD是正方形,点G是BC上的任意一点,DE AG
⊥于E,BF DE
∥,交AG于F.
求证:AF BF EF
=+.
A
B C
D
D
C
B
A
E
F
G
41、如图22⑴,AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由。
若过O点的直线旋转至图⑵、⑶的情况,其余条件不变,那么图⑴中的∠1与∠2的关系成立吗?请说明理由。
44、6.如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是()
A.相等B.互补C.互余D.相等或互补
45、在三角形ABC中,∠C=2∠B ,∠1=∠2求证:AB=AC+CD
2
1
B C
D
46、在四边形ABCD中,∠A+∠C=180°,BD平分∠ABC。
DH⊥BC ,H为垂足,求证:AB+BC=2BH
B
D
H
50、在△ABC中,AD平分∠BAC,DE∥AC,EF⊥AD交BC延长线于F,求证:∠FAC=∠B
G
B F
C
D
E
51、在△ABC中,∠ACB=90°,AC=BC ,D是AB上的一点,AE⊥CD于E,BF⊥CD 交CD的延长线于F ,CH⊥AB于H ,CH交AE于G 。
求证:BD=CG 。
D
G
C
A
B
H
E
54.如图20所示,已知AB=DC,AE=DF,CE=FB,求证:AF=DE.
(20)
F
E
D
C B
A
59、74、在△ABC中,AD平分∠BAC,C E⊥AD于O ,EF∥BC ,求证:EC平
分∠FED 。
B
A
C
D
F
E
60、△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD‖BC交AB于D,求证:AC=AD。
62、如图,在△ABC中,∠ABC=450,C D⊥AB于D,BE平分∠ABC,且BE⊥AB于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。
(1)求证:BF=AC
(2)求证:CE=
2
1
BF
(3)CE与BG的大小关系如何?
B
A
C
D
E
F
G
H
64、如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC、CF,求证:CA是∠DCF的平分线。
65.如图所示,已知AB⊥BC,DC⊥BC,E在BC上,且AE=AD,AB=BC.求
(22)
E
D
C
A
证:CE=CD.
67、已知:在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC。
(1)求证:∠A+∠C=180°
(2)作DH⊥BC ,求证:BH=1/2(AB+BC)
B
A
D
H。