实验三_抽样定理和PAM调制解调实验
- 格式:doc
- 大小:30.61 MB
- 文档页数:8
电子信息工程学系实验报告课程名称:通信原理 实验项目名称:抽样定理和脉冲调幅(PAM )实验 实验时间:班级:通信091 姓名:Jxairy 学号:910705131实 验 目 的:1)验证抽样定理; 2)观察了解PAM 信号形成过程,平顶展宽解调过程。
实 验 环 境 与 仪 器: 1)抽样定理和脉冲调幅(PAM )实验模块 2)数字频率计 8110A 3) 低频信号发生器XFD7 4) 直流稳压电源 JWY-30-4 5) 双踪同步示波器 SR8 6) 毫伏表 GB9 实 验 原 理:利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM )信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原信号。
图02-01示意地画出了传输一路语音信号的PCM 系统。
从图中可以看出要实现对语音的PCM 编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
图02-01 单路PCM 系统示意图1. 抽样定理:一个频带受限信号m(t)如果它的最高频率为f H (即m(t)的频谱中没有f H 以上的分量),可以唯一地由频率等于或大于2f H 的样值序列所决定。
图02-02 抽样定理实验方框图2.脉冲幅度调制(PAM):是脉冲载波的幅度随基带信号变化的一种的调制方式。
若脉冲载波是冲激脉冲m()t就是一个PAM信号。
序列,则按抽样定理进行抽样得到的信号sPAM信号在时间上是离散的,但在幅度上却是连续的。
而在PCM系统里,PAM信号只有在被量化和编码后才有传输的可能。
本实验仅提供一个PAM系统的简单模式。
图02-03 多路脉冲调幅实验框图实验内容及过程:(一)、抽样和分路脉冲的形成用示波器和频率计观察并核对各脉冲信号的频率、波形及脉冲宽度,并记录相应的波形。
实验二:抽样定理和脉冲调幅(PAM)实验一、实验目的通过本实验,学生应达到以下要求:1、观察并了解PAM信号形成、平顶展宽、解调和滤波等过程;2、验证并理解抽样定理,掌握对频谱混叠现象的分析方法;3、观察时分多路系统中非理想信道之间的路际串话现象,分析并掌握其形成原因。
二、实验内容本实验课完成以下实验内容:采用专用集成抽样保持开关完成对输入信号的抽样;多种抽样时隙的产生;采用低通滤波器完成对PAM信号的解调;测试出入信号频率与抽样频率之间的关系,观察频谱混叠现象,验证抽样定理;多路脉冲条幅(PAM);观察并测试时分多路PAM信号和高频串话。
三、实验原理在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。
因此,采取多路化制式是极为重要的通信手段。
最常用的多路复用体制是频分多路复用( FDM) 通信系统和时分多路复用( TDM) 通信系统。
频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号好称为脉冲调幅信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
抽样定理:fs>2fh,才能从抽样信号中可以无失真的恢复出原信号。
抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
数字通信系统是以此定理作为理论基础的。
在工作设备中,抽样过程是模拟信号数字化的第一步。
抽样性能的优劣关系到整个系统的性能指标。
抽样量化编码信道解码滤波收定时发定时PAM语音信号语音信号PAM图2-1 单路PCM系统示意图作为例子,图2-1示意地画出了传输一路语音信号的PCM系统。
从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。
电子信息工程学系实验报告课程名称:通信原理 实验项目名称:抽样定理和脉冲调幅(PAM )实验 实验时间:班级:通信091 姓名:Jxairy 学号:910705131实 验 目 的:1)验证抽样定理; 2)观察了解PAM 信号形成过程,平顶展宽解调过程。
实 验 环 境 与 仪 器: 1)抽样定理和脉冲调幅(PAM )实验模块 2)数字频率计 8110A 3) 低频信号发生器XFD7 4) 直流稳压电源 JWY -30-4 5) 双踪同步示波器 SR8 6) 毫伏表 GB9 实 验 原 理:利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM )信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原信号。
图02-01示意地画出了传输一路语音信号的PCM 系统。
从图中可以看出要实现对语音的PCM 编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
图02-01 单路PCM 系统示意图1. 抽样定理:一个频带受限信号m(t)如果它的最高频率为f H (即m(t)的频谱中没有f H 以上的分量),可以唯一地由频率等于或大于2f H 的样值序列所决定。
图02-02 抽样定理实验方框图2.脉冲幅度调制(PAM):是脉冲载波的幅度随基带信号变化的一种的调制方式。
若脉冲载波是冲激脉冲序列,则按抽样定理进行抽样得到的信号m()t就是一个PAM信号。
sPAM信号在时间上是离散的,但在幅度上却是连续的。
而在PCM系统里,PAM信号只有在被量化和编码后才有传输的可能。
本实验仅提供一个PAM系统的简单模式。
图02-03 多路脉冲调幅实验框图实验内容及过程:(一)、抽样和分路脉冲的形成用示波器和频率计观察并核对各脉冲信号的频率、波形及脉冲宽度,并记录相应的波形。
实验二:抽样定理和脉冲调幅(PAM)实验一、实验目的通过本实验,学生应达到以下要求:1、观察并了解PAM信号形成、平顶展宽、解调和滤波等过程;2、验证并理解抽样定理,掌握对频谱混叠现象的分析方法;3、观察时分多路系统中非理想信道之间的路际串话现象,分析并掌握其形成原因。
二、实验内容本实验课完成以下实验内容:采用专用集成抽样保持开关完成对输入信号的抽样;多种抽样时隙的产生;采用低通滤波器完成对PAM信号的解调;测试出入信号频率与抽样频率之间的关系,观察频谱混叠现象,验证抽样定理;多路脉冲条幅(PAM);观察并测试时分多路PAM信号和高频串话。
三、实验原理在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。
因此,采取多路化制式是极为重要的通信手段。
最常用的多路复用体制是频分多路复用( FDM) 通信系统和时分多路复用( TDM) 通信系统。
频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号好称为脉冲调幅信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
抽样定理:fs>2fh,才能从抽样信号中可以无失真的恢复出原信号。
抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
数字通信系统是以此定理作为理论基础的。
在工作设备中,抽样过程是模拟信号数字化的第一步。
抽样性能的优劣关系到整个系统的性能指标。
抽样量化编码信道解码滤波收定时发定时PAM语音信号语音信号PAM图2-1 单路PCM系统示意图作为例子,图2-1示意地画出了传输一路语音信号的PCM系统。
从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。
实验一 常用信号的分类与观察一、实验目的1、观察常用信号的波形特点及其产生方法;2、学会使用示波器对常用波形参数测量;3、掌握JH5004信号产生模块的操作。
二、实验原理对于一个系统的特性进行研究,重要的一个方面是研究它的输入—输出关系,即在特定输入信号下,系统输出的响应信号。
因而对信号进行研究是研究系统的出发点,是对系统特性观察的基本方法和手段。
在本实验中,将对常用信号及其特性进行分析、研究。
信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。
常用的信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa (t )信号、钟形信号、脉冲信号等。
1、指数信号:指数信号可表示为at Ke t f =)(。
对于不同的a 取值,其波形表现为不同的形式,如下图所示:在JH5004“信号与系统”实验平台的信号产生模块可产生a <0,t>0的Sa(t)函数的波形。
通过示波器测量输出信号波形,测量Sa(t)函数的a 、K 参数。
2、正弦信号:其表达式为)sin()(θω+⋅=t K t f ,其信号的参数有:振幅K 、角频率 ω、与初始相位θ。
其波形如下图所示:通过示波器测量输出信号波形,测量正弦信号的振幅K 、角频率ω参数。
3、衰减正弦信号:其表达式为⎩⎨⎧>⋅<=-)0(sin )0(0)(t t Ke t t f at ω,其波形如下图:4、复指数信号:其表达式为)sin()cos()()(t e jK t e K e K e K t f t t t j st ωωσσωσ⋅⋅+⋅⋅=⋅=⋅=+一个复指数信号可分解为实、虚两部分。
其中实部包含余弦衰减信号,虚部则为正弦衰减信号。
指数因子实部表征了正弦与余弦函数振幅随时间变化的情况。
一般0<σ,正弦及余弦信号是衰减振荡。
指数因子的虚部则表示正弦与余弦信号的角频率。
对于一个复信号的表示一般通过两个信号联合表示:信号的实部通常称之为同相支路;信号的虚部通常称之为正交之路。
抽样定理和PAM调制解调实验一、实验目的1、通过脉冲幅度调制实验,能加深理解脉冲幅度调制的特点。
2、通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。
二、实验设备1、信号源模块一块2、①号模块一块3、20M双踪示波器一台4、连接线若干三、实验原理抽样是把时间连续的模拟信号变换为时间离散信号的过程。
抽样定理是指:一个频带限制在(0,fH)内的时间连续信号m(t),如果以T≤1/2fH秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽样值完全确定。
根据取样脉冲的特性,取样分为理想取样、自然取样(亦称曲顶取样)、瞬时取样(亦称平顶取样);根据被取样信号的性质,取样又分为低通取样和带通取样。
虽然取样种类很多,但是间隔一定时间,取样连续信号的样值,把信号从时间上离散,这是各种取样共同的作用,取样是模拟信号数字化及时分多路的理论基础。
四、实验步骤1、将信号源模块、模块1固定在主机箱上,将黑色塑封螺钉拧紧。
2、插上电源线,打开主机箱右侧的交流开关,将信号源模块和模块1的电源开关拨下,观察指示灯是否点亮,红灯为+5V电源指示灯,绿灯为-12V电源指示灯,黄色为+12V电源指示灯。
3、观测PAM自然抽样波形1)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在4V左右。
2)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。
3)将模块1上K1选到“自然”。
4)关闭电源,按如下方式连线源端口目标端口连线说明信号源:“2K同步正弦波”模块1:“PAM-SIN”提供被抽样信号信号源:“CLK1”模块1:“PAMCLK”提供抽样时钟5)用示波器在“自然抽样输出”处观察PAM自然抽样波形。
4、观测PAM平顶抽样波形a)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在4V左右。
b)将信号源上S1、S2、S3依次设为“10000000”、“10000000”、“10000000”,将S5拨为“1000”,使“NRZ”输出速率为128K,抽样频率为:NRZ频率/8c)将K1设为“平顶”。
《通信原理》实验报告实验一:抽样定理和PAM调制解调实验系别:信息科学与工程学院专业班级:通信工程1003班学生姓名:陈威同组学生:杨鑫成绩:指导教师:惠龙飞(实验时间:2012 年 12 月 7 日——2012 年 12 月28日)华中科技大学武昌分校1、实验目的1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。
2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。
2、实验器材1、信号源模块一块2、①号模块一块3、60M双踪示波器一台4、连接线若干3、实验原理3.1基本原理1、抽样定理图3-1 抽样与恢复2、脉冲振幅调制(PAM)所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。
如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。
自然抽样平顶抽样)(tm)(tT图3-3 自然抽样及平顶抽样波形PAM方式有两种:自然抽样和平顶抽样。
自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号ms化的规律(如图3-3所示)。
平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。
在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。
四、实验步骤1、将信号源模块、模块一固定到主机箱上面。
双踪示波器,设置CH1通道为同步源。
2、观测PAM自然抽样波形。
(1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。
(2)将模块一上K1选到“自然”。
(3)关闭电源,连接表3-1 抽样实验接线表(5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。
在PAMCLK处观察被抽样信号。
CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。
图3-1 2KHz模拟信号图3-2 自然抽样PAM输出分析:抽样定理表明个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤Hf 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。
实验二:抽样定理和脉冲调幅(PAM)实验一、实验目的通过本实验,学生应达到以下要求:1、观察并了解PAM信号形成、平顶展宽、解调和滤波等过程;2、验证并理解抽样定理,掌握对频谱混叠现象的分析方法;3、观察时分多路系统中非理想信道之间的路际串话现象,分析并掌握其形成原因。
二、实验内容本实验课完成以下实验内容:采用专用集成抽样保持开关完成对输入信号的抽样;多种抽样时隙的产生;采用低通滤波器完成对PAM信号的解调;测试出入信号频率与抽样频率之间的关系,观察频谱混叠现象,验证抽样定理;多路脉冲条幅(PAM);观察并测试时分多路PAM信号和高频串话。
三、实验原理在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。
因此,采取多路化制式是极为重要的通信手段。
最常用的多路复用体制是频分多路复用( FDM) 通信系统和时分多路复用( TDM) 通信系统。
频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。
利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号好称为脉冲调幅信号。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
抽样定理:fs>2fh,才能从抽样信号中可以无失真的恢复出原信号。
抽样定理在通信系统、信息传输理论方面占有十分重要的地位。
数字通信系统是以此定理作为理论基础的。
在工作设备中,抽样过程是模拟信号数字化的第一步。
抽样性能的优劣关系到整个系统的性能指标。
抽样量化编码信道解码滤波收定时发定时PAM语音信号语音信号PAM图2-1 单路PCM系统示意图作为例子,图2-1示意地画出了传输一路语音信号的PCM系统。
从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。
因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。
为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。
PAM调制与抽样定理实验一、实验目的1. 掌握自然抽样、平顶抽样特性;2. 理解抽样脉冲脉宽、频率对恢复信号的影响;3. 理解低通滤波器幅频特性对恢复信号的影响;4. 了解混叠效应产生的原理。
二、实验仪器1. RZ9681实验平台2. 实验模块:●主控模块●信源编码与时分复用模块A3●信源译码与时分解复用模块A63. 100M双通道示波器4. 信号连接线5. PC机(二次开发)三、实验原理1. 抽样定理设连续信号ff(tt),其最高截止频率为ffmm,如果用频率为ff≥2ff mm的抽样信号对ff(tt)进行抽样,则ff(tt)就可以被样值信号唯一地表示。
也就是说,如果一个连续信号ff(tt)的频谱中最高频率不超过ff mm,这种信号必定是个周期性的信号,当抽样频率ff≥2ff mm时,抽样后的信号就包含原始连续信号的全部信息,而不会有信息丢失,在接收端就可以用一个低通滤波器根据这些抽样信号的样本来还原原来的连续信号ff(tt)。
抽样定理告诉我们:如果对某一带宽有限的模拟信号进行抽样,且抽样速率达到一定的数值时,那么根据这些抽样值就可以准确地还原信号。
也就是说,我们在传送模拟信号的时候,不一定要传送模拟信号本身,而是可以只传输按抽样定理得到的抽样值,这样我们在接收端依然可以根据接收到的抽样值还原出原始信号。
图1 信号的抽样与恢复假设mm (tt )、δδTT (tt )和mm ss (tt )的频谱分别为MM (ωω)、δδTT (ωω)和MM ss (ωω)。
由图1可知, mm ss (tt )=mm (tt )×δδTT (tt ) 对于理想抽样,抽样信号为冲击序列,则经过傅里叶变化后,仍为冲击序列。
根据傅里叶变换的性质,时域的乘积等于频域的卷积,我们可得MM ss (ωω)=12ππ[MM (ωω)∗δδTT (ωω)]=1TT �MM (ωω−nnωωss )mmnn=−∞ 上式表明,mm ss (tt )的频谱由无穷多个MM (ωω)以ωωss 的各次谐波为中心点相叠加而成,幅度只有原来的1TT 。
实验三 抽样定理和PAM 调制解调实验
一、实验目的
1、 通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。
2、 通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺
点。
二、实验内容
1、 观察模拟输入正弦波信号、抽样时钟的波形和脉冲幅度调制信号,并注意
观察它们之间的相互关系及特点。
2、 改变模拟输入信号或抽样时钟的频率,多次观察波形。
三、实验器材
1、 信号源模块 一块
2、 ①号模块 一块
3、 60M 双踪示波器 一台
4、 连接线 若干
四、实验原理 (一)基本原理 1、抽样定理
抽样定理表明:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤H
f 21
秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。
假定将信号()m t 和周期为T 的冲激函数)t (T 相乘,如图3-1所示。
乘积便是均匀间隔为T 秒的冲激序列,这些冲激序列的强度等于相应瞬时上()m t 的值,它表示对函数()m t 的抽样。
若用()m t s 表示此抽样函数,则有:
()()()s T m t m t t δ=
图3-1 抽样与恢复
假设()m t 、()T t δ和()s m t 的频谱分别为()M ω、()T δω和()s M ω。
按照频率卷积定理,()m t ()T t δ的傅立叶变换是()M ω和()T δω的卷积:
[]1
()()()2s T M M ωωδωπ
=
* 因为 2()T T
s n n T
π
δδ
ωω∞
=-∞
=
-∑
T
s πω2=
所以 1()()()s T s n M M n T ωωδωω∞
=-∞⎡⎤
=*-⎢⎥⎣⎦
∑
由卷积关系,上式可写成
1()()s s n M M n T ωωω∞
=-∞
=-∑
该式表明,已抽样信号()m t s 的频谱()M s ω是无穷多个间隔为ωs 的()M ω相迭加而成。
这就意味着()M s ω中包含()M ω的全部信息。
需要注意,若抽样间隔T 变得大于
H
f 21
,则()M ω和()T δω的卷积在相邻的周期内存
在重叠(亦称混叠),因此不能由()M s ω恢复()M ω。
可见,H
f T 21
=是抽样的最大间隔,它被称为奈奎斯特间隔。
上面讨论了低通型连续信号的抽样。
如果连续信号的频带不是限于0与H f 之间,而是限制在L f (信号的最低频率)与H f (信号的最高频率)之间(带通型连续信号),那么,其抽样频率s f 并不要求达到H f 2,而是达到2B 即可,即要求抽样频率为带通信号带宽的两倍。
图3-2画出抽样频率s f ≥2B (无混叠)和s f <2B (有混叠)时两种情况下冲激抽样信号的频谱。
(a) 连续信号的频谱
(b ) 高抽样频率时的抽样信号及频谱(无混叠)
(c ) 低抽样频率时的抽样信号及频谱(混叠) 图3-2 采用不同抽样频率时抽样信号的频谱
2、脉冲振幅调制(PAM )
所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。
如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。
但是实际上真正的冲激脉冲串并不能付之实现,而通常只能采用窄脉冲串来实现。
因而,
研究窄脉冲作为脉冲载波的PAM 方式,将具有实际意义。
自然抽样
平顶抽样
)
(t m )
(t T
图3-3 自然抽样及平顶抽样波形
PAM 方式有两种:自然抽样和平顶抽样。
自然抽样又称为“曲顶”抽样,已抽样信号m s (t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变化的规律(如图3-3所示)。
平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。
在实际中,平顶抽样的PAM 信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。
五.实验步骤
1、将信号源模块、模块1固定在主机箱上。
双踪示波器,设置CH1通道为同步源。
2、插上电源线,打开主机箱右侧的交流开关,将信号源模块和模块1的电源开关拨下,观
察指示灯是否点亮,红灯为+5V 电源指示灯,绿灯为-12V 电源指示灯,黄色为+12V 电源指示灯。
(注意,此处只是验证通电是否成功,在实验中均是先连线,再打开电源做实验,不要带电连线)。
3、观测PAM 自然抽样波形。
1) 用示波器观测信号源“2K 同步正弦波”输出,调节W1改变输出信号幅度,使输
出信号峰-峰值在3V 左右。
2)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。
3)将模块1上K1选到“自然”。
4)关闭电源,按如下方式连线
源端口目标端口连线说明信号源:“2K同步正弦波”模块1:“PAM-SIN”提供被抽样信号信号源:“CLK1”模块1:“PAMCLK”提供抽样时钟
* 检查连线是否正确,检查无误后打开电源
5)用示波器在“自然抽样输出”处观察PAM自然抽样波形。
4、观测PAM平顶抽样波形
a)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输
出信号峰-峰值在3V左右。
b)将信号源上S1、S2、S3依次设为“10000000”、“10000000”、“10000000”,将S5
拨为“1000”,使“NRZ”输出速率为128K,抽样频率为:NRZ频率/8(实验中的电路,NRZ为“1”时抽样,为“0”时保持。
在平顶抽样中,抽样脉冲为窄脉冲)。
c)将K1设为“平顶”。
关闭电源,按下列方式进行连线。
源端口目标端口连线说明
信号源:“2K同步正弦波模块1:“PAM-SIN”提供被抽样信号信号源:“NRZ”模块1:“PAMCLK”提供抽样脉冲
d)打开电源,用双踪示波器,同时观察模拟信号”PAM-SIN”及”平顶抽样输出”波形.
5、改变抽样时钟频率”clk1”,分别取2K与4K,观测自然抽样信号,用双踪示波器同时
观察模拟信号”PAM-SIN”及”自然抽样输出”波形.验证抽样定理。
6、观测解码后PAM波形与原信号的区别
1)步骤3的前3步不变,按如下方式连线
源端口目标端口连线说明信号源:“2K同步正弦波”模块1:“PAM-SIN”提供被抽样信号信号源:“CLK1”模块1:“PAMCLK”提供抽样时钟模块1:“自然抽样输出”模块1:“IN”将PAM信号进行译码
2)将K1设为“自然”,用“PAM-SIN”信号做示波器的触发源,用双踪示波器对比观
测“PAM-SIN”和“OUT”波形。
7、将信号源产生的音乐信号输入到模块1的“PAM-SIN”,“自然抽样输出”和“IN”相
连,PAM解调信号输出到信号源上的“音频信号输入”,通过扬声器听语音,感性判断该系统对话音信号的传输质量。
六、思考练习解答
1、简述平顶抽样和自然抽样的原理及实现方法。
自然抽样原理图
自然采样时域和频域波形
用理想低通滤
波器恢复原始
信号。
采用平顶抽样的PAM调制信号的框图及信号的波形
平顶抽样信号的恢复
2、在抽样之后,调制波形中包不包含直流分量,为什么?
在抽样之后已调的波形并不带有直流分量,这是由于在离散点取值,使得直流分量被滤除。
3、为什么采用低通滤波器就可以完成PAM 解调?
低通滤波器采用的是均匀滤波,它的抽样频率fs不小于2fh,这样就不会发生混叠现象了。
通过低通滤波器就可截取出这一段的波形,这样就已经可以还原波形完成PAM调制了。
七、实验感悟
通过脉冲幅度调制实验,我对脉冲幅度调制的原理有了更深层次的理解,在这次实验中,抽样定理起着指导性的作用,这也是对之前学过的知识进行巩固和验证通过对电路组成、波形和所测数据的分析,加深我对这种调制方式优缺点的理解。