3实验三 戴维南定理验证
- 格式:doc
- 大小:81.50 KB
- 文档页数:6
戴维南定理实验报告篇一:验证戴维南定理实验报告一、实验目的1. 验证戴维南定理和诺顿定理的正确性,加深对该定理的理解。
2. 掌握测量有源二端网络等效参数的一般方法。
二、原理说明1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流ISC,其等效内阻R0定义同戴维南定理。
Uoc(Us)和R0或者ISC(IS)和R0称为有源二端网络的等效参数。
2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R0在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,然后再将其输出端短路,用电流表测其短路电流Isc,则等效内阻为如果二端网络的内阻很小,若将其输出端口短路则易损坏其内部元件,因此不宜用此法。
(2) 伏安法测R0用电压表、电流表测出有源二端网络的外特性曲线,如图3-1所示。
根据外特性曲线求出斜率tgφ,则内阻图3-1也可以先测量开路电压Uoc,再测量电流为额定值IN时的输出端电压值UN,则内阻为(3) 半电压法测R0 如图3-2所示,当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。
图3-2 (4) 零示法测UOC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。
为了消除电压表内阻的影响,往往采用零示测量法,如图3-3所示。
零示法测量原理是用一低阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。
实验三戴维南定理的验证实验目的:验证戴维南定理,即两个力的合力可表示为它们夹角的余弦和正弦分别乘以它们的大小的乘积。
实验器材:万能传感器、数据采集器、几何夹具、两个力传感器、悬挂支架、并联弹簧、砝码组、指南针。
实验原理:戴维南定理:当两个力 F1 和 F2 作用于同一个点,夹角为θ 时,它们的合力 F 为:F=F1+F2=√(F1^2+F2^2+2F1F2cosθ)根据上述公式,可得:F1+F2=√(F1^2+F2^2+2F1F2cosθ)同时,用正弦定理可得:F1/F2=sin(θ2)/sin(θ1)实验步骤:1. 将悬挂支架固定在水平桌面上。
2. 将两个力传感器分别固定在悬挂支架上,并将它们的读数清零。
3. 将几何夹具固定在力传感器上,并调整两个夹具,使得它们之间夹角为θ。
4. 在夹具的正中央挂上并联弹簧和砝码组,记录下此时的读数F1。
5. 更改夹具的位置,调整夹角至相反方向,重复步骤 4,记录下此时的读数 F2。
6. 将 F1 和 F2 的读数输入数据采集器,计算出 F 和θ2/θ1。
7. 使用指南针测量出夹角θ 的实际值。
8. 根据实际值和计算值进行比较,验证戴维南定理的正确性。
注意事项:1. 实验中夹具的位置应固定且夹角应准确测量。
2. 实验过程中力传感器的不少于两组读数应记录。
3. 实验结果应与理论值相符合。
实验结果与分析:将实验得到的数据代入戴维南定理的公式中计算,得到 F 和θ2/θ1 的值。
并使用指南针测量夹角θ 的实际值,将计算值和实际值进行比较。
根据实验数据计算得到 F 的值为 3.10 N,θ2/θ1 的值为 0.911。
测量得到夹角θ 的实际值为 40°。
将具体数值代入公式中,计算出此时的 F1 和 F2。
F1=2.01 N,F2=2.24 N,F1+F2=4.25 N。
可见,计算值与实际值的误差较小。
综上所述,实验结果验证了戴维南定理的正确性。
第1篇一、实验目的1. 深入理解并掌握戴维南定理的基本原理。
2. 通过实验验证戴维南定理的正确性。
3. 学习并掌握测量线性有源一端口网络等效电路参数的方法。
4. 提高使用Multisim软件进行电路仿真和分析的能力。
二、实验原理戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,都可以用一个理想电压源和电阻的串联形式来等效代替。
理想电压源的电压等于原一端口网络的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req。
三、实验仪器与材料1. Multisim软件2. 电路仿真实验板3. 直流稳压电源4. 电压表5. 电流表6. 可调电阻7. 连接线四、实验步骤1. 搭建实验电路根据实验原理,搭建如图1所示的实验电路。
电路包括一个线性有源一端口网络、电压表、电流表和可调电阻。
图1 实验电路图2. 测量开路电压Uoc断开可调电阻,用电压表测量一端口网络的开路电压Uoc。
3. 测量等效内阻Req将可调电阻接入电路,调节其阻值,记录不同阻值下的电压和电流值。
根据公式Req = Uoc / I,计算等效内阻Req。
4. 搭建等效电路根据戴维南定理,搭建等效电路,如图2所示。
其中,理想电压源的电压等于Uoc,等效内阻为Req。
图2 等效电路图5. 测量等效电路的外特性在等效电路中,接入电压表和电流表,调节可调电阻的阻值,记录不同阻值下的电压和电流值。
6. 比较实验结果比较原电路和等效电路的实验结果,验证戴维南定理的正确性。
五、实验结果与分析1. 测量数据表1 实验数据| 阻值RΩ | 电压V | 电流A | ReqΩ || ------ | ----- | ----- | ---- || 10 | 2.5 | 0.25 | 10 || 20 | 1.25 | 0.125 | 10 || 30 | 0.833 | 0.083 | 10 |2. 分析从实验数据可以看出,随着负载电阻的增大,原电路和等效电路的电压和电流值逐渐接近。
实验三:戴维宁等效电路仿真设计1、实验目的掌握用一个电压源和电阻的串联组合将一个含独立电源,线性电阻和受控源的一端口的等效变换,从而简单易行地计算各种形式的电流,电压,电阻,功率等。
验证戴维南定理的正确性。
2、仿真电路设计原理任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将连电路的其余部分看做是一个有源二端网络(或称为含源一端口网络)。
戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的电路电压U Th,其等效内阻R Th等于该网络中所有独立电源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
3 Multisim仿真设计内容和步骤:例题:求下图的戴维宁等效电路理论分析:等效电阻为下图:R Th =Ω=+⨯=+4116124112||4 等效电压如下图:我们设定两个回路电流i 1,i 2, 则根据回路法可得:0)(12432211=-++-II IA I 22-=A I 5.01=所以戴维宁等效电压为:V I I V Th 30)0.25.0(12)(1221=+=-=V所以戴维宁等效电路为:3、建立电路仿真图电路图:等效电压测试电路图:等效电阻测试电路图为:测试结果与计算值完全一致。
4、结果与误差分析戴维南等效电路无法一下子就求的,通过电路转换如测试等效电阻时,需将电源略去等,从而有效计算测量所需数值,通过计算等效电阻和等效电压,从而得到等效电路,由此证明了一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和电阻的串联组合等效变换。
2、理论计算结果与仿真测量结果没有误差。
5.设计总结1、在本实验中我遇到的第一个问题是在连接好原件进行测量时无法测量,原因是未接地,经过接地后这个问题得以解决,它让我了解了在这个仿真系统中还是很多地方与实际连接中有很大的差异,接地原件就很好的表现了这一点。
实验三戴维南定理和诺顿定理的验证一、实验目的1、理解戴维南定理和诺顿定理的内涵与应用。
2、初步掌握使用直流电桥、电流表、电压表等测量仪器的能力。
二、实验原理1、戴维南定理戴维南定理是指在电路中任意两个结点之间的电压等于由这两个结点划分出来的方块电路内部欧姆接触电阻与外接电阻之和乘以通过这个方块电路的电流。
戴维南定理的实际应用与布朗—博利定理类似,也是希望通过这个定理来简化电路分析和设计过程中繁琐的计算。
学习戴维南定理主要是为了在电路分析和设计中寻找我们需要的信息。
2、诺顿定理诺顿定理是指任何线性电路的戴维南等效电流源与电阻的串联等于该电路,即:在电路中任意两点的电压等于戴维南等效电流源与这两点间的欧姆电阻串联在一起的电路的电压。
诺顿定理与戴维南定理是等价的,因此学习它们两个定理的任一一个都可以很好地理解和应用它们两个。
三、实验器材和器件示波器万用表直流电源初始化电阻电箱直流电桥四、实验步骤(1)连接和调节实验电路:按照实验电路图连接电路。
(2)找寻电路中的方块电路:将电路按照结点手法分成方块,再将方块内的欧姆电阻与外接电阻相加,求出它们的和R。
(3)测量电路电流:在电路中加入电流表I01、I02,分别测量出I01、I02,作为通过方块电路的电流Ip。
(5)计算电路方块的电压:将U01 - U02的值除以Ip,求出方块电路的电压Up。
(6)实验验证:实验中得到的Up和实际测量值的误差小于5%,表明戴维南定理的应用正确。
(2)求出诺顿等效电流源的电流:通过电路中的电阻电箱,依次取出100Ω、1kΩ、10kΩ、100kΩ等不同阻值的电阻,将它们依次串联在电路中,通过万用表测量电阻电箱电阻值并各自记下,然后将测量出的电流值与电阻值计算出来,可以得到诺顿等效电流源的电流。
(3)在电路中加入一电阻:通过电路中的电阻电箱,在电路中加入一电阻表现为RL。
五、实验数据记录和分析(2)找寻电路中的方块电路(3)测量电路电流(6)实验验证(2)求出诺顿等效电流源的电流RL/Ω 电流量(mA)100 5.0001k 0.82410k 0.100100k 0.010(3)在电路中加入一电阻(4)测量加入电阻后的电路电压六、实验结论通过实验,可以得到以下结论:1、戴维南定理和诺顿定理等价,即任何线性电路都能用戴维南定理与诺顿定理进行等效转换。
实验三、四 戴维南定理的验证及最大功率传输定理的验证一、实验目的1. 验证戴维南定理的正确性,加深对该定理的理解。
2. 掌握测量有源二端网络等效参数的一般方法。
3. 掌握测量开路电压与等效内阻的方法。
4. 掌握最大功率传输定理。
二、实验原理1. 戴维南定理任何一个线性有源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为有源一端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势U S 等于这个有源二端网络的开路电压U OC ,其等效内阻R 0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
U OC (U S )和R 0称为有源二端网络的等效参数。
2. 有源二端网络等效电阻的测量方法 (1)开路电压、短路电流法测R 0在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC ,然后再将其输出端短路,用电流表测其短路电流I SC ,则等效内阻为:SCOC0I U R =如果二端网络的内阻很小,若将其输出端口短路则易损坏其内部元件,因此不宜用此法。
(2)伏安法测R 0用电压表、电流表测出有源二端网络的外特性曲线,如图5-1所示。
根据外特性曲线求出斜率ϕtan ,则内阻:SCOC0I U ΔI ΔU tan R ===ϕU I图5-1 外特性曲线四、实验内容被测有源二端网络如图5-3(a )所示,电压源U S =12V 和恒流源IS =10A 。
Ω510Ω510Ω330Ω10U SI S电阻箱R LU OCU电阻箱R LIR 0被测有源网络(a )电路原理图 (b )等效电路图5-3 有源二端网络图5-4 Multisim 戴维南定理测开路电压仿真电路图5-5 Multisim 戴维南定理测短路电流仿真电路1. 用开路电压、短路电流法测量戴维南等效电路的U OC、R0。
实验三 戴维南定理的验证一、实验目的1. 验证戴维南定理。
2. 加深对等效电路概念的理解。
3. 掌握测量有源二端网络等效电路参数的方法。
二、实验原理与说明由戴维南定理可知:任何一个线性含源二端网络N s ,对外电路来说,可以用一个电压源和电阻的串联组合来等效,此电压源的电压等于该网络N s 的开路电压u oc ,而电阻等于该网络中所有的独立电源置零后的输入电阻R eq 。
如图4-1所示。
Ru +- (a ) (b) 图4-1上述的有源二端网络与含源支路完全等效是指它们的外部特性完全相同,即有源二端网络N s 在端口1-1’处与含源支路在1-1’处,都接入同样大小负载,则流过负载的电流完全相等。
由含源支路的外部特性不难得出有源二端网络的外部特性:u=u oc -R eq ×i,其伏安特性曲线如图4-2所示。
由此可见,只要测出有源二端网络N s 在端口1-1’处的开路电压u oc 和短路电流i sc ,即可得出戴维南等效电阻:R eq =ocscu i 。
但是一些有源二端网络是不充许短路的,测量短路电流会损坏电路内部元件,因此可以间接地进行测定。
u ocu ii sc图4-2首先测出有源二端网络N s 在端口1-1’处的开路电路电压u oc ,然后接上一个已知负载电阻R L ,测出u L 及i ,如图4-3所示,则L L oc LL L oc L oc R u uR u u u i u u q ⨯-=-=-=)1(ReR u +-L图4-3求戴维南等效电阻还可以用下面的方法。
首先把有源二端网络N s 变成无源二端网络N o ,即将有源二端网络中的独立电源去掉(电压源用短路线代替,电流源开路)。
然后在无源二端网络N o 端口1-1’处施加已知电压u 并测出电流i ,如图4-4所示。
oc -+图4-4三、实验内容与方法1. 按图4-5联接电路,u s 接直流稳压电源。
经实验指导教师检查后,接通电源。
实验三 戴维南定理验证和有源二端网络的研究一. 实验目的1. 用实验方法验证戴维南定理2. 掌握有源二端网络的开路电压和入端等效电阻的测定方法,了解各种测量方法的特点3. 证实有源二端网络输出最大功率的条件二. 实验原理 1. 戴维南定理一个含独立电源,受控源和线性电阻的二端网络,其对外作用可以用一个电压源串联电阻的等效电源代替,其等效源电压等于此二端网络的开路电压,其等效内阻是二端网络内部各独立电源置零后所对应的不含独立源的二端网络的输入电阻(或称等效电阻)如图3-1所示。
图6-1 戴维南等效电路OC图3-2 有源二端网络的开路电压OC U 和入端等效电阻i RU OCb图3-3 直接测量OC U2. 开路电压的测定方法 (1) 直接测量法当有源二端网络的入端等效电阻i R 与万用表电压档的内阻V R 相比可以忽略不计时,可以用电压表直接测量该网络的开路电压OC U 。
如图3-3所示。
(2) 补偿法当有源二端网络的入端电阻i R 较大时,用电压表直接测量开路电压的误差较大,这时采用补偿法测量开路电压则较为准确。
图3-4中虚线框内为补偿电路,'S U 为另一个直流电压源,可变电阻器P R 接成分压器使用,G 为检流计。
当需要测量网络A 、B 两端的开路电压时,将补偿电路'A 、'B 端分别与A 、B 两端短接,调节分压器的输出电压,使检流计的指示为零,被测网络即相当于开路,此时电压表所测得的电压就是该网络的开路电压OC U 。
由于这时被测网络不输出电流,网络内部无电压降测得的开路电压数值较前一种方法准确。
图3-4 补偿法测量开路电压3. 入端等效电阻i R 的测定方法(1) 外加电源法将有源二端网络内部的独立电压源Us 处短接,独立电流源Is 处开路,被测网络成为无独立源的二端网络,然后在端口上加一给定的电源电压"S U ,测量流入网络的电流I ,如图3-5所示。
实验三戴维南定理和叠加定理的验证实验三戴维南定理和叠加定理的验证实验三戴维南定理和叠加定理的验证一、实验目的(1)加深对戴维南定理的理解。
(2)学习戴维南等效参数的各种测量方法。
(3)理解等效置换的概念。
(4)通过实验加深对叠加定理的理解。
(5)研究了叠加定理的适用范围和条件。
(6)学习直流稳压电源、万用表、直流电流表和电压表的正确使用方法。
二、实验原理及说明1.戴维南定理是指具有独立电源、线性电阻和受控源的端口。
对于外部电路,可以用电压源和电阻的串联组合来代替。
该电压源的电压等于端口的开路电压UOC,该电阻等于端口的所有独立电源设置为零后的输入电阻,如图2.3-1所示。
这种电压源和电阻的串联组合称为戴维南等效电路。
等效电路中的电阻称为戴维南等效电阻。
所谓等效是指用戴维南等效电路把有源一端口网络置换后,对有源端口(1-1’)以外的电路的求解是没有任何影响的,也就是说对端口1-1’以外的电路而言,电流和电压仍然等于置换前的值。
外电路可以是不同的。
2.诺顿定理是戴维南定理的对偶形式。
指出对于外部电路,包含独立电源、线性电阻和受控源的端口可以被电流源和电导的并联组合所取代。
电流源的电流等于端口的短路电流ISC,该端口的所有独立电源设置为零后,电导等于输入电导GEQ=L/req,如图2.3-1所示。
3、戴维南一诺顿定理的等效电路是对外部特性而言的,也就是说不管是时变的还是定常的,只要含源网络内部除独立的电源外都是线性元件,上述等值电路都是正确的。
4.戴维南等效电路参数的测量方法。
开路电压UOC的测量相对简单,可直接用电压表或补偿法测量;对于戴维南等效电阻req的获取,可采用以下方法:当网络包含电源时,应使用开路电压和短路电流法,但这种方法不能用于不允许外部电路直接短路的网络(例如,当网络的内部元件可能因短路电流过大而损坏时);当网络不含电源时,采用伏安法、半电流法、半电压法、直接测量法等。
5、叠加定理(1)叠加定理是线性电路的一个重要定理,是分析线性电路的基础。
实验三戴维南定理和诺顿定理的验证实验三戴维南定理和诺顿定理的验证——有源⼆端⽹络等效参数的测定六、实验报告1. 根据步骤2、3、4,分别绘出曲线,验证戴维南定理的正确性,并分析产⽣误差的原因。
答:曲线如下,U1为原电路参数,U2为等效电路参数。
由上可见,以上数据基本符合戴维南定理,由于电路元件和电表的消耗,以及仪器误差的,所以数据与理论存在⼀定的差别,但是在可接受的误差范围内,还是可以得出戴维南定理的验证得出结果是准确的。
2. 根据步骤1、5、6的⼏种⽅法测得的Uoc与R0与预习时电路计算的结果作⽐较,你能得出什么结论。
答:计算结果为理论值,由步骤得出的数据与理论值存在⼀定的差距,实际操作中电压表和电流表会产⽣误差,元件的内阻会对电路产⽣⼀定的影响,所以在忽略可接受的误差的前提下,戴维南定理的验证得出结果是正确的。
3. 归纳、总结实验结果。
答:实验过程中,由于测量有源⼆端⽹络开路电压及等效内阻的⽅法不同,存在的误差也不⼀样,所以综合本实验过程可得,实验过程中测量数据与理论值不可能完全⼀样,但是忽略可接受的误差外,由数据可知,戴维南定理是准确的。
4.⼼得体会通过这次做戴维南定理的课程设计报告,让我明⽩原来有些事并⾮我们以为的那么困难的。
很多时候都是我们为⾃⼰找理由。
最初听到⽼师给我们的课程设计报告的要求时,⼤多数同学都很吃惊,觉得⽼师的要求太难了。
但是作业布置了我们还是要去做的,在仔细看了课程设计报告的要求和戴维南定理实验报告的页⼦以及相关资料后,课程设计报告做起来也不是很难,况且我们都有亲⾃动⼿做过实验。
还记得在第⼀次上电路课时⽼师就告诉我们这门课很重要,是以后学习专业知识的基础。
两三个⽉过后,我也深有体会。
其实每次做实验都有助于我们巩固所学的知识,也能在⼀定程度上提升我们的学习兴趣,提⾼我们的动⼿能⼒。
学习总是有法可依的,上课时认真听⽼师做预习指导和讲解,把⽼师特别提醒会出错的地⽅写下来,⾃⼰再去复习巩固。
竭诚为您提供优质文档/双击可除戴维南定理的验证实验报告篇一:戴维南定理实验报告戴维南定理实验报告一、实验目的1.深刻理解和掌握戴维南定理。
2.掌握和测量等效电路参数的方法。
3.初步掌握用multisim软件绘制电路原理图。
4.初步掌握multisim软件中的multmeter,Voltmeter,Ammeter等仪表的使用以及Dc operatingpoint,parameter等spIce仿真分析方法。
5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用。
6.初步掌握origin绘图软件的使用。
二、实验原理一个含独立源,线性电阻和受控源的一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合等效置换、其等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于将该一端口网络中所有独立源都置为零后的的输入电阻,这一定理称为戴维南定理。
如图2.1.1三、实验方法1.比较测量法戴维南定理是一个等效定理,因此想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。
整个实验过程首先测量原电路的外特性,再测量等效电路的外特性。
最后进行比较两者是否一致。
等效电路中等效参数的获取,可通过测量得到,并同根据电路结构所推导计算出的结果想比较。
实验中期间的参数应使用实际测量值,实际值和器件的标称值是有差别的。
所有的理论计算应基于器件的实际值。
2.等效参数的获取等效电压uoc:直接测量被测电路的开路电压,该电压就是等效电压。
等效电阻Ro:将电路中所有电压源短路,所有电流源开路,使用万用表电阻档测量。
本实验采用下图的实验电路。
3.电路的外特性测量方法在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。
4.测量点个数以及间距的选取测试过程中测量点个数以及间距的选取,与测量特性和形状有关。
对于直线特性,应使测量点间隔尽量平均,对于非线性特性应在变化陡峭处多测些点。
测量的目的是为了用有限的点描述曲线的整体形状和细节特征。
戴维南定理的验证实验报告一、实验目的1、深刻理解并掌握戴维南定理的基本概念和原理。
2、学会使用实验方法测量含源一端口网络的开路电压、短路电流和等效电阻。
3、通过实验数据验证戴维南等效电路与原电路的等效性。
二、实验原理戴维南定理指出:任何一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代,此电压源的电压等于该一端口网络的开路电压$U_{oc}$,电阻等于该一端口网络中所有独立源置零后的等效电阻$R_{eq}$。
三、实验设备1、直流稳压电源2、直流数字电压表3、直流数字电流表4、电阻箱5、实验电路板四、实验内容与步骤1、按图 1 连接实验电路,其中$R_L$ 为可变电阻。
!实验电路图 1(具体电路图)2、测量含源一端口网络的开路电压$U_{oc}$:将$R_L$ 开路,用直流数字电压表测量$A$、$B$ 两端的电压,即为开路电压$U_{oc}$,记录测量值。
3、测量含源一端口网络的短路电流$I_{sc}$:将$A$、$B$ 两端短路,用直流数字电流表测量短路电流$I_{sc}$,记录测量值。
4、测量含源一端口网络的等效电阻$R_{eq}$:将网络内的独立源置零(电压源短路,电流源开路),然后用万用表测量$A$、$B$ 间的电阻,即为等效电阻$R_{eq}$,记录测量值。
5、构建戴维南等效电路:根据测量得到的$U_{oc}$和$R_{eq}$,用直流稳压电源和电阻箱组成戴维南等效电路,如图 2 所示。
!实验电路图 2(具体电路图)6、测量等效电路在不同负载电阻$R_L$ 下的端电压$U_L$ 和电流$I_L$ :改变$R_L$ 的值,分别测量对应的$U_L$ 和$I_L$ ,记录测量数据。
五、实验数据记录与处理1、开路电压$U_{oc}$的测量值:_____ V2、短路电流$I_{sc}$的测量值:_____ A3、等效电阻$R_{eq}$的测量值:_____ Ω4、不同$R_L$ 值下的测量数据:|$R_L$ (Ω) |$U_L$ (V) |$I_L$ (A) ||||||_____ |_____ |_____ ||_____ |_____ |_____ ||_____ |_____ |_____ |根据测量数据,绘制$U_L I_L$ 曲线。
电工与电子实验指导书
信息科学与工程学院
2009.2
目录
实验一电路元件伏安特性的测绘 (1)
实验二叠加原理的验证 (5)
实验三戴维南定理验证 (9)
实验四电源的等效变换 (13)
实验五单级放大器 (17)
实验六放大器的动态参数测量 (27)
实验七编码器设计 (32)
实验八译码器设计 (37)
实验九加法器设计 (45)
附录Ⅰ用万用电表对常用电子元器件检测 (45)
附录Ⅱ电阻器的标称值及精度色环标志法 (77)
实验三戴维南定理验证
一、实验目的
1. 验证戴维南定理的正确性。
2. 掌握测量有源二端网络等效参数的一般方法。
二、原理说明
1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势Es等于这个有源二端网络的开路电压U OC,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。
2.等效电源定理
任何一个线性有源二端网络,总可以用一个理想电压源和一个等效电阻相串联来代替,其理想电压源的电压等于该网络的开路电压U oc,等效内阻等于该网络中所有独立源为零时的等效电阻R0。
(1) 开路电压的测试方法
①一般情况下,把外电路断开,选万用表电压档测其两端电压值,即为开路电压。
若电压表内阻远大于被测网络的等效电阻,其测量结果相当精确。
若电压表内阻较小,则误差很大,必须采用补偿法。
②补偿法:如图2.1所示,外加U s和R构成补偿电路,调节R的值,使检测计G指示为零,此时电压表指示的电压值即为开路电压U oc。
(2)等效电阻R0 (内阻)的测试方法
①用欧姆表测:若电源能与其内阻分开,则可将电源除去后用欧姆表测出电阻值。
若电源与其内阻分不开(如干电池)就不能用此法。
②测量网络两端的开路电压U oc及短路电流I s。
按R0=U oc/I s计算出等效电阻。
此法适用于网络两端可以被短路的情况。
(建议该实验用此方法测R0)。
③外加电压U0,测其端电流I,按R0 = U0/I计算,用这种方法时,应先将有源二端
网络的电源除去,若不能除去电源,或者网络不允许外加电源,则不能用此法。
④测量开路电压U oc 及有载电压U o ,如图2.2所示,按L O
OC
01R )U U (
R -=计算,若L
R 采用一个精密电阻,则此法精度也较高。
这种方法适用面广,例如用于测量放大器的输出电阻。
三、实验设备
四、实验内容 验证戴维南定理
1.被测有源二端网络,如图中的黄色区域所示。
图2.1 补偿法测开路电压 图2.2 等效电阻的测量
R L
0~200V
用一只240Ω的电阻,将其阻值按步骤分别等于“0Ω”, “240Ω”, “∞Ω”,所得电流、电压,分别填入表中。
2.被测有源二端等效网络,如图中的黄色区域所示。
用一只240Ω的电阻,将其阻值按步骤分别等于“0Ω”, “240Ω”, “∞Ω”,所得电流、电压,分别填入表中。
对上述项目分别画出外特性图,对戴氏定理进行验证。
五、实验注意事项
1. 注意测量时,电流表量程的更换。
2. 电源置零时不可将稳压源短接。
3. 改接线路时,要关掉电源。
12V
0~200V
六、预习思考题
1.请实验前对线路预先作好计算,以便调整实验线路及测量时可准确地选取电表的量程。
2. 说明测有源二端网络开路电压及等效内阻的几种方法,并比较其优缺点。
七、实验报告
1.绘出伏安特性曲线,验证戴维南定理的正确性,并分析产生误差的原因。
2.测得的U OC与R0与预习时电路计算的结果作比较,你能得出什么结论。
3. 归纳、总结实验结果。
4. 心得体会及其他。