直流伺服电动机实验报告1
- 格式:doc
- 大小:495.50 KB
- 文档页数:4
直流电动机实验报告直流电动机实验报告引言直流电动机是一种常见的电动机类型,广泛应用于工业生产和日常生活中。
本实验旨在通过实际操作和数据记录,探究直流电动机的工作原理和性能特点。
实验目的1. 了解直流电动机的基本结构和工作原理;2. 掌握直流电动机的调速方法;3. 研究直流电动机的性能特点,如转速、转矩和效率等。
实验器材1. 直流电动机;2. 直流电源;3. 电流表和电压表;4. 转速测量仪。
实验步骤1. 将直流电动机与电源连接,确保电源开关处于关闭状态;2. 通过电流表和电压表测量直流电动机的额定电流和额定电压;3. 打开电源开关,观察直流电动机的运转情况;4. 使用转速测量仪测量直流电动机的转速;5. 调节电源电压,记录不同电压下的转速和电流数据。
实验结果与分析通过实验记录的数据,我们可以得到直流电动机的转速和电流随电压变化的关系。
在低电压下,电动机的转速较低,电流较小;而在高电压下,电动机的转速较高,电流较大。
这是因为直流电动机的转速与电压成正比,电流与负载有关。
此外,我们还可以计算直流电动机的效率。
效率是指电动机输出的功率与输入的功率之比。
通过测量电动机的输入电流和电压,以及输出的机械功率,我们可以计算出直流电动机的效率。
实验结果显示,直流电动机的效率随着负载的增加而下降,这是因为在负载增加的情况下,电动机需要消耗更多的能量来克服摩擦力和阻力。
讨论与结论本实验通过实际操作和数据记录,深入探究了直流电动机的工作原理和性能特点。
通过分析实验结果,我们可以得出以下结论:1. 直流电动机的转速与电压成正比,电流与负载有关;2. 直流电动机的效率随着负载的增加而下降;3. 直流电动机在不同电压下的运转情况各异,可以根据实际需求进行调速。
在实际应用中,直流电动机具有广泛的用途,如工业生产中的机械传动、交通工具中的驱动系统以及家用电器中的电机等。
了解直流电动机的性能特点对于正确选择和使用电动机至关重要。
开放型实验“直流伺服电机的建模与性能分析”实验指导书一、实验目的1. 了解机理法、实验法建模的基本步骤;2. 会用实验法建立直流伺服电机的数学模型;3. 掌握控制系统稳定性分析的基本方法;二、实验要求1. 采用实验法建立直流伺服电机的数学模型;2. 分析直流伺服电机的稳定性,并在MATLAB 中仿真验证;三、实验设备1. GSMT2014 型直流伺服系统控制平台;2. PC、MATLAB 平台;四、直流伺服系统控制平台简介实际GSMT2014型直流伺服系统控制平台如图1.1所示。
该平台所使用的直流电机的额定电压为26V,额定功率为70W,最高转速为3000r/min,电机的编码器为1000p/r。
图1.1 GSMT2014型直流伺服系统控制平台GSTM2014实验平台是基于双电机高性能运动控制器GT400和智能伺服驱动器的直流伺服电机控制系统,由于GSMT2014平台增加了高性能的GT2014运动控制器,可以在MATLAB/simulink软件下完成实时控制实验掌握通过实验数据来建立系统的数学模型的实验方法,以及现代控制理论的状态反馈法。
五、实验原理系统的建模方法主要分为机理法和实验法。
1.机理法建立直流伺服电机数学模型采用机理法建立系统模型,需要深入理解系统内部的各个部分之间的关系,可以通过简化模型原理图得出,直流伺服电机的简化模型原理图如图1.2所示。
图1.2 直流电机的等效电路a U ——定义为电枢电压(伏特)b U ——定义为反电动势(伏特)a I ——定义为电枢电流(安倍)a R ——定义为电枢电阻(欧姆)a L ——定义为电枢电感(亨利)m T ——定义为电机产生的转矩(牛顿·米)c T ——定义为系统的干扰力矩(牛顿·米)m J ——定义为负载的等效转动惯量(千克·米²)结合直流伺服机的等效电路模型可以得出:(1)电枢电压方程: dt t di La t i a a )()(R t U -t U a b a +=)()((1-1) (2)电动机的转矩:a m kI T =(1-2) 式中:k ——电动机的转矩常数(3)电动机的反电动势:n b w K =b U(1-3) 式中:b K ——反电动势常数(4)转矩平衡方程: c m T dt d J +=22m T θ(1-4)当改变电动机的电枢电压时,根据(1-1)、(1-2)、(1-3)、(1-4)式可以得出直流电动机的动态微分方程为: c f a c e T K U K t n dtt dn dt t n d -=++)()()(m 22m τττ (1-5) 其中:ετ——电磁时间常数; f K ——机械特性斜率;m τ——机械时间常数; c K ——转速常数;)(t n ——电机转速。
直流伺服电机开题报告直流伺服电机开题报告一、引言直流伺服电机是一种广泛应用于自动控制系统中的电机,其具有快速响应、高精度、可靠性强等特点,被广泛应用于机器人、数控机床、印刷设备等领域。
本文旨在通过对直流伺服电机的研究,探索其原理、特性以及应用。
二、直流伺服电机的原理直流伺服电机是一种以直流电作为动力源的电机,其原理基于电磁感应和电磁力的作用。
当直流电通过电枢线圈时,产生的磁场与永磁体的磁场相互作用,使电枢产生转矩。
而通过控制电枢电流的大小和方向,可以实现对电机转速和位置的精确控制。
三、直流伺服电机的特性1. 高精度:直流伺服电机具有较高的转速精度和位置精度,能够满足对精确运动控制的要求。
2. 快速响应:直流伺服电机的响应速度快,能够迅速调整转速和位置,适用于高速运动和快速响应的场景。
3. 负载能力强:直流伺服电机能够承受较大的负载,具有较高的输出功率和转矩。
4. 可靠性强:直流伺服电机采用了先进的控制算法和保护措施,能够保证系统的稳定性和可靠性。
四、直流伺服电机的应用1. 机器人领域:直流伺服电机广泛应用于各类工业机器人和服务机器人中,用于实现机械臂的精确运动和姿态调整。
2. 数控机床:直流伺服电机在数控机床中被用于驱动主轴和进给系统,实现高精度的切削和定位。
3. 印刷设备:直流伺服电机在印刷设备中用于控制印刷轴的转速和位置,保证印刷品的准确对位和质量。
五、直流伺服电机的发展趋势1. 高效节能:随着环保意识的提高,直流伺服电机的节能性能将成为未来发展的重点,采用高效的电机设计和控制算法,减少能源消耗。
2. 智能化:直流伺服电机将趋向于智能化发展,通过引入传感器和自适应控制算法,实现更加智能化的运动控制。
3. 小型化:随着电子技术的进步,直流伺服电机将趋向于小型化发展,体积更小、重量更轻,适应更多场景的需求。
4. 高集成度:直流伺服电机将趋向于高度集成化发展,将控制器、传感器等功能集成在一体,减少系统的复杂性和成本。
实验六 直流伺服电机实验一、实验设备及仪器 被测电机铭牌参数:P N =185W ,U N =220V ,I N =1.1A , 使用设备规格(编号):1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机);4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04);7.直流电压、毫安、安培表(MEL-06);二、实验目的1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。
2.掌握直流伺服电动机的机械特性和调节特性的测量方法。
三、实验项目1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。
2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。
3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。
4.测直流伺服电动机的机电时间常数。
四、实验说明及操作步骤1.用伏安法测电枢的直流电阻Ra取三次测量的平均值作为实际冷态电阻值Ra=3132a a a R R R ++。
表中Ra=(R a1+R a2+R a3)/3; R aref =Ra*a ref θ++235235(3)计算基准工作温度时的电枢电阻由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。
按下式换算到基准工作温度时的电枢绕组电阻值:R aref =Raaref θθ++235235式中R aref ——换算到基准工作温度时电枢绕组电阻。
(Ω) R a ——电枢绕组的实际冷态电阻。
(Ω)θref ——基准工作温度,对于E 级绝缘为75℃。
θa ——实际冷态时电枢绕组的温度。
(℃)2.测直流伺服电动机的机械特性I S:电流源,位于MEL-13,由“转矩设定”电位器进行调节。
淄博职业技术学院控制电机实验报告XX学院___年级 XX班姓名________学号_________同组人__________实验日期________年_____月____日温度________ 湿度________ 实验一直流伺服电动机电枢电阻的测量一、实验目的1、通过实验测出直流伺服电动机的参数ra、Ke、KT。
2、掌握直流伺服电动机的机械特性二、实验项目1、测直流伺服电动机的电枢电阻。
三、实验方法1、实验设备:2、用伏安法测直流伺服电动机电枢的直流电阻(1)用伏安法测直流伺服电动机电枢的直流电阻按图1接线,电阻选用2.2K 100W 的变阻器。
电流表的量程选用2A ,电源选用直流电机专用电源上的电枢电源。
图.1 测电枢绕组直流电阻接线图(2) 经检查无误后接通电枢电源,并调至220V ,合上开关S ,调节R 使电枢电流达到0.2A ,迅速测取电机电枢两端电压U 和电流I ,再将电机轴分别旋转三分之一周和三分之二周。
同样测取U 、I ,记录于表1-1中,取三次的平均值作为实际冷态电阻。
(3)计算基准工作温度时的电枢电阻由实验直接测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温,按下式换算到基准工作温度时的电枢绕组电阻值。
aref aaref R R θθ++=235235式中: Raref ——换算到基准工作温度时电枢绕组电阻,(Ω)Ra ——电枢绕组的实际冷态电阻,(Ω) θref——基准工作温度,对于E 级绝缘为75℃ θa——实际冷态时电枢绕组温度,(℃) 四、实验报告1、由实验数据求得电机参数:R aref 、K e 、K TR aref ——直流伺服电动机的电枢电阻 ——电势常数——转矩常数五、实验心得通过本次试验加深了对直流伺服电动机的理解, 六、思考题1、若直流伺服电动机正(反)转速有差别,试分析其原因?(1)“零飘”,零点不是绝对零点,要调节零飘点,接近于0位置,正反转就基本一致了 (2)因为可控硅制造工艺和参数问题,实际上反转跟正传的电流环并不一致eT aNe K K n U K π300==。
直流电机伺服系统实验报告目录直流电机伺服系统实验报告 (1)实验一、MATLAB仿真实验 (2)1.直流电机的阶跃响应 (2)2.直流电机的速度闭环控制 (2)3.直流电机的位置闭环控制 (7)实验二、直流电机调速系统 (11)1.反馈增益调节 (12)2.抗扰动能力对比 (12)3.比例调节下的特性测试与控制参数优化 (13)4.比例积分调节下的特性测试与控制参数优化 (15)5.测试速度环的速度误差系数(选做) (18)6.思考题 (19)实验三、直流电机位置伺服系统 (20)1.测试位置环的速度误差系数 (20)2.位置环采用比例控制器时的特性 (20)3.位置环采用PI 控制器时的动态特性 (23)4.测试工作台位移与输入电压的静特性 (24)5.思考题 (24)实验总结 (27)实验一、 MATLAB 仿真实验1.直流电机的阶跃响应如下图,对直流电机输入一个阶跃信号,画出阶跃响应曲线,指出主导极点。
利用Simulink 仿真搭建模型:实验结果 阶跃响应曲线两个极点是1210,10000s s =-=-,其中主导极点是110s =-。
2. 直流电机的速度闭环控制如下图,用测速发电机检测直流电机转速,用控制器Gc(s)控制加到电机电枢上的电压。
(1)假设()100c G s =,用Matlab 画出控制系统开环Bode 图,计算增益剪切频率、相位裕量、相位剪切频率、增益裕量:当()100c G s =时,改为单位负反馈,开环传递函数:100()(0.11)(0.0011)(0.00011)G s s s s =+++绘制系统开环Bode 图:利用margin 函数,得到:增益剪切频率784.3434/c rad s ω=,相位裕量48.1370γ=,相位剪切频率3179.7/rad s πω-=,增益裕量11.1214g K =。
(2)通过分析Bode 图,选择合适的常数P K 作为()c G s ,使闭环阶跃响应的最大超调量在0~5%之间:超调量(%)100(1sin )5p M γ≈--,降低最大超调量需要适当提高相位裕量γ,反解得到γ的取值为:64.2°<γ<71.8°这就需要减小p K (但是快速性将降低,稳态误差将增大)。
直流电机的特性测试一、实验要求在实验台上测试直流电机机械特性、工作特性、调速特性(空载)和动态特性,其中测试机械特性时分别测试电压、电流、转速和扭矩四个参数,根据测试结果拟合转速—转矩特性(机械特性),并以X 轴为电流,拟合电流—电压特性、电流—转速特性、电流—转矩特性,绘制电机输入功率、输出功率和效率曲线,即绘制电机综合特性曲线。
然后在空载情况下测试电机的调速特性,即最低稳定转速和额定电压下的最高转速,即调速特性;最后测试不同负载和不同转速阶跃下电机的动态特性。
二、实验原理1、直流电机的机械特性直流电机在稳态运行下,有下列方程式:电枢电动势 e E C n =Φ (1-1) 电磁转矩 e m T C I =Φ (1-2) 电压平衡方程 U E IR =+ (1-3)联立求解上述方程式,可以得到以下方程:2e e e m U Rn T C C C =-ΦΦ(1-4) 式中 R ——电枢回路总电阻 Φ——励磁磁通 e C ——电动势常数 m C ——转矩常数 U ——电枢电压 e T ——电磁转矩n ——电机转速在式(1-4)中,当输入电枢电压U 保持不变时,电机的转速n 随电磁转矩eT 变化而变化的规律,称为直流电机的机械特性。
2、直流电机的工作特性因为直流电机的励磁恒定,由式(1-2)知,电枢电流正比于电磁转矩。
另外,将式(1-2)代入式(1-4)后得到以下方程:e e U Rn I C C =-ΦΦ(1-5) 由上式知,当输入电枢电压一定时,转速是随电枢电流的变化而线性变化的。
3、直流电机的调速特性直流电机的调速方法有三种:调节电枢电压、调节励磁磁通和改变电枢附加电阻。
本实验采取调节电枢电压的方法来实现直流电机的调速。
当电磁转矩一定时,电机的稳态转速会随电枢电压的变化而线性变化,如式(1-4)中所示。
4、直流电机的动态特性直流电机的启动存在一个过渡过程,在此过程中,电机的转速、电流及转矩等物理量随时间变化的规律,叫做直流电机的动态特性。
一、实训目的本次实训旨在通过对直流电机启动过程的学习和实际操作,使学生了解直流电机的基本原理、结构特点以及启动过程中的关键技术。
通过实训,提高学生对直流电机控制系统的认识,培养动手实践能力和故障排除能力。
二、实训内容1. 直流电机基本原理及结构(1)直流电机的工作原理:直流电机通过电磁感应产生转矩,驱动负载旋转。
当电机的线圈通过直流电流时,线圈在磁场中受到力的作用,从而产生转矩,使电机旋转。
(2)直流电机的结构:直流电机主要由定子、转子、电刷、换向器和端盖等部分组成。
2. 直流电机启动过程及关键技术(1)启动过程:直流电机启动时,需要先使电机转子旋转起来,然后逐渐增加电流,以达到额定转速。
(2)关键技术:①启动转矩:启动转矩是电机启动时克服静摩擦力所需的转矩。
启动转矩越大,电机启动速度越快。
②启动电流:启动电流是电机启动时线圈中通过的电流。
启动电流越大,电机启动转矩越大。
③启动时间:启动时间是电机从静止到达到额定转速所需的时间。
3. 直流电机启动实训步骤(1)准备实训器材:直流电机、电源、启动装置、电流表、电压表、转速表等。
(2)连接电路:按照实训要求,将直流电机、电源、启动装置等连接好。
(3)观察电机启动过程:启动电机,观察启动转矩、启动电流、启动时间等参数。
(4)调整启动参数:根据观察结果,调整启动装置,使电机启动过程满足要求。
(5)记录数据:记录电机启动过程中的各项参数,如启动转矩、启动电流、启动时间等。
(6)分析数据:对记录的数据进行分析,找出影响电机启动的关键因素。
三、实训结果与分析1. 实训结果通过本次实训,学生对直流电机启动过程有了直观的认识,掌握了启动过程中的关键技术。
在实训过程中,成功启动了直流电机,并记录了启动转矩、启动电流、启动时间等参数。
2. 数据分析(1)启动转矩:在实训过程中,电机启动转矩满足要求,说明电机具备足够的启动转矩。
(2)启动电流:启动电流较大,说明电机启动时需要较大的电流来克服静摩擦力。
《电力拖动与电力系统创新实验》
电机专业方向创新实验
实验报告
电气工程及其自动化实验中心
实验项目:项目二 直流伺服电机控制实验
姓名:吴朋
学号:1120610812
时间:2015.10.14
成绩:
项目二 直流伺服电机控制实验
一、实验目的
1、掌握直流伺服电机开环回路的电压控制原理,测试响应波形,用比较近似方法确定开环特性参数。
2、掌握直流伺服电机闭环回路的速度和位置控制原理,测试响应波形,用比较近似方法确定闭环特性参数。
3、掌握直流伺服电机加减速、正弦波和可编程波的位置控制原理,测试响应波形,用比较近似方法确定闭环特性参数。
二、实验项目
1、开环回路的电压控制
2、闭环回路的速度控制
3、闭环回路的位置控制
4、加减速的位置控制
5、正弦波的位置控制
6、可编程波的位置控制
三、实验内容
1、开环回路的电压控制
Kamp加倍,速度57,加倍
频率加倍,转停转停频率加倍
负载率增大“转停”的“转”的时间比例变大2、闭环回路的速度控制
4、加减速的位置控制
6、可编程波的位置控制
四、实验心得
本实验了解了直流伺服电机的控制种类及基本方法,但是对于理论知识认识并不是非常深刻,需要在课后时间自学相关知识,才能更好的掌握。
电动机试验报告(一)引言概述:电动机试验报告(一)旨在对电动机进行全面的试验和评估,以确保其正常运行和性能达标。
本报告将分别从电动机的外观检查、电气参数测试、机械特性测试、效率测试和工作温度测试等五个大点展开分析。
正文内容:一、外观检查1. 检查电动机外壳是否完好无损2. 检查电动机安装固定是否牢固3. 检查电机绝缘材料是否存在损坏4. 检查电动机风扇叶片是否干净无堵塞5. 检查电动机接线盒和电缆连接是否松动或受损二、电气参数测试1. 测试电动机额定电压和额定电流是否符合标准要求2. 测试电动机的绝缘电阻,检查绝缘是否符合安全要求3. 测量电动机的相电流,确保各相电流均匀分布4. 测试电动机的功率因数,评估电动机的功率效率5. 检查电动机电路的过载保护装置是否正常工作三、机械特性测试1. 测试电动机的转速范围和负载特性2. 测量电动机的输出扭矩和转矩曲线3. 检查电动机的轴向和径向游隙,评估电机的运行平稳性4. 检测电动机的振动和噪声水平,确定是否超过标准限值5. 对电动机的轴向和径向承载能力进行测试四、效率测试1. 测试电动机的输入功率和输出功率,计算效率2. 检查电动机的损耗功率和效率曲线3. 测量电动机的电流和功率因数随负载变化的曲线4. 评估电动机的无负载和额定负载下的效率表现5. 根据效率测试结果,提出相应的改进建议五、工作温度测试1. 测试电动机的绕组温度,确保不超过设计限值2. 检查电动机的外壳温度,确保运行不超过安全范围3. 测量电动机轴承的工作温度,判断润滑情况是否良好4. 检测电动机风扇的工作温度,评估散热系统的效果5. 根据温度测试结果,提出相应的改进建议总结:本文档对电动机进行了全面的试验和评估,从外观检查、电气参数测试、机械特性测试、效率测试和工作温度测试等角度进行了详细分析。
通过试验结果的评估,可以确保电动机的运行正常,并提出了相应的改进建议。
淄博职业技术学院控制电机实验报告XX学院___年级 XX班姓名________学号_________同组人__________
实验日期________年_____月____日温度________ 湿度________ 实验一直流伺服电动机电枢电阻的测量
一、实验目的
1、通过实验测出直流伺服电动机的参数ra、Ke、KT。
2、掌握直流伺服电动机的机械特性
二、实验项目
1、测直流伺服电动机的电枢电阻。
三、实验方法
1、实验设备:
2、用伏安法测直流伺服电动机电枢的直流电阻
(1)用伏安法测直流伺服电动机电枢的直流电阻
按图1接线,电阻选用2.2K 100W 的变阻器。
电流表的量程选用2A ,电源选用直流电机专用电源上的电枢电源。
图.1 测电枢绕组直流电阻接线图
(2) 经检查无误后接通电枢电源,并调至220V ,合上开关S ,调节R 使电枢电流达到0.2A ,迅速测取电机电枢两端电压U 和电流I ,再将电机轴分别旋转三分之一周和三分之二周。
同样测取U 、I ,记录于表1-1中,取三次的平均值作为实际冷态电阻。
(3)
计算基准工作温度时的电枢电阻
由实验直接测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温,按下式换算到基准工作温度时的电枢绕组电阻值。
a
ref a
aref R R θθ++=235235
式中: Raref ——换算到基准工作温度时电枢绕组电阻,(Ω)
Ra ——电枢绕组的实际冷态电阻,(Ω) θref——基准工作温度,对于E 级绝缘为75℃ θa——实际冷态时电枢绕组温度,(℃) 四、实验报告
1、由实验数据求得电机参数:R aref 、K e 、K T
R aref ——直流伺服电动机的电枢电阻 ——电势常数
——转矩常数
五、实验心得
通过本次试验加深了对直流伺服电动机的理解, 六、思考题
1、若直流伺服电动机正(反)转速有差别,试分析其原因?
(1)“零飘”,零点不是绝对零点,要调节零飘点,接近于0位置,正反转就基本一致了 (2)因为可控硅制造工艺和参数问题,实际上反转跟正传的电流环并不一致
e
T aN
e K K n U K π
300
=
=。