高二下期数学期末练习题
- 格式:doc
- 大小:363.50 KB
- 文档页数:7
高二年级下学期期末考试数学试题(一)注意事项:1.本试卷共22题。
全卷满分150分。
考试用时120分钟。
2.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记S n为等差数列{a n}的前n项和,若a2=3,a5=9,则S6为()A.36 B.32 C.28 D.242.的展开式中的常数项为()A.﹣60 B.240 C.﹣80 D.1803.设曲线在处的切线与直线y=ax+1平行,则实数a等于()A.﹣1 B.C.﹣2 D.24.在2022年高中学生信息技术测试中,经统计,某校高二学生的测试成绩X~N(86,σ2),若已知P(80<X≤86)=0.36,则从该校高二年级任选一名考生,他的测试成绩大于92分的概率为()A.0.86 B.0.64 C.0.36 D.0.145.设函数,若f(x)在点(3,f(3))的切线与x轴平行,且在区间[m﹣1,m+1]上单调递减,则实数m的取值范围是()A.m≤2 B.m≥4 C.1<m≤2 D.0<m≤36.利用独立性检验的方法调查高中生的写作水平与喜好阅读是否有关,通过随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236.P(K2≥0.100 0.050 0.025 0.010 0.001k0)k0 2.706 3.841 5.024 6.635 10.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”7.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为2个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有()A.22种B.24种C.25种D.27种8.若两个等差数列{a n},{b n}的前n项和分别为A n、B n,且满足,则的值为()A.B.C.D.二、多选题:本题共4小题,每小题5分,共20分。
2023-2024学年重庆市高二(下)期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知f′(x)是函数f(x)的导函数,则满足f′(x)=f(x)的函数f(x)是( )A. f(x)=x 2B. f(x)=e xC. f(x)=lnxD. f(x)=tanx2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么( )A. 两个班6名学生的数学成绩优秀率可能相等B. 1班6名学生的数学成绩优秀率一定高于2班C. 2班6名学生中数学成绩不优秀的一定多于优秀的D. “两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数f(x)=x 3+bx 2+cx +d ,若系数b ,c ,d 可以发生改变,则改变后对函数f(x)的单调性没有影响的是( )A. bB. cC. dD. b ,c4.某地根据以往数据,得到当地16岁男性的身高ycm 与其父亲身高xcm 的经验回归方程为y =1417x +29,当地人小王16岁时身高167cm ,他父亲身高170cm ,则小王身高的残差为( )A. −3cmB. −2cmC. 2cmD. 3cm5.若函数f(x)=(x 2+bx +1)e x ,在x =−1时有极大值6e −1,则f(x)的极小值为( )A. 0B. −e −3C. −eD. −2e 36.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有( )A. 48种B. 96种C. 108种D. 120种7.若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为( )A. 1.2B. 2.4C. 2.88D. 4.88.若样本空间Ω中的事件A 1,A 2,A 3满足P(A 1)=P(A 1|A 3)=14,P(A 2)=23,P(−A 2|A 3)=25,P(−A 2|−A 3)=16,则P(A 1−A 3)=( )A. 114B. 17C. 27D. 528二、多选题:本题共3小题,共18分。
i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。
高中二年级学业水平考试数学(测试时间120分钟,满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知i 是虚数单位,若复数))((R a i a i ∈+-的实部与虚部相等,则=a (A )2-(B )1- (C )1 (D )2(2)若集合{}0,1,2A =,{}24,B x x x N =≤∈,则AB =(A ){}20≤≤x x(B ){}22≤≤-x x (C ){0,1,2} (D ){1,2}(3)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 没有公共点”是“平面α和平面β平行”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(4)若()1sin 3πα-=,且2παπ≤≤,则sin 2α的值为(A )9-(B )9-(C )9(D )9(5)在区间[]1,4-上随机选取一个数x ,则1≤x 的概率为 (A )23 (B )15 (C )52 (D )14(6)已知抛物线2y x =的焦点是椭圆22213x y a +=的一个焦点,则椭圆的离心率为(A )37(B )13(C )14 (D )17(7)以下函数,在区间[3,5]内存在零点的是(A )3()35f x x x =--+ (B )()24x f x =-图2俯视图侧视图主视图(C )()2ln(2)3f x x x =-- (D )1()2f x x=-+ (8)已知(2,1),(1,1)a b ==,a 与b 的夹角为θ,则cos θ=(A)10 (B)10 (C)5 (D)5(9)在图1的程序框图中,若输入的x 值为2,则输出的y 值为(A )0 (B )12 (C )1- (D )32- (10)某几何体的三视图如图2所示,则该几何体的侧面积是(A )76 (B )70 (C )64 (D )62 (11)设2()3,()ln(3)xf x eg x x =-=+,则不等式(())(())11f g x g f x -≤的解集为(A )[5,1]- (B )(3,1]- (C )[1,5]- (D )(3,5]-(12) 已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且00x <,则a 的取值范围为(A )∞(-,-2) (B )1∞(-,-) (C )(1,+)∞ (D )(2,)+∞第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.(13)函数()cos f x x x =+的最小正周期为 .(14)已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-3322y x y x x y ,则y x -2的最小值为 .(15)已知直线l :0x y a -+=,点()2,0A -,()2,0B . 若直线l 上存在点P 满足AP BP ⊥,则实数a 的取值范围为 .(16)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2,b =3B π=,且△ABC 的面DC 1B 1CBA积S =a c += .三、解答题:本大题必做题5小题,选做题2小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知等差数列{}n a 满足141,4a a ==;数列{}n b 满足12b a =,25b a =,数列{}n n b a -为等比数列. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n b 的前n 项和n S . (18)(本小题满分12分)某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由9名高二级学生和6名高一级学生组成,现采用分层抽样的方法抽取5人,组成一个体验小组去市场体验“共享单车”的使用.问:(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;(Ⅱ)已知该地区有X ,Y 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租X 型车,高一级学生都租Y 型车.如果从组内随机抽取2人,求抽取的2人中至少有1人在市场体验过程中租X 型车的概率.(19)(本小题满分12分)如图3,已知四棱锥11A CBB C -的底面为矩形,D 为1AC 的中点,AC ⊥平面BCC 1B 1. (Ⅰ)证明:AB//平面CDB 1; (Ⅱ)若AC=BC=1,BB 1(1)求BD 的长;(2)求三棱锥C-DB 1C 1的体积. 图3 (20)(本小题满分12分)已知过点(0,1)A 的动直线l 与圆C :224230x y x y +---=交于M ,N 两点. (Ⅰ)设线段MN 的中点为P ,求点P 的轨迹方程; (Ⅱ)若2OM ON ⋅=-,求直线l 的方程. (21)(本小题满分12分)已知函数()ln f x x x =.(Ⅰ)求函数()f x 的极值;(Ⅱ)若对任意1,x e e⎡⎤∈⎢⎥⎣⎦,都有()213022f x x ax +++≤成立,求实数a 的取值范围. 请考生在(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分. (22)(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的纵坐标不变,横坐标变为原来的14,得曲线C . (Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :410x y ++=与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1 P 2的中点且与l 垂直的直线的极坐标方程. (23)(本小题满分10分)选修4-5:不等式选讲设函数()|2|||f x x x a =-+-. (Ⅰ)若2a =-,解不等式5)(≥x f ;(Ⅱ)如果当x R ∈时,()3f x a ≥-,求a 的取值范围.数学参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一、选择题:部分解析:(10)依题意知,该几何体是底面为直角梯形的直棱柱,故其侧面积为42+44+245=64⨯⨯⨯⨯.(11)(())(())11f g x g f x -≤即22(3)3211450x x x x +--≤⇒+-≤51x ⇒-≤≤,注意到30x +>,即3x >-,故31x -<≤.(12)当0a =时,函数2()31f x x =-+有两个零点,不符合题意,故0a ≠,2'()363(2)f x ax x x ax =-=-,令'()0f x =得0x =或2x a =,由题意知,0a >,且2()0f a>,解得2a >.二、填空题:(15)问题转化为求直线l 与圆2222x y +=有公共点时,a 的取值范围,数形结合易得a -≤.(16)由余弦定理得2222cos 4b a c ac B =+-=,即224a c ac +-=,1sin 24S ac B ac ===得4ac =,故2()164a c a c +=⇒+= 三、解答题:(17)解:(Ⅰ)由数列{}n a 是等差数列且141,4a a ==∴公差4113a a d -==, ------------------------------------------------------------------------------1分 ∴1(1)n a a n d n =+-=,------------------------------------------------------------------------------3分 ∵12b a ==2,25b a ==5,∴11221,3,b a b a -=-= ∴数列{}n n b a -的公比22113b a q b a -==-,-----------------------------------------------------------5分∴1111()3n n n n b a b a q ---=-=,∴13n n b n -=+;-------------------------------------------------------------------------------------------7分 (Ⅱ)由13n n b n -=+得21(12)(1333)n n S n -=++++++++--------------------------------------------------------9分(1)31231n n n +-=+- 3(1)12n n n ++-=------------------------------------------------------------------------------------ 12分 (18)解:(Ⅰ)依题意知,应从该兴趣小组中抽取的高一学生人数为56=29+6⨯, ------2分 高二学生的人数为:59=39+6⨯; -------------------------------------------------------------------4分 (Ⅱ)解法1:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,(a 2,b 1), (a 2,b 2), (a 2,b 3), (b 1,b 2), (b 1,b 3), (b 2,b 3),共10种可能; ----------------------------------------------------------8分 其中至少有1人在市场体验过程中租X 型车的有:111213(,),(,),(,)a b a b a b ,212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共9种,------------------------------------------10分故所求的概率910P =.-----------------------------------------------------------------------------------------12分 【解法:2:记抽取的2名高一学生为12,a a ,3名高二的学生为123,,b b b ,------------------------5分 则从体验小组5人中任取2人的所有可能为:12111213(,),(,),(,),(,)a a a b a b a b ,EABCB 1C 1D212223121323(,),(,),(,),(,),(,),(,)a b a b a b b b b b b b 共10种可能;--------------------------------------8分其中所抽的2人都不租X 型车的有:12(,)a a 一种,-------------------------------------------------9分 故所求的概率1911010P =-=. ---------------------------------------------------------------------------12分 (19)解:(Ⅰ)证明:连结1BC 交1B C 于E ,连结DE , ------------------------------------------1分 ∵D 、E 分别为1AC 和1BC 的中点,∴DE//AB,---------------------------------- --------------------2分 又∵DE ⊂平面1CDB ,AB ⊄平面1CDB ,∴AB//平面CDB 1;---------------------------------------------4分 (Ⅱ)(1)∵AC ⊥平面BCC 1B 1,BC ⊂平面11BCC B , ∴BC AC ⊥, 又∵1BC CC ⊥,1ACCC C =,∴BC ⊥平面1ACC , ∵CD ⊂平面1ACC ,∴BC CD ⊥,----------------------------------------------------------------------------------------------------6分 在Rt BCD ∆,∵BC=1,1112CD AC ===, ∴BD =分【注:以上加灰色底纹的条件不写不扣分!】 (2)解法1:∵BC ⊥平面1ACC ,BC//B 1C 1∴11B C ⊥平面1CC A ,-----------------------------------------------------------------------------------------10分 ∴111111113C DB C B CDC CDC V V S B C --∆==⋅111134=⨯⨯=. ---------------------------------12分 【解法2:取1CC 中点F,连结DF ,∵DF 为△1ACC 的中位线,∴DF//AC,-------------------------------------------------------------------9分 ∵AC ⊥平面11CBB C ,从而可得DF ⊥平面11CBB C ,----------------------------------------------10分∴11111113C DB C D CB C CB C V V S DF --∆==⋅1111322=⨯⨯=. --------------------------------12分 (20)解法(Ⅰ)将224230x y x y +---=化为标准方程得:222(2)(1)x y -+-=, ----------------------------------------------------------------------------1分可知圆心C 的坐标为(2,1),半径r =设点P 的坐标为(,)x y ,则(2,1),(,1)CP x y AP x y =--=-,---------------------------------------2分 依题意知CP AP ⊥,∴0CP AP ⋅=(2)(1)(1)0x x y y ⇒-+--=整理得:222210x y x y +--+=, ------------------------------------------------------------------------4分∵点A 在圆C 内部, ∴直线l 始终与圆C 相交,∴点P 的轨迹方程为222210x y x y +--+=.----------------------------------------------------------6分 (Ⅱ)设1122(,),(,)M x y N x y ,若直线l 与x 轴垂直,则l 的方程为0x =,代入224230x y x y +---=得2230y y --=,解得1y =-或3y =,不妨设121,3y y =-=,则3OM ON ⋅=-,不符合题设, ------------------------------------------------7分 设直线l 的斜率为k ,则l 的方程为1y kx =+,由224230,1.x y x y y kx ⎧+---=⎨=+⎩消去y 得:22(1)440k x x +--=, --------------------------------8分 216(2)0k ∆=+>,则12122244,11x x x x k k+==-++,------------------------------------------------------------------------9分 由2OM ON ⋅=-得212121212(1)()12x x y y k x x k x x +=++++=-,∴22244(1)1211kk k k-+++=-++2410k k ⇒-+=,解得:2k =±分∴当2OM ON ⋅=-时,直线l 的方程为(21y x =++或(21y x =-+. --------------12分 (21)解:(Ⅰ)函数()f x 的定义域为(0,)+∞, ∵()ln 1f x x '=+,令'()0f x =得1x e=,-------------------------------------------------------------2分 当10x e <<时'()0f x <,当1x e>时,'()0f x >, ∴函数()f x 在1(0,)e 上单调递减,在1(,)e+∞上单调递增,----------------------------------------4分∴函数()f x 无极大值, 当1x e =时,函数()f x 在(0,)+∞有极小值,11()()f x f e e==-极小,--------------------------5分 (Ⅱ)当1,x e e ⎡⎤∈⎢⎥⎣⎦时,由()213022f x x ax +++≤,得3ln 22x a x x ≤---,--------------6分 记()3ln 22x g x x x =---,1,x e e ⎡⎤∈⎢⎥⎣⎦, 则()()()2231113222x x g x x x x +-'=--+=-, 当∈x 1,1e ⎛⎫ ⎪⎝⎭时,得'()0g x >,当∈x ()1,e 时, '()0g x <∴()g x 在1,1e ⎛⎫ ⎪⎝⎭上单调递增,在()1,e 上单调递减,---------------------------------------------------9分又113122e g e e ⎛⎫=-- ⎪⎝⎭,()3122e g e e=---, ∵012)()1(<-+=-e e e g e g ,∴()1g g e e ⎛⎫< ⎪⎝⎭,-------------------------------------------------10分故()g x 在1,e e ⎡⎤⎢⎥⎣⎦上的最小值为1g e ⎛⎫ ⎪⎝⎭,故只需1a g e ⎛⎫≤ ⎪⎝⎭,即实数a 的取值范围是13,122e e ⎛⎤-∞-- ⎥⎝⎦.------------------------------------------------------------12分 选做题:(22)解:(Ⅰ)由坐标变换公式1',4'.x x y y ⎧=⎪⎨⎪=⎩ 得4','x x y y ==-------------------------------------2分 代入221x y +=中得2216''1x y +=,--------------------------------------------------------------------3分故曲线C 的参数方程为1cos ,4sin .x y θθ⎧=⎪⎨⎪=⎩(θ为参数);----------------------------------------------------5分 (Ⅱ)由题知,121(,0),(0,1)4P P --,--------------------------------------------------------------------6分 故线段P 1 P 2中点11(,)82M --,---------------------------------------------------------------------------7分∵直线l 的斜率4k =-∴线段P 1 P 2的中垂线斜率为14,故线段P 1 P 2的中垂线的方程为111()248y x +=+------------------------------------------------------8分即832150x y --=,将cos ,sin x y ρθρθ==代入得其极坐标方程为8cos 32sin 150ρθρθ--=----------------------------------------------------------10分 (23)解:(Ⅰ)当a =-2时,f (x )=|x -2|+|x +2|, ①当2x ≤-时,原不等式化为:25,x -≥解得52x ≤-,从而52x ≤-;-------------------------1分 ②当22x -<≤时,原不等式化为:45≥,无解;---------------------------------------------------2分 ③当2x >时,原不等式化为:25,x ≥解得52x ≥,从而52x ≥;----------------------------------3分 综上得不等式的解集为⎭⎬⎫⎩⎨⎧≥-≤2525x x x 或.----------------------------------------------------------------5分(Ⅱ)当x R ∈时,|2||||2()||2|x x a x x a a -+-≥---=- ---------------------------------------7分 所以当x R ∈时,()3f x a ≥-等价于|2|3a a -≥------(*) 当2a ≥时,(*)等价于23,a a -≥-解得52a ≥,从而52a ≥;----------------------------------8分 当2a <时,(*)等价于23,a a -≥-无解;------------------------------------------------------------9分 故所求a 的取值范围为5[,+2∞). --------------------------------------------------------------------------10分。
2020学年山东省济宁市高二下学期期末考试数学试题一、 单选题1. 已知集合{}2{0,1,2,3,4},|560A B x x x ==-+>,则A B =I ( )A .{0,1}B .{4}C .{0,1,4}D .{0,1,2,3,4}【答案】 C【解析】解一元二次不等式求得集合B ,由此求得两个集合的交集. 【详解】由()()256320x x x x -+=-->,解得2x <,或3x >,故{}0,1,4A B =I .故选C. 【点睛】本小题主要考查两个集合交集的运算,考查一元二次不等式的解法,属于基础题.2.计算52752C 3A +的值是( ) A .72 B .102 C .5070 D .5100【答案】B【解析】根据组合数和排列数计算公式,计算出表达式的值. 【详解】依题意,原式227576232354426010221C A ⨯=+=⨯+⨯⨯=+=⨯,故选B. 【点睛】本小题主要考查组合数和排列数的计算,属于基础题.3.设23342,log 5,log 5a b c -===,则a ,b ,c 的大小关系是( )A .a c b <<B .a b c <<C .b c a <<D .c b a <<【答案】A【解析】先根据1来分段,然后根据指数函数性质,比较出,,a b c 的大小关系. 【详解】由于203221-<=,而344log 5log 5log 41>>=,故a c b <<,所以选A. 【点睛】本小题主要考查指数函数的单调性,考查对数函数的性质,考查比较大小的方法,属于基础题.4.5(12)(1)x x ++的展开式中3x 的系数为( ) A .5 B .10 C .20 D .30【答案】D【解析】根据乘法分配律和二项式展开式的通项公式,列式求得3x 的系数. 【详解】根据乘法分配律和二项式展开式的通项公式,题目所给表达式中含有3x 的为()3322335512102030C x x C x x x ⋅+⋅=+=,故展开式中3x 的系数为30,故选D.【点睛】本小题主要考查二项式展开式通项公式的应用,考查乘法分配律,属于基础题.5.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率X 服从正态分布2(0.98)N σ,,且(0.97)0.005P X <=,则(0.970.99)P X <<=( )A .0.96B .0.97C .0.98D .0.99【答案】D【解析】根据正态分布的对称性,求得指定区间的概率. 【详解】由于0.98μ=,故(0.970.99)12(0.97)0.99P X P X <<=-⨯<=,故选D. 【点睛】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.6.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【答案】C【解析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 7.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是( ) A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值 D .()f x 有最大值2,最小值75【答案】A【解析】试题分析:()2132()11x f x f x x x +==+⇒--在[)8,4--上是减函数()f x 有最大值5(8)3f -=,无最小值,故选A.【考点】函数的单调性.8.已知函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩,若()22()f a f a ->,则实数a 的取值范围是( ) A .(2,1)-B .(1,2)-C .(,1)(2,)-∞-+∞UD .(,2)(1,)-∞-+∞U【答案】A【解析】代入特殊值对选项进行验证排除,由此得出正确选项. 【详解】若0a =,()()()20212,00,120f f f -===>符合题意,由此排除C,D 两个选项.若1a =,则()()2211f f -=不符合题意,排除B 选项.故本小题选A.【点睛】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.9.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式5(31)x -的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .115B .215 C .15D .415【答案】B【解析】先求得二项式5(31)x -的展开式的各项系数之和为32.然后利用列举法求得在05:一共6个数字中任选两个,和为4的概率,由此得出正确选项. 【详解】令1x =代入5(31)x -得5232=,即二项式5(31)x -的展开式的各项系数之和为32.从0,1,2,3,4,5中任取两个不同的数字方法有:01,02,03,04,05,12,13,14,15,23,24,25,34,35,45共15种,其中和为36324-=的有04,13共两种,所以恰好使该图形为“和谐图形”的概率为215,故选B. 【点睛】本小题主要考查二项式展开式各项系数之和,考查列举法求古典概型概率问题,属于基础题.10.函数()21()ln 2x f x x e -=+-的图像可能是( )A .B .C .D .【答案】A【解析】分析四个图像的不同,从而判断函数的性质,利用排除法求解。
高二下学期期末数学试卷一、单项选择1、设,若直线与线段相交,则的取值范围是( )A .B .C .D .2、已知点A (2,-3),B (-3,-2),直线l 方程为kx+y-k-1=0,且与线段AB 相交,求直线l的斜率k 的取值范围为( )A或 B C D 3、直线与曲线有两个不同的交点,则实数的k 的取值范围是( ) A .B .C .D .4、已知圆,直线l :,若圆上恰有4个点到直线l 的距离都等于1,则b 的取值范围为 A .B .C .D .5、若直线被圆截得弦长为,则) A . B . C6、设△ABC 的一个顶点是A (3,-1),∠B,∠C 的平分线方程分别是x=0,y=x ,则直线BC 的方程是( ) A .B .C .D .7、已知圆:,则过点(1,2)作该圆的切线方程为( )A .x+4y-4=0B .2x+y-5=0C .x=2D .x+y-3=0 8、阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间4k ≤-220(0,0)ax by a b -+=>>222410x y x y ++-+=494(0,1)k k k >≠的距离为,动点P、A、B不共线时,三角形PAB面积的最大值是()ABD9、若圆上有个点到直线的距离为1,则等于()A.2 B.1 C.4 D.310、圆的一条切线与圆相交于,两点,为坐标原点,则()AB.C.2 D11、已知直线与圆相交,则的取值范围是()A. B. C.D.12、古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点、距离之比是常数的点的轨迹是圆.若两定点、的距离为3,动点满足,则点的轨迹围成区域的面积为().A.B.C.D.13、已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是()A.1或3 B.1或5 C.3或5 D.1或214、我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件可求得该女子第4天所织布的尺数为( )A.B C D15、在等比数列中,,前项和为,若数列也是等比数列,则等于()A.B.C.D.16、设数列满足,记数列的前项之积为,则2P22:(5)(1)4C x y-++=n4320x y+-=n 221x y+=224x y+=()11,A x y()22,B x y O1212x x y y+=2-:cos sin1()l x yααα+=∈R222:(0)C x y r r+=>r 01r<≤01r<<1r≥1r>)0(>>ba{}na21=a n n S{}1na+nS 122n+-3n2n31n-( ) A .B .C .D .17、已知公比不为的等比数列满足,若,则( )A .9B .10C .11D .12 18、设等差数列的前项和为,已知,,则( )A .B .C .D .19、在等差数列中,若,是方程的两根,则的前11项的和为( )A .22B .-33C .-11D .1120、已知数列满足,数列前项和为,则( )ABCD21、已知数列满足,,是数列的前项和,则( )A .B .C .数列是等差数列 D .数列是等比数列22、已知等数差数列中,是它的前项和,若且,则当最大时的值为( )A .9B .10 C .11 D .1823、已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12 )1{}n a 15514620a a a a +=210m a =m ={}n a nnS ()()201920212017201720171201912000a a a -++-=()()20192021202020202020-1+201912038a a a +-=4036S =2019202020214036{}n a 2*1222...2()n n a a a n n N +++=∈n nS 12310...S S S S ⋅⋅⋅⋅={}n a n S n 180S >190S <n S nABCD .不存在24、的内角,,所对的边分别是,,.已知,则的最小值为( ) A . B .C .D .25、已知,,为的三个内角,,的对边,向量,,若,且,则角( )A .B .C .D .二、填空题26、点到直线的距离的最大值为________.27、已知点和圆,过点 作圆的切线有两条,则实数的取值范围是______28、已知直线l :x+y-6=0,过直线上一点P 作圆x 2+y 2=4的切线,切点分别为A ,B ,则四边形PAOB 面积的最小值为______,此时四边形PAOB 外接圆的方程为______. 29、已知实数满足,则的取值范围为________.30、已知实数x ,y 满足6x+8y-1=0,则的最小值为______.31、等比数列的前n 项和为32、若等差数列满足,则数列的前项和取得最大值时_________ 33、已知数列满足,则数列的最大值为________.34、已知数列中,,是数列的前项和,且对任意的,都有,则=_____35、已知首项与公比相等的等比数列中,若,,满足,则()1,2P 222:20C x y kx y k ++++=P C k {}n a n S {}n a 7897100,a a a a a ++>+<{}n a n n S =n {}n a 11a =n S {}n a n *,r t N ∈n a的最小值为_____.36、在锐角三角形中,角的对边分别为,若,则的最小值是_______.37、在锐角中,角,,所对应的边分别为,,.则________;若,则的最小值为________. 38、若△ABC 的内角,则的最小值是 . 39、已知分别是的内角的对边,,,则周长的最小值为_____。
郑州市2023—2024学年下期期末考试高中二年级数学评分参考一、单选题:本题共8小题,每小题5分,共40分.题号12345678答案CBCADDAB二、多选题:本题共3小题,每小题6分,18分.题号91011答案ADCDBC三、填空题:本大题共3小题,每小题5分,共计15分.12.2e ;13.72;14.0.0485或972000;3097.四、解答题:本题共5小题,解答应写出文字说明、证明过程或演算步骤.15.(13分)解:因为二项式2nx ⎛+ ⎝的二项展开式中各二项式系数之和为256,即01C C C 2256n nn n n ++⋅⋅⋅+==,可得8n =.(1)82x ⎛⎫ ⎪⎝⎭的展开式的通项()()83882448122C C 0,1,2,8kkk k k k kT x k x ---+===⋅⋅⋅,令24443k -=得3k =,354484C 21792T x x =⋅⋅=,所以展开式中4x 项的系数是1792.----7分(2)由(1)可知,展开式中的第1,4,7项为有理项且088881C 2256T x x =⋅⋅=354484C 21792T x x =⋅⋅=62078C 2112T x =⋅⋅=----------------------.13分16.(15分)解:(1)由题知()11357955x =⨯++++=,()12537485872485y =⨯++++=,又5210()4i i x x =-=∑,5216(132i i y y ==-∑,511430i i i x y ==∑,所以()()5552300.999230.3041iii ix x y y x y x yr ---=≈≈∑∑,由样本的相关系数非常接近1,可以推断新能源汽车年销售量和充电桩数量这两个变量正线性相关,且相关程度很强,所以可以用线性回归模型拟合它们的关系.--------------------8分(2)()()()51521230 5.70ˆ54iii i i x x yybx x==--===-∑∑,48 5.7ˆˆ5519.25a y bx=-=-⨯=,所以y 关于x 的线性回归方程为 5.759.5ˆ12yx =+.当24x =时, 5.752419.251ˆ57.25y=⨯+=,故当充电桩数量为24万台时,该地区新能源汽车的年销量为157.25万辆.-----------15分17.(15分)解:()()224f x ax a x'=-++,定义域为()0,+∞(1)当1a =时,()()()2212225225x x x x f x x x x x---+'=-+==当()0f x '>时,得102x <<或2x >;当()0f x '<时,得122x <<故函数()f x 在10,2⎛⎫ ⎪⎝⎭和()2,4上单调递增,在1,22⎛⎫⎪⎝⎭上单调递减,又192ln 224f ⎛⎫=-- ⎪⎝⎭,()444ln 2f =-+,()142f f ⎛⎫> ⎪⎝⎭因此函数()f x 在(]0,4上的最大值为44ln 2-+.--------------------------------------------6分(2)()()()()()2242221224ax a x ax x f x ax a x x x-++--'=-++==当04a <<时,()0f x '>时,得102x <<或2x a >;()0f x '<时,得122x a<<故函数()f x 在10,2⎛⎫ ⎪⎝⎭和2,a ⎛⎫+ ⎪⎝⎭∞上单调递增,在12,2a ⎛⎫ ⎪⎝⎭上单调递减;当4a =时,此时()()22210x f x x-'=故函数()f x 在()0,+∞上单调递增;当4a >时,()0f x '>时,得20x a <<或12x >;()0f x '<时,得212x a <<故函数()f x 在20,a ⎛⎫ ⎪⎝⎭和1,2⎛⎫+ ⎪⎝⎭∞上单调递增,在21,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:当04a <<时,函数()f x 在10,2⎛⎫ ⎪⎝⎭和2,a ⎛⎫+ ⎪⎝⎭∞上单调递增,在12,2a ⎛⎫ ⎪⎝⎭上单调递减;当4a =时,函数()f x 在()0,+∞上单调递增;当4a >时,函数()f x 在20,a ⎛⎫ ⎪⎝⎭和1,2⎛⎫+ ⎪⎝⎭∞上单调递增,在21,2a ⎛⎫ ⎪⎝⎭上单调递减.-----------15分18.(17分)解:(1)记一道多选题“有2个选项正确”为事件1,“有3个选项正确”为事件2,“小明该题得6分”为事件B ,则op =B 1=1×1=×1C 32=112,求得=14.-------------------------------6分(2)若小明选择方案①,则小强的得分为3分.若小明选择方案②,记小强该题得分为X ,则=0,3,6,且o =0)=+=512×23+712×13=1736,o =3)==712×23=1436=718,o =6)==512×13=536,所以,op =0×1736+3×1436+6×536=2,若小明选择方案③,记小强该题得分为Y ,则=0,6,且o =0)==512+712×23=2936,o =6)==712×13=736,所以,op =0×2936+6×736=76,因为<<3,所以小明应选择方案①.--------------------------------------------------15分19.(17分)解:(1)因为32()1f x x x =++,则2()32x f x x '=+,()1(1)1,11k f f '=-=-=,曲线()f x 在01x =-处的切线为1112y x x -=+⇒=-,且10||0.5x x -≥,()2(2)8,23k f f =-=-=-',曲线()f x 在12x =-处的切线()2138382 1.63y x x +=+⇒=-≈-,且21||0.5x x -<,故用牛顿法求方程()0f x =满足精度0.5ε=的近似解为 1.63-.--------------5分(2)(ⅰ)设()11,0n n P x --,则()()111,n n n Q x g x ---,因为()2xg x =,所以()2ln 2x g x '=,则()()111,n n n Q x g x ---处切线为()1112ln 22n n xxn y x x ---=⋅-+,切线与x 轴相交得(),0n n P x ,11ln 2n n x x --=-,即11ln 2n n x x --=为定值.根据牛顿法,此函数没有零点.----------------11分(ⅱ)因为00x =得11ln 2n n x --=-,所以011121ln 2n n P P PP P P -==⋅⋅⋅==,()()211log ln 211122en n e n n g x ------===,所以0011111223111111112ln 2e e e e n n n P Q P PQ P P Q P n S S S ---⎛⎫++⋅⋅⋅+=⋅++++⋅⋅⋅+ ⎪⎝⎭,23111111111e 112ln 2e e e e 2ln 21en n --⎛⎫=++⋅⋅⋅+=⋅ ⎪⎝⎭-,4111e 1e 1log e 2ln 2e e e e n n n n n n ----=⋅=--.故所得前n 个三角形,001P Q P △,112PQ P △,……,11n n n P Q P --△的面积和为41e 1log e e en n n ---.---------------------------------------------------------------------------------17分。
高二(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)复数z 在复平面内对应点的坐标为(3,6),则|2|(z i -= ) A .3B .4C .5D .62.(5分)5人排成一行,其中甲、乙两人相邻的不同排法共有( ) A .24种B .48种C .72种D .120种3.(5分)52()x x-的展开式中3x 的系数为( )66666666666666A .10B .10-C .5D .5-4.(5分)某铁球在0C ︒时,半径为1dm .当温度在很小的范围内变化时,由于热胀冷缩,铁球的半径会发生变化,且当温度为C t ︒时铁球的半径为(1)at dm +,其中a 为常数,则在0t =时,铁球体积对温度的瞬时变化率为( )(参考公式:34)3V R π=球A .0B .a πC .43a πD .4a π5.(5分)长时间玩手机可能影响视力.据调查,某校学生大约有40%的人近视,而该校大约有20%的学生每天玩手机超过1小时,这些人的近视率约为50%.现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率约为( ) A .0.125B .0.25C .0.375D .0.46.(5分)正四面体ABCD 中,M ,N 分别是BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为( ) A .33B .63C .22D .237.(5分)如图,一个质点在随机外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位.若质点移动6次,则回到原点O 的概率为( )A .0B .14C .516 D .588.(5分)已知函数()f x xlnx =,()24g x x =-,若12()()f x g x =,则21x x -的最小值为()A .22e -B .3e -C .2e -D .1二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.(5分)随机变量~(2,4)X N ,则( ) A .()2E X =B .()2D X =C .(4)(1)P X P X >><D .(1)(3)1P X P X >+>=10.(5分)已知函数()y f x =的导函数()y f x '=的图象如图所示,则(A .12()()f x f x <B .32()()f x f x <C .()f x 在(,)a b 内有2个极值点D .()f x 的图象在点0x =处的切线斜率小于011.(5分)把4个编号为1,2,3,4的球放入4个编号为1,2,3,4的盒子中,则()A .不同的放法有64种B .每个盒子放一个球的不同放法有24种C .每个盒子放一个球,且球的编号和盒子的编号都不相同的不同放法有9种D .恰有一个盒子不放球的不同放法有72种12.(5分)在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别满足AE AB λ=,BF BC μ=,其中[0λ=,1],[0μ∈,1],则( )A .当1μ=时,三棱锥11AB EF -的体积为定值 B .当12λ=时,点A ,B 到平面1B EF 的距离相等C .当12μ=时,存在λ使得1BD ⊥平面1B EF D .当λμ=时,11A F C E ⊥三、填空题:本题共4小题,每小题5分,共20分. 13.(5分)若31iz i-=+,则z z += . 14.(5分)已知(1A ,0,0),(0B ,1,0),(0C ,0,1),若点(P x ,1,1)在平面ABC 内,则x = .15.(5分)由0,1,2,3,4,5组成没有重复数字的三位数,其中偶数有 个.(用数字作答)16.(5分)函数,(),x xe x a f x x x a⎧=⎨>⎩,当0a =时,()f x 零点的个数是 ;若存在实数0x ,使得对于任意x R ∈,都有0()()f x f x ,则实数a 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.(10分)已知函数32()f x x ax b =++在2x =处有极值2-. (1)求()f x 的解析式;(2)求()f x 在[2-,3]上的最值.18.(12分)在国家政策扶持下,近几年我国新能源汽车产业迅速发展.某公司为了解职工购买新能源汽车的意愿,随机调查了30名职工,得到的部分数据如表所示:(1)请将上述22⨯列联表补充完整,并判断能否有99%的把握认为“该公司职工购买新能源汽车的意愿与性别有关”;(2)为进一步了解职工不愿意购买新能源汽车的原因,从不愿意购买新能源汽车的被调查职工中随机抽取3人进行问卷调查,求至少抽到2名女职工的概率. 附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k0.100 0.050 0.010 0.001 0k2.7063.8416.63510.82819.(12分)如图,在三棱锥P ABC -中,PBC ∆是正三角形,AC BC ⊥,D 是AB 的中点. (1)证明:BC PD ⊥;(2)若2AC BC ==,22PA =,求二面角D PA C --的余弦值.20.(12分)为了解某地区未成年男性身高与体重的关系,对该地区12组不同身高i x (单位:)cm 的未成年男性体重的平均值i y (单位:)(1kg i =,2,,12)数据作了初步处理,得到下面的散点图和一些统计量的值.xyω1221()ii xx =-∑121()()ii i xx y y =--∑121()()ii i xx ωω=--∑11524.3582.95814300 6300 286表中(1i i lny i ω==,2,,12),112i i ωω==∑.(1)根据散点图判断y ax b =+和cx d y e +=哪一个适宜作为该地区未成年男性体重的平均值y 与身高x 的回归方程类型?(给出判断即可,不必说明理由). (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)如果体重高于相同身高的未成年男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区的一位未成年男性身高为175cm ,体重为78kg ,他的体重是否正常?附:对于一组数据1(u ,1)v ,2(u ,2)v ,⋯⋯,(n u ,)n v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()()ˆ()nii i nii uu v v uu β==--=-∑∑,ˆˆv u αβ=-,20.693ln ≈. 21.(12分)一个袋子中有10个大小相同的球,其中有4个白球,6个黄球,从中随机地摸4个球作为样本,用X 表示样本中黄球的个数,Y 表示样本中黄球的比例. (1)若有放回摸球,求X 的分布列及数学期望;(2)(ⅰ)分别就有放回摸球和不放回摸球,求Y 与总体中黄球的比例之差的绝对值不超过0.2的概率.(ⅱ)比较(ⅰ)中所求概率的大小,说明其实际含义. 22.(12分)已知函数()(1)()f x ln x ax a a R =++-∈. (1)讨论()f x 的单调性;(2)若()x a f x xe ax -+,求a 的取值范围.高二(下)期末数学试卷一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)复数212iz i=-的实部与虚部之和为( ) A .25-B .25C .45D .652.(5分)已知函数32()2f x x x =+,()f x '是()f x 的导函数,则f '(2)(= ) A .24B .26C .32D .283.(5分)函数()23x f x x =-在[0,2]上的平均变化率为( ) A .32 B .32-C .1D .2-4.(5分)4(23)x -展开式中的第3项为( ) A .216-B .216x -C .216D .2216x5.(5分)某学校高三年级总共有800名学生,学校对高三年级的学生进行一次体能测试.这次体能测试满分为100分,已知测试结果ξ服从正态分布2(70,)N σ.若ξ在[60,70]内取值的概率为0.2,则估计该学校高三年级体能测试成绩在80分以上的人数为( ) A .160B .200C .240D .3206.(5分)从1,2,3,4,5,6,7,8中不放回地依次取2个数,事件A 为“第一次取到的数是偶数”,事件B 为“第二次取到的数是偶数”,则(|)(P B A = ) A .12B .25 C .37D .387.(5分)已知复数1cos sin ()z i R θθθ=+∈,2z i =,且12z z 在复平面内对应的点在第一,三象限的角平分线上,则tan (θ= )A .2-B .2-+CD .8.(5分)某学校安排甲、乙,丙、丁、戊五位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲不参加数学竞赛,则不同的安排方法有()A .86种B .100种C .112种D .134种二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.(5分)已知复数(2)(1)z i i =+-,则( ) A .1z i =+B .||z =C .z 在复平面内对应的点在第四象限D .13zi i=- 10.(5分)已知~(4X B ,)(01)p p <<,则下列结论正确的有( )A .若13p =,则8()9E X =B .若13p =,则16(0)81P X ==C .()1maxD X =D .若(1)()3P x P X =>=,则102p <<11.(5分)下面四个结论中正确的有( )A .43)+展开式中各项的二项式系数之和为16B .用4个0和3个1可以组成35个不同的七位数C .0.290.251()x x+的展开式中不存在有理项D .方程10x y z ++=有36组正整数解12.(5分)已知函数2()(2)(2)f x x x a a =->,若函数()(()1)g x f f x =+恰有4个零点,则a 的取值可以是( ) A .52B .3C .4D .92三.填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.(5分)若随机变量ξ的分布列为.ξ0 1 2 Pa0.2a +0.3则a = .14.(5分)写出一个恰有1个极值点,且其图象经过坐标原点的函数()f x = . 15.(5分)某电影院的一个放映室前3排的位置如图所示,甲和乙各自买了1张同一个场次的电影票,已知他们买的票的座位都在前3排,则他们观影时座位相邻(相邻包括左右相邻和前后相邻)的概率为 .16.(5分)若221a lna c b d--==,则22()()a c b d -+-的最小值是 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)马拉松赛事是当下一项非常火爆的运动项目,受到越来越多人的喜爱.现随机在“马拉松跑友群”中选取100人,记录他们在某一天马拉松训练中的跑步公里数,并将数据整理如下: 跑步公里数 性别 [5,10) [10,15) [15,20) [20,25) [25,30) [30,35]男 4 6 10 25 10 5 女2581762(1)分别估计“马拉松跑友群”中的人在一天的马拉松训练中的跑步公里数为[5,15),[15,25),[25,35]的概率;(2)已知一天的跑步公里数不少于20公里的跑友被“跑友群”评定为“高级”,否则为“初级”,根据题意完成给出的22⨯列联表,并据此判断能否有95%的把握认为“评定级别”与“性别”有关.附:2K =,n a b c d =+++.2)k18.(12分)已知函数()f x 的导函数是()f x ',且21()(1)24f x f x f '=+(1)4x -. (1)求()f x 的解析式;(2)求经过点(0,6)-且与曲线()y f x =相切的直线方程. 19.(12分)已知6621201212(1)(1)x x a a x a x a x -+=+++⋯+.(1)求2221311a a a ++⋅⋅⋅+的值;(2)求2412a a a ++⋯+的值; (3)求46a a +的值.20.(12分)某小型企业在开春后前半年的利润情况如表所示:设第i 个月的利润为y 万元.(1)根据表中数据,求y 关于i 的回归方程ˆˆˆ(22)i yb i a =-+(系数精确到0.01); (2)由(1)中的回归方程预测该企业第7个月的利润是多少万元?(结果精确到整数部分,如98.1万元~98万元)(3)已知y 关于i 的线性相关系数为0.8834.从相关系数的角度看,y 与i 的拟合关系式更适合用ˆˆˆypi q =+还是ˆˆˆ(22)i y b i a =-+,说明你的理由. 参考数据:62221()1933.5,22523188,1418.5259ii yy =-=+=⨯=∑,1140.96109.44⨯=,取2005.4=.附:样本(i x ,)(1i y i =,2,⋯,)n的相关系数()()nii xx y y r --=∑线性回归方程ˆˆˆybx a =+中的系数1122211()()ˆ()nnii i ii i nniii i xx y y x ynxy b xx xnx ====---==--∑∑∑∑,ˆˆay bx =-. 21.(12分)在一个不透明的盒中,装有大小、质地相同的两个小球,其中1个是黑色,1个是白色,甲、乙进行取球游戏,两人随机地从盒中各取一球,两球都取出之后再一起放回盒中,这称为一次取球,约定每次取到白球者得1分,取到黑球者得0分,一人比另一人多3分或取满9次时游戏结束,并且只有当一人比另一人多3分时,得分高者才能获得游戏奖品.已知前3次取球后,甲得2分,乙得1分. (1)求甲获得游戏奖品的概率;(2)设X 表示游戏结束时所进行的取球次数,求X 的分布列及数学期望.22.(12分)已知函数234()sin 3f x x sin x m =-+.(1)求()f x 在[0,]π上的单调区间;(2)设函数4()2(2)(16)x g x x e ln x =--,若(0,)α∀∈+∞,[0β∀∈,]π,()()f g βα,求m 的取值范围.。
期末练习题2一.选择题1. 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是A.1800B.3600C.4320D.5040 2.若二项式2)nx的展开式的第5项是常数项,则自然数n 的值为 A.6 B.10 C.12 D.15 3、已知随机变量X 的分布为则()E X 等于A.0B.0.2C.-1D.-0.34. 袋中有1个白球和4个黑球,每次从其中任取一个球,而且每次取出黑球后放回袋中,则直到第三次取球时才取到白球的概率A.2516 B.12516 C.51 D.254 5. 曲线12-=x xy 在点(1,1)处的切线方程为A.02=--y xB. 02=-+y xC.054=-+y xD. 054=--y x 6. 已知复数z 满足(2)1z i i -=+,那么复数z 的虚部为 A.1 B.1- C.i D.i -7. 设f (n )=N)(n 21312111∈+++++++nn n n Λ,那么f (n +1)-f (n )等于 A.121+n B.221+n C.221121+++n n D.221121+-+n n 8. 函数1,(10)()cos ,(0)2x x f x x x π+-≤<⎧⎪=⎨≤≤⎪⎩的图象与x 轴所围成的封闭图形的面积为A. B. 1 C. 2 D.9、每一吨铸铁成本c y (元)与铸件废品率x %建立的回归方程568c y x =+,下列说法正确的是( )A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8% C.废品率每增加1%,成本每吨增加8元 D.如果废品率增加1%,则每吨成本为56元10、甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:) A.0.3~0.4 B.0.4~0.5 C.0.5~0.6 D.0.6~0.7二.填空题 11、若()()()()100100221010011121-++-+-+=+x e x e x e e x Λ,,3,2,1,=∈i R e i ……,则_________1003210=++++e e e e e Λ12、 五人排成一排,甲只能排在第一或第二两个位置,乙只能排在第二或第三两个位置,则不同的排法共有__________种。
13、甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为 。
14、已知函数ax x x f +-=3)(在区间()1,1-上是增函数,则实数a 的取值范围是________.15、从0,1,2,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有______________个.(用数字作答) 三.解答题16. 已知(n的展开式的前三项系数和为129,求展开式中含x 的项.17、某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min. (Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.18、已知函数f (x ) =bx ax +-26的图象在点M (-1,f (-1))处的切线方程为x + 2y + 5 = 0. (1)求函数y = f (x )的解析式;(2)求函数y = f (x )的单调区间.19、在数列{}n a 中,311=a ,且n n a n n s )12(-=。
(1)求:432,,a a a(2)由(1)猜想n a 的通项公式,并用数学归纳法证明你的猜想。
20、 甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. ⑴求甲答对试题数ξ的概率分布及数学期望; ⑵求甲、乙两人至少有一人考试合格的概率.21、已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点。
(Ⅰ)求实数a 的值;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.期末练习题2参考答案(仅供参考) 1 2 3 4 5 6 7 8 B C D B B B D A1. 不同排法的种数为5256A A =3600,故选B 2. 62444414)2()(--+=-⋅=nn n nx C x x C T ,062=-n 得到12=n5. 解:111222121||[]|1(21)(21)x x x x x y x x ===--'==-=---, 故切线方程为1(1)y x -=--,即20x y +-= 故选B. 二.简答题答案: 9. 1005 10. 1811. 0.95 12. [)∞,+3 13. 36三.解答题答案:14. (1)(i ) 332512()()33C ⨯⨯=1410279⨯⨯=40243(ii )31()3=127(2)设袋子A中有m 个球,则袋子B中有2m 个球 由122335m mpm +=得1330p =15.甲答对试题数ξ的数学期望E ξ=0×301+1×103+2×21+3×61=59. ⑴(文)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32, P(B)=310381228C C C C +=1205656+=1514. 答:甲、乙两人考试合格的概率分别为.151432和⑵解法一、因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为 P(B A ⋅)=P(A )P(B )=(1-32)(1-1514)=451. ∴甲、乙两人至少有一人考试合格的概率为P=1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 解法二:因为事件A 、B 相互独立,所以甲、乙两人至少有一人考试合格的概率为 P=P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 16. 依题意知:1+C n 1·2+C n 2·22=129, ∴n=8.(3分)(x x +32x )8的展开式的通项是T r+1=C 8r (32x)r ·(x x )8-r =C 8r ·2r ·x -.2)8(33r r-+(8分) 根据题意,得-2)8(33r r -+=1,r=6. 因此,含x 的项是T 6+1=C 86(32x)6·(x x )2=1792x .(12分)17. (I )由函数f (x )的图像在点M (-1,f (-1))处的切线方程为x + 2y + 5 = 0,知 -1 + 2f (-1) + 5 = 0,即f (-1) =-2,f '(-1) =-21. ∵ f '(x ) =222)()6(2)(b x ax x b x a +--+,∴⎪⎪⎩⎪⎪⎨⎧-=+--++-=+--21)1()6(2)1(2162b a b a b a ,即⎪⎩⎪⎨⎧-=++-+-=21)1()6(2)1(422b a b a b a ,解得 a = 2,b = 3(∵b +1≠0,b = -1舍去).所以所求的函数解析式是 f (x ) =3622+-x x .(II )f '(x ) =222)3(6122+++-x x x . 令 -2x 2 + 12x + 6 = 0,解得x 1 = 3-23,x 2 = 3 + 23, 当x <3-23,或x >3 +23时,f '(x ) <0; 当3-23<x <3 + 23时,f '(x )>0. 所以f (x ) =3622+-x x 在 (-∞,3-23)内是减函数;在(3-23,3 +23)内是增函数;在(3 +23,+∞)内是减函数. 18. (Ⅰ)因为()/2101af x x x=+-+, 所以()/361004af =+-=,因此16a = . (Ⅱ)由(Ⅰ)知,()()()216ln 110,1,f x x x x x =++-∈-+∞,()()2/2431x x f x x-+=+.当()()1,13,x ∈-+∞U 时,()/0f x >,当()1,3x ∈时,()/0fx < .所以()f x 的单调增区间是()()1,1,3,-+∞,()f x 的单调减区间是()1,3.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()/0f x =,所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =-.因此()()21616101616ln 291f f =-⨯>-=,()()213211213f e f --<-+=-<,所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--.。