2019-2020年高二下学期期末考试(数学理)
- 格式:doc
- 大小:603.00 KB
- 文档页数:7
银川一中2019-2020学年度(下)高二期末考试数学试卷(理科)一、选择题:(每道题5分,共60分)1.已知曲线C :222x y +=,则曲线C 的参数方程为( )A. x y θθ⎧=⎪⎨=⎪⎩(θ为参数[)0,2θ∈π)B. 2cos 2sin x y θθ=⎧⎨=⎩(θ为参数[)0,2θ∈π)C. x y θθ⎧=⎪⎨=⎪⎩(θ为参数[)0,θπ∈)D. 2sin 2cos x y θθ=⎧⎨=⎩(θ为参数[)0,θπ∈)【答案】A 【解析】 【分析】根据圆的参数方程的定义计算可得;【详解】解:因为曲线C :222x y +=,根据cos sin x r y r θθ=⎧⎨=⎩可得其参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数[)0,2θ∈π)故选:A【点睛】本题考查圆的参数方程的定义的应用,属于基础题. 2.在极坐标系中,过点()1,0并且与极轴垂直的直线方程是( ) A. cos ρθ=B. sin ρθ=C. cos 1ρθ=D.sin 1ρθ=【答案】C 【解析】分析:在直角坐标系中,求出直线的方程,利用极坐标与直角坐标的互化公式求得直线极坐标方程.解答:解:在直角坐标系中,过点(1,0)并且与极轴垂直的直线方程是 x=1, 其极坐标方程为 ρcosθ=1, 故选 C .3.621x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为( ) A. -15 B. -20C. 20D. 15【答案】B 【解析】 【分析】先求出二项式展开式的通项,再令x 的指数为3得到r 的值,即得621x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数.【详解】由题得二项展开式的通项为261231661(1)()()(1)rrrr r r rr T C x C x x--+=-=-, 令1233r -=,所以r =3,所以621x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为633()201C -=-. 故选:B.【点睛】(1)本题主要考查二项式展开式中某项的系数的求法,意在考查学生对该知识的掌握水平;(2)621x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为633()201C -=-,不是3620C =,要把二项式系数和项的系数两个不同的概念区分开. 4.若直线的参数方程为12{24x ty t=+=-(t 为参数),则直线的斜率为( )A.12B. 12-C. 2D. 2-【答案】D 【解析】试题分析:消参,将12x t =+两边同乘以2,与24y t =-相加可得,240x y +-=,则直线的斜率为2-.考点:1.参数方程;2.直线的斜率.5.某大型超市开业天数x 与每天的销售额y 的情况如下表所示:销售额/天(万元) 62 75 81 89根据上表提供的数据,求得y 关于x 的线性回归方程为ˆ0.6754.9yx =+,由于表中有一个数据模糊看不清,请你推断出该数据的值为( ) A. 67 B. 68 C. 68.3 D. 71【答案】B 【解析】 【分析】设该数为m ,再求,x y ,然后根据点(),x y 在回归直线上求解. 【详解】设该数为m ,()()()111102030405030,62758189307555x y m m =++++==++++=+, 因为点(),x y 在回归直线上, 所以()13070.673054.95m +=⨯+, 解得:m =68. 故选:B【点睛】本题主要考查线性回归方程的应用,还考查了理解辨析和数据处理的能力,属于基础题.6.求曲线C :22164y x -=经过'32'x x y y=⎧⎨=⎩变换后所得曲线1C 的焦点坐标为( ) A. ()15,0F -,()25,0F B. ()15,0F -,)25,0FC. ()10,5F -,()20,5FD. (15F ,(20,5F -【答案】A 【解析】 【分析】由已知得132x x y y ⎧='⎪⎨⎪='⎩,代入双曲线C 得到曲线C '的标准方程,由此能求出曲线C '的焦点坐标.【详解】解:32x x y y '=⎧⎨'=⎩,∴132x x y y ⎧='⎪⎨⎪='⎩, 代入双曲线22:164y C x -=,得221916x y ''-=. 3a ∴=,4b =,5c ==,∴曲线C '的焦点坐标为1(5,0)F -,2(5,0)F .故选:A【点睛】本题考查伸缩变换的应用,解题时要认真审题,注意双曲线的简单性质的合理运用,属于基础题.7.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则()12P X =等于( )A. 10210123588C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B. 929123588C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C. 929115388C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D. 1029113588C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】利用n 次独立重复实验中恰好发生k 次的概率计算公式,即可求得. 【详解】解:由题意可得,取得红球的概率为38,()12P X =说明前11次取球中,有9次取得红球、2次取得白球,且第12次取得红球,故()92102991111353358881288X C P C ⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=.故选:D.【点睛】本题考查了n 次独立重复实验中恰好发生k 次的概率,解本题须认真分析()12P X =的意义,属于基础题.8. 分配4名水暖工去3个不同的居民家里检查暖气管道,要求4名水暖工都分配出去,且每个居民家都要有人去检查,那么分配的方案共有( ) A. 34A 种 B. 3133A A 种C. 2343C A 种D. 113433C C A 种 【答案】C 【解析】 C试题分析:由题意得:有个居民家去两名水暖工,其他两个居民家各去一名水暖工,因此分配的方案共有2343C A 种,选C. 考点:排列组合9.某学校高三模拟考试中数学成绩X 服从正态分布()75,121N ,考生共有1000人,估计数学成绩在75分到86分之间的人数约为( )人.参考数据:()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=) A. 261 B. 341C. 477D. 683【答案】B 【解析】分析:正态总体的取值关于75x =对称,位于6486(,)之间的概率是0.6826,根据概率求出位于6486(,)这个范围中的个数,根据对称性除以2 得到要求的结果. 详解:正态总体的取值关于75x =对称,位于6486(,)之间的概率是(75117511)0.682?6P X -+=<<,则估计数学成绩在75分到86分之间的人数约为110000.682?63412⨯⨯≈人. 故选B .点睛:题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩X 关75X =于对称,利用对称写出要用的一段分数的频数,题目得解.10.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:( )附:22()()()()()n ad bc K a b c d a c b d -=++++参照附表,得到的正确结论是A. 在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别有关”B. 在犯错误的概率不超过l %的前提下,认为“该市居民能否做到‘光盘’与性别无关”C. 有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”D. 有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” 【答案】C 【解析】试题分析:由表计算得:22100(45153010)==3.0355457525K ⨯-⨯⨯⨯⨯,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,选C . 考点:线性相关11.北京某大学为第十八届四中全会招募了名志愿者(编号分别是,,,号),现从中任意选取人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保号、号与号同时入选并被分配到同一厅的选取种数是( ) A.B.C.D.【答案】C 【解析】 试题分析:号、号与号放在一组,则其余三个编号要么都比6小,要么都比24大,比6 小时,有种选法,都比24大时,有种选法,合计30种选法,号、号与在选厅时有两种选法,所以选取的种数共有种,故正确选项为C.考点:组合与排列的概念.12.在平面直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度,已知曲线C :()2sin2cos 0a a ρθθ=>,过点()2,4P --的直线l 的参数方程为:222242x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线l 与曲线C 分别交于M 、N 两点.若PM 、MN 、PN 成等比数列,求a 的值( )A. 1B. 2C. 3D. 4【答案】A 【解析】 【分析】本题首先可以求出曲线C 的直角坐标方程,然后将直线l 的参数方程代入曲线C 的直角坐标方程中,根据韦达定理得出12t t +以及12t t 的值,再然后根据PM 、MN 、PN 成等比数列得出21212t t t t -=,最后将12t t +以及12t t 的值带入21212t t t t -=中,通过计算即可得出结果.【详解】因为曲线C :()2sin2cos 0a a ρθθ=>所以曲线C 的直角坐标方程为()220y ax a =>将直线l 的参数方程2224x t y t ⎧=-+⎪⎪⎨⎪=-+⎪⎩代入曲线C 的直角坐标方程得: ()2142216402t a t a -+++=, 设交点M 、N 对应的参数分别为1t 、2t , 则()122422t t a +=+,()122164t t a =+, 因为PM 、MN 、PN 成等比数列,所以21212t t t t -=,即212125t t t t =+,()()2442210164aa +=+,解得1a =或4a =-(舍取),故满足条件的1a =, 故选:A.【点睛】本题考查极坐标方程与直角坐标方程的互化以及直线参数方程的几何意义,考查韦达定理以及等比中项的灵活应用,考查计算能力,考查化归与转化思想,是中档题. 二、填空题:(每道题5分,共20分) 13.若关于x 的不等式23ax -<的解集为51|33x x ⎧⎫-<<⎨⎬⎩⎭,则a =________. 【答案】3- 【解析】试题分析:因为等式23ax -<的解集为51|33x x ⎧⎫-<<⎨⎬⎩⎭,所以51,33-为方程23ax -=的根,即3a ⇒=-,故填3-.考点:绝对值不等式 绝对值方程14.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有5个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X 表示这5位乘客在第20层下电梯的人数,则P (X =4)=________. 【答案】10243【解析】 【分析】一位乘客是否在20层下电梯为一次试验,这是5次独立重复试验,153X B ⎛⎫ ⎪⎝⎭~,,用n 次独立重复试验概率公式即可求出P (X =4).【详解】一位乘客是否在20层下电梯为一次试验,这是5次独立重复试验,153X B ⎛⎫ ⎪⎝⎭~,,则有()551233kkk P X k C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,0123k =,,,,4,5. 所以()41451210433243P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭. 故答案为10243. 【点睛】独立重复试验的特点:(1)每次试验只有两种结果,要么发生,要么不发生;(2)每次试验的结果相互独立.15.若x y ∈R 、且满足32x y +=,则327x y +的最小值是____. 【答案】6 【解析】 【分析】本题首先可以根据基本不等式得出327x y +≥然后代入32x y +=,即可得出结果.【详解】332733x y x y +=+≥=, 因为32x y +=,所以2327236x y +≥=, 故答案为:6.【点睛】本题考查基本不等式求最值,主要考查通过基本不等式求和的最小值,考查幂的运算,考查计算能力,是简单题. 16.设,a b 为正实数,现有下列命题: ①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<; ③若1a b -=,则1a b -<;④若331a b -=,则1a b -<.其中的真命题有____________.(写出所有真命题的编号) 【答案】 ①④ 【解析】试题分析:对于①,因为,由此可知,若这与矛盾,故有成立,所以①为真;对于②取知,所以②不真;对于③取成立,但不成立,所以③不真;对于④由得到:,又因为中至少有一个大于1(否则已知|a 3-b 3|=1不成立),从而成立,故④为真;综上可知真命题有①④.考点:不等式性质.三、解答题:(共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知:椭圆C :2211612x y +=,直线l :2120x y --=. (1)求椭圆C 的参数方程;(2)求椭圆C 上一点P 到直线l 的距离的最小值.【答案】(1)4cos x y θθ=⎧⎪⎨=⎪⎩;(2)min 5d =. 【解析】【分析】(1)直接由椭圆的普通方程得到椭圆的参数方程;(2)设点P坐标为()4cos ()R θθθ∈,运用点到直线的距离公式,以及两角和的正弦公式,化简可得距离d ,再由余弦函数的性质,可得最小值. 【详解】解:(1)因为椭圆C :2211612x y +=所以椭圆的参数方程是4cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数). (2)依题意知椭圆的参数方程是4cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),故椭圆上任意一点()4cos ()P R θθθ∈到直线2120x y --=的距离是3d θθ==--33πθ⎛⎫=+- ⎪⎝⎭,当()2πk Z 3k πθ+=∈时,min 5d =. 【点睛】本题考查椭圆参数方程的运用,以及点到直线的距离公式,考查化简整理的运算能力,属于基础题.18.王府井百货分店今年春节期间,消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对春节前7天参加抽奖活动的人数进行统计,y 表示第x 天参加抽奖活动的人数,得到统计表格如下:经过进一步统计分析,发现y 与x 具有线性相关关系.(1)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+; (2)若该活动只持续10天,估计共有多少名顾客参加抽奖.参与公式:1221ˆ==-⋅=-∑∑ni ii n i i x y nx y b x nx ,ˆˆa y bx =-,71364i i i x y ==∑. 【答案】(1)ˆ23yx =+(2)140人 【解析】【分析】(1)利用回归直线方程计算公式,计算出回归直线方程.(2)利用回归直线方程,估计出第8,9,10三天参加抽奖的顾客人数,由此求得这10天共有的人数.【详解】(1)依题意:()1123456747x =++++++=, ()158810141517117y =++++++=, 721140i i x==∑,71364i i i x y ==∑, 71722173647411ˆ21407167i ii i i x y x y b xx ==-⋅-⨯⨯===-⨯-∑∑, ˆˆ11243ay bx =-=-⨯=, 则y 关于x 的线性回归方程为ˆ23yx =+. (2)预测8x =时,ˆ19y=,9x =时,ˆ21y =,10x =时,ˆ23y =,此次活动参加抽奖的人数约为5+8+8+10+14+15+17+19+21+23=140人.【点睛】本小题主要考查回归直线方程的求法,考查利用回归直线方程进行预测,属于中档题.19.已知函数()2f x x =-.(1)求不等式()3f x <的解集;(2)若0a >,0b >,且111a b+=,求证:()()314f a f b +++≥. 【答案】(1)()1,5-;(2)证明见解析.【解析】【分析】(1)由绝对值的性质求解.(2)由已知得1,1a b >>,则(3)(1)1111f a f b a b a b a b +++=++-=++-=+,然后利用基本不等式可证明不等式成立.【详解】(1)()3f x <,即23x -<,所以323x -<-<,15x -<<,所以不等式解集为(1,5)-..(2)因为0a >,0b >,111a b +=,所以101a<<,101b <<,所以1a >,1b >, 由题意知()()311111f a f b a b a b a b +++=++-=++-=+, 因为111a b+=, 所以11()24b a a b a b a b a b ⎛⎫+=++=++≥⎪⎝⎭,当且仅当b a a b =即2a b ==时等号成立, 所以()()314f a f b +++≥.【点睛】本题考查解含绝对值的不等式,考查用基本不等式证明不等成立,在只有一个绝对值符号时,可以利用绝对值的性质求解.用基本不等式证明不等式时关键是是凑配出基本不等式所需的定值.20.在平面直角坐标系xOy 中,曲线1C 的参数方程为3sin x t y t ⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程是cos sin θθ=,曲线2C 的极坐标方程是6cos 4sin ρθθ=+.(1)求直线l 和曲线2C 的直角坐标方程,曲线1C 的普通方程;(2)若直线l 与曲线1C 和曲线2C 在第一象限的交点分别为P ,Q ,求OP OQ +的值.【答案】(1):0l x y -=;222:640C x y x y +--=;221:139x y C +=(2)2. 【解析】分析】(1)由cos sin θθ=,得cos sin ρθρθ=,代入cos sin x y ρθρθ=⎧⎨=⎩即可得直线l 的直角坐标方程;由6cos 4sin ρθθ=+,得26cos 4sin ρρθρθ=+,代入cos sin x y ρθρθ=⎧⎨=⎩得曲线2C 的直角坐标方程;由3sin x t y t ⎧=⎪⎨=⎪⎩消去参数即可 (2)得到1C 和2C 的极坐标方程,因为cos sin θθ=,所以tan 1,4πθθ==,把4πθ=代入1C 和2C 的极坐标方程,根据极径的意义可得. 【详解】解:(1)由cos sin θθ=,得cos sin ρθρθ=,代入cos sin x yρθρθ=⎧⎨=⎩,得x y =, 故直线l 的直角坐标方程是0x y -=.由6cos 4sin ρθθ=+,得26cos 4sin ρρθρθ=+, 代入cos sin x y ρθρθ=⎧⎨=⎩,得2264x y x y +=+, 即22640x y x y +--=,故曲线2C 的直角坐标方程是22640x y x y +--=.由3sin x t y t ⎧=⎪⎨=⎪⎩,得2213y ⎛⎫+= ⎪⎝⎭ 即22139x y +=. 故曲线1C 的普通方程是22139x y +=. (2)把cos sin x yρθρθ=⎧⎨=⎩代入22139x y +=中,化简整理, 曲线1C 的极坐标方程为22912cos θρ=+, 曲线2C 的极坐标方程为6cos 4sin ρθθ=+,因为cos sin θθ=,所以tan 1,4πθθ==所以2OP ==,6cos 4sin 44OQ ππ=+=所以2OP OQ += 【点睛】考查直角坐标方程、极坐标方程、参数方程的互相转化以及根据极坐标方程中极径的几何意义求距离,中档题21.选修4-5:不等式选讲 已知函数()212f x x x a =-++,()3g x x =+,(Ⅰ)当2a =-时,解不等式:()()f x g x <;(Ⅱ)若1a >-,且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围. 【答案】(Ⅰ){}|02x x <<(Ⅱ)4(1,]3a ∈-【解析】试题分析:(I )当a =-2时,不等式()f x <()g x 化为212230x x x -+---<,设函数y =21223x x x -+---,y =15,? 21{2,? 1236,? 1x x x x x x -<--≤≤->,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,43]. 考点:绝对值不等式解法,不等式恒成立问题.点评:中档题,绝对值不等式解法,通常以“去绝对值符号”为出发点.有“平方法”,“分类讨论法”,“几何意义法”,不等式性质法等等.不等式恒成立问题,通常利用“分离参数法”,建立不等式,确定参数的范围.22.2020年1月10日,引发新冠肺炎疫情的9COVID -病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关. (1)求一个接种周期内出现抗体次数K 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元.本着节约成本的原则,选择哪种实验方案.【答案】(1)分布列见解析;(2)①825元;②选择方案二.【解析】【分析】(1)利用二项分布的知识计算出分布列.(2)①先求得一个接种周期的接种费用的期望值,由此求得三个接种周期的接种费用的期望值()E X .②首先求得“在一个接种周期内出现2次或3次抗体”的概率,根据相互独立事件概率计算公式,结合随机变量期望值的计算,计算出花费的期望值()E Y .由于()()E X E Y >,所以选择方案二. 【详解】(1)由题意可知,随机变量K 服从二项分布13,2K B ⎛⎫ ⎪⎝⎭, 故()331122k k kP K k C -⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭(0,1,2,3k =)则X 的分布列为(2)①设一个接种周期的接种费用为ξ元,则ξ可能的取值为200,300,因为()12004P ξ==,()33004P ξ==, 所以()1320030027544E ξ=⨯+⨯=. 所以三个接种周期的平均花费为()()33275825E X E ξ==⨯=.②随机变量Y 可能的取值为300,600,900,设事件A 为“在一个接种周期内出现2次或3次抗体”,由(1)知,()311882P A =+=. 所以()()13002P Y P A ===, ()()()160014P Y P A P A ==-⨯=⎡⎤⎣⎦, ()()()19001114P Y P A P A ==-⨯-⨯=⎡⎤⎡⎤⎣⎦⎣⎦, 所以()111300600900525244E Y =⨯+⨯+⨯= 因为()()E X E Y >.所以选择方案二.【点睛】本小题主要考查二项分布,考查相互独立事件概率计算,考查数学期望的计算,属于中档题.。
广西来宾市2019-2020学年高二下学期数学期末考试试卷(理科)(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·长春模拟) 若复数,则()A .B .C .D .2. (2分)设随机变量X~,则P(X=3)的值是()A .B .C .D .3. (2分) (2017高二下·芮城期末) 独立检验中,假设:变量与变量没有关系,则在成立的情况下,表示的意义是()A . 变量与变量有关系的概率为1%B . 变量与变量没有关系的概率为99.9%C . 变量与变量没有关系的概率为99%D . 变量与变量有关系的概率为99%4. (2分)用反证法证明“如果,那么”时,假设的内容应是()A .B .C . 且D . 或5. (2分) (2016高二下·东莞期中) 函数函数f(x)=(x﹣3)ex的单调递增区间是()A . (﹣∞,2)B . (0,3)C . (1,4)D . (2,+∞)6. (2分)已知8件产品中有2件次品,从中任取3件,取到次品的件数为随机变量,用ξ表示,那么ξ的取值为()A . 0,1B . 1,2C . 0,1,2D . 0,1,2,37. (2分) (2017高二下·景德镇期末) 现有金牌5枚,银牌3枚,铜牌2枚,从中任取2枚奖牌,试求在所取得的奖牌中发现有一枚是金牌,另一枚也是金牌的概率为()A .B .C .D .8. (2分) (2016高二下·南安期中) 已知随机变量X服从正态分布N(μ,σ2),且P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣σ<X≤μ+σ)=0.6826,若μ=4,σ=1,则P(5<X<6)=()A . 0.1358B . 0.1359C . 0.2716D . 0.27189. (2分)某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是()A .B .C .D .10. (2分)有5名优秀毕业生到母校的3个班去作学习经验交流,则每个班至少去一名的不同分派方法种数为()A . 150B . 180C . 200D . 28011. (2分) (2019高二下·宁夏月考) 用火柴棒摆“金鱼”,如图所示:按照上面的规律,第个“金鱼”图需要火柴棒的根数为()A .B .C .D .12. (2分)设是定义在R上的奇函数,且,当时,有恒成立,则不等式的解集是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高三上·黑龙江期中) 曲线y=x3﹣x+3在点(1,3)处的切线方程为________.14. (1分)已知(2x+)4=a0+a1x+a2x2+a3x3+a4x4 ,若a=(a0+a2+a4)2﹣(a1+a3)2 ,则dx=________15. (1分)(2015·岳阳模拟) 若二项式的展开式中只有第4项的系数最大,则展开式中常数项为________.16. (1分)已知函数在上为减函数,则实数的取值范围是________.三、解答题 (共6题;共45分)17. (10分)已知(1+2x)n的展开式中第6项与第7项的系数相等,求:(1)展开式中二项式系数最大的项;(2)展开式中系数最大的项.18. (10分)(2013·江苏理) 设数列{an}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤ (k∈N*)时,.记Sn=a1+a2+…+an(n∈N∗).对于l∈N∗,定义集合Pl=﹛n|Sn为an的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数.19. (5分) 2015年春晚过后,为了研究演员上春晚次数与受关注的关系,某网站对其中一位经常上春晚的演员上春晚次数与受关注度进行了统计,得到如下数据:上春晚次数x(单位:次)12468粉丝数量y(单位:万人)510204080(1)若该演员的粉丝数量y与上春晚次数x满足线性回归方程,试求回归方程=x+(精确到整数);(2)试根据此方程预测该演员上春晚10次时的粉丝数;==,=﹣x.20. (5分)(2016·淮南模拟) 某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(Ⅰ)求样本容量n和频率分布直方图中x、y的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设ξ表示所抽取的3名同学中得分在[80,90)的学生个数,求ξ的分布列及其数学期望.21. (5分) (2020高二上·天津期末) 已知函数 .(I)若 ,求的极值;(II)证明:当时, .22. (10分) (2018高二下·黑龙江期中) 设为实数,函数 , .(1)求的单调区间与极值;(2)求证:当且时, .参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共45分)17-1、17-2、18-1、18-2、19-1、20-1、21-1、22-1、22-2、第11 页共11 页。
2019-2020年高二下学期期末考试数学(理)试题 含答案命题教师:张金荣一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={x |y =lg(2x -x 2)},B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A 等于( )A .[0,1]B .(0,1]C .(-∞,0]D .以上都不对2.函数f(x)=ln(x-2)-的零点所在的大致区间是( )A .(1,2) B.(2,3) C.(3,4) D.(4,5)3.函数f(x)=的定义域为( )A . B. C. D.4.设a =60.7,b =0.76,c =log 0.76,则a ,b ,c 的大小关系为 ( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b5.以下说法错误的是( )A .命题“若x 2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2-3x+2≠0”B .“x=1”是“x 2-3x+2=0”的充分不必要条件C .若p ∧q 为假命题,则p,q 均为假命题D .若命题p:∃x 0∈R,使得+x 0+1<0,则﹁p:∀x ∈R,则x 2+x+1≥06.函数y=lg|x |x 的图象在致是( )7.偶函数y=f (x )在x ∈时,f (x )=x-1,则f(x -1)<0的解集是( )A .{x|-1<x <0B .{x|x <0或1<x <2C .{x|0<x <2D .{x|1<x <28.函数f(x)= 满足对任意成立,则实数a 的取值范围是( )A .B .C .D .9.若不等式x 2+ax+1≥0对于一切x(0,)恒成立,则a 的取值范围是( )A .a≥0B .a≥-2C .a≥-D .a≥-310.已知函数f (x )=的值域为[0,+∞),则它的定义域可以是( )A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]11.已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,() A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( ) A .(0,12]∪[2,+∞) B .[14,1)∪(1,4] C .[12,1)∪(1,2] D .(0,14]∪[4,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=ax 2+bx+3a+b 是偶函数,定义域为[a-1,2a],则a+b= .14.已知函数f(x)是定义在区间上的函数,且在该区间上单调递增,则满足f(2x-1)<f()的x 的取值范围为__________15.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值为________.16.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时f (x )=(12)1-x ,则 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=(12)x -3. 其中所有正确命题的序号是________.三、解答题(共70分)17.(12分)给定两个命题::对任意实数都有恒成立;:关于的方程有实数根;如果P ∨q 为真,P ∧q 为假,求实数的取值范围.18.(12分)对定义在实数集上的函数f (x ),若存在实数x 0,使得f (x 0)=x 0,那么称x 0为函数f (x )的一个不动点.(1)已知函数f (x )=ax 2+bx -b (a ≠0)有不动点(1,1)、(-3,-3),求a 、b ;(2)若对于任意实数b ,函数f (x )=ax 2+bx -b (a ≠0)总有两个相异的不动点,求实数a 的取值范围.19.(12分)已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a 2x (a ∈R). (1)写出f (x )在[0,1]上的解析式;(2)求f (x )在[0,1]上的最大值.20.(12分)C D E AB P 经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.21.(12分)已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1: 几何证明选讲.如图,在正ΔABC 中,点D 、E 分别在边BC, AC 上,且,,AD ,BE 相交于点P.求证:(I) 四点P 、D 、C 、E 共 圆;(II) AP ⊥CP 。
咼二第二学期数学(理)期末试题第I 卷(选择题)一、选择题:本大题共 12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合 题目要求.1.已知集合U R ,集合Mx|x 24 0,则 C U MA.x | 2x2B.x| 2 x 2C. x | x 2或x 2D. x | x 2或 x 22.设复数z 满足z 2i 2 i 5,则 zA. 2 3iB.2 3i C. 32i D.3 2i2 23.若双曲线 x y_2 . 21 a 0, b 0的离心率为3,则其渐近线方程为a b5.下列四个结论:A. 1B. 2C.①若“ p q ”是真命题,则 p 可能是真命题;②命题 “ X 0 R,X 。
2 X 。
1 0 ”的否定是“ x R, x 2 0 ”; ③“ a 是“ a b 0 ”的充要条件; ④当a 0时,幕函数 a y x 在区间0, 上单调递减.其中正确的结论个数是 A.0 个 B.1 个C. 2 个D. 36.在单调递减等差数列 a n 中,若a 3A. y 2xB.r4.设x R ,向量a2r b XA. -4B.2.51x D. y 2r r r r6 ,且 a//b ,贝U a bD.207.从4名男生和2名女生中任选3人参加某项活动,则所选的不少于1人的概率是A.4B.3C. -555D.8.把边长为1的正方形ABCD 沿对角线与俯视图如图所示,则其几何体的表面积为女生人数的正视图C.BD 折起,形成的三棱锥A. B. L C. 1 2 D. 1 .32sin x 3 39.函数y ——-x — ,0 U 0,—的图象大致是11 4 41 ~xA- B T C.f x10.如果函数f x在区间D上是增函数,且在区间上是减函数,则称函数 f x在区间D上是缓增x_ 1 3函数,区间D叫做缓增区间.若函数f X -x2 x 在区间D上是缓增函数,则缓增区间D是2 2A . 1,B. 0^.3C.0,1D. 1八311. 若函数f x 1 3 d bx 1 - 2 x 2bx在区间3,5上不是单调函数,则函数0厂、3在R上的极大值为3 2A .2 2 13 3 24 _b -b B. -b — C. 0 D. 2b -3 6 2 3 312. 已知函数 f xx笃k2ln x,若x 2是函数f x的唯一极值点,则实数k的取值范围是x xA . ,eB.0,e C. ,e D. 0,e二、填空题:本大题共4小题,每小题5分,共20分.a13.xcosx 5sin x.a14.曲线f x xlnx在点1,f 1 处的切线方程为______________ . _______15.若将函数y si nx 、、3cosx的图象向右平移0个单位长度得到函数y si nx .. 3 cos x的图象,则的最小值为 _________ .116.已知函数f x x3 2x e x x,其中e是自然对数的底数,若f a 1 f 2a2 0 ,则实数a的e取值范围为_________ .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程(1 )用a 1,d 分别表示T,T 2,T 3,并猜想T n ;(2)用数学归纳法证明你的猜想217.(本题满分12分)已知命题P:函数f xlog 2m x 1是增函数,命题Q: x R, x 2mx 1 0.(1 )写出命题Q 的否命题 Q ,并求出实数 m 的取值范围,使得命题 Q 为真命题;(2)如果P Q 是真命题,P Q 是假命题,求实数 m 的取值范围.18.(本题满分12分)如图,在长方体 ABCD A 1B 1C 1D 1中,AB AA 1,E 为BC 的中点.(1)求证:GD 0E ;(2)若二面角B 1 AE D 的大小为90°,求AD 的长.2x 19.(本题满分12分)已知椭圆 —2 b2 1a b0的左、右焦点分别为Fj F 2,A 是椭圆的上顶点,直线AF 2交椭圆于另一点B.(1 )若 F 1AB 90°,求椭圆的离心率;uuuu uum uujr uuu 3(2)若AF 2 2F 2B,AF 1 AB ,求椭圆的方程220.(本题满分12分)设等差数列a n 的公差d 0 ,且a 1 0,记T n1 a .a n 1.21.(本题满分12分)已知f x xlnx,g x x ax 3.(1)求函数f x在区间t,t 2 t 0上的最小值;1 2(3)证明:对一切x 0, , In x x 恒成立.e ex22.(本题满分10 分)选修4-4 :参数方程与极坐标系在平面直角坐标系x xoy 中,直线l 1的参数方程为y2 t ( t 为参数),直线J 的参数方程为 kty(m 为参数),设直线l i ,I 2的交点为P,当变化时,P 的轨迹为曲线•(2 )以坐标原点与C 的交点,求O 为极点, M 的极径•x 轴的正半轴为极轴建立极坐标系,设 I 3:cos sin 42 0,M 为 S23.(本题满分 10分)选修 4-5 :不等式选讲已知函数f x2x ax4,g x x 1 x 1.(2 )若不等式f x g x 的解集包含,求实数 a 的取值范围(1 )写出曲线C 的普通方程;(1 )当a 1时,求不等式f X g x 的解集;高二数学(理)答案选择题C 2 . A 3 .D 4 . D 5. B 6 . B A 8 . B 9 . A 10 . D 11 . D 12 . A C 【解析】 因为M x 2x 4 0 x 2 x 2,全集U R , 所以C u M xx 2或x 2,故选C.5A 【解析】利用方程思想求解复数并化简.由(z — 2i )(2 — i ) = 5,得z = 2i + —二2i 2 — i5(2 + i)(2 — i) (2 + i)c c 2 a 2 + b 2 b 2 bD 【解析】由条件e = 3,即a = 3,得尹=—孑一=1 +亍=3,所以a = 2,所以双曲的渐近线方程为y=±#x .故选DD 【解析】:a = (1,x ),b = (2,— 6)且 a // b ,••• — 6— 2x = 0,x = — 3,A a = (1,— 3),a -b = 20 ,故选 D. B 【解析】①若p q 是真命题,则p 和q 同时为真命题, p 必定是假命题;② 命题 “ x ° R, x 02 x 0 1 0” 的否定是 “x R,x 2 x 1 0 ”; ③ “a 5且b 5 ”是“a b 0”的充分不必要条件; ④ y x a y' a x a 1,当a 0时,y' 0,所以在区间0,+ 上单调递减.选B.3 B 【解析】由题知,a 2+ a4 = 2a 3= 2,又t a 2a 4 = 4,数列{a n }单调递减, . 1 3 .八辛 a 4 — a 2 1 .• • a 4 — 2 , a 2 — 2 ・••厶^差 d — 2 = — 2 ・•• a 1 = a 2 — d — 2. A 【解析】设所选女生人数为 X,则X 服从超几何分布,其中 N= 6,M= 2,n — 3,2 1C 2C 4 C 2C 24则 P (X 三 1) — P (X — 1) + P (X = 2) — c :+ c 3 — 5.所以选 A oB 【解析】由正视图与俯视图可得三棱锥 A- BCD 的一个侧面与底面垂直,则它们面积的1.7. 1 . 2. +3. 线4.5.6.7.2的表面积为L2C ;同时有 y' f'(x)4xsinx 2x 4cosx 2x 2 cosx因此k w e .故选A.和为1,另两个侧侧面是边长为1的等边三角形,面积的和为 所以几何体9 . A 【解析】因为函数y f(x)2sinx可化简为 1丄 xf(x)2x 2 sin x 可x 2 1知函数为奇函数关于原点对称,可排除答案32x(2sin x x cosx xcos x) ,贝L 当 x (0,_) 2 2(x 1)f '(x) 0,可知函数在x 附近单调递增,排除答案 B 和D ,故答案选A .1310. D 【解析】抛物线f(x)=十2— x + 2的对称轴是x = 1,其递增区间是1,+ g)当x 》l 时,¥=1x+3 -J 注意到x+ !>23(当且仅当x =3即x=w 时取最小值),11 • D 【解析】 所以缓增区间D 是1 , 3].选D .f '() = x 2- (2 + b)x + 2b = (x - b)( x - 2)函数 f(x)在区间 3,5]上不是单调函数,3<b<5,则由 f '()>0,得 x<2 或 x>b ,由 f '()<0,得2<x<b ,二函数f (x)的极4大值为 f (2) = 2b -3.12. A 【解析】 已知f (x)笃 k(2ln x),则 f (x)x xx 2 3~ x(e xkx), 当x 0时, e xkx > 0恒成立,即kxe_ x令 g(x) g(x)e x (x 1) x 2易知 g(x)min g(1) e (x 2 1)213 .0 14 13 . 【解析】f(x) 14. 【解析】由题意2n 15. -3a(xcosx a16 .5sin x) 0.得f'x)=ln x+ 1,所以f'伟In 1 + 1 = 1,即切线的斜率为 1.因为 f(1)= 0, 、填空题 xcosx 5sinx 为奇函数,故x - y - 1 =因为 y = sin x + 3cos x = 2sin x + 扌,y = sin x — 3cos x = 2sin x — 3,(2)若函数f (x) log 2m x 1是增函数,贝U 2m 1, A mm -(6分) 2又 x R, x 2 mx 1 0为真命题时,由m 24 0m 的取值范围为B m 2 m 2...... 分由“P Q ”为真命题,“P Q ”为假命题,故命题p 、Q 中有且仅有一个真命题 当P 真Q 假时, 实数m 的取值范围为:A CB 152,2 2,2,…10分当p 假 Q 真时,实数m 的取值范围为:(C R A)B‘2 2,2兮 (11)分综上可知实数m的取值范围:2,22,•……分218 •【解析】(1)证明:以D 为原点,建立如图所示的空间直角坐标系 D-xyz ,设AD= a ,则D(0,0,0),A( a, 0,0) ,B( a, 1,0) ,C(0,1,0) ,B 1(a, 1,1) ,C 1(0,1,1) ,0(0,0,1),E 2,1,0,15 .【解析】 所以把 y = 2sin x +扌的图象至少向右平移 年个单位长度可得y 二2sin x -n 的图象.16.【解析】 因为f ( x) x 32x Z e xef(x),所以函数f(x)是奇函数, 因为f'(x) 2xx23x 2 e e 3x2 2 .e x e x 0,所以数f(x)在R 上单调递增,又 f (a 1) f (2a 2) 0 , 即 f (2a 2) f (1 a),所以 2a 2 1 a ,三、解答题 即2a 2解得1,故实数的取值范围为[1,1].217 •【解析】 (1) Q :X omx o•分2若Q 为真命题,则0,解得: m 2,或 m 2故所求实数m 的取值范围为:2,(• 5 分)—* —* a••• C i D= (0 , — i , — i) , D i E= 2, i , — i ,则CTD^D TE^ 0,••• C i D 丄 D i E.(注:可采用几何法证明。
在点P (1, 1)处的切线相互垂直,所以r (1) »g' (1) =-1,即—1,所以a=-l.故选A. 考点:利用导数研究曲线上某点切线方程.3. 用反证法证明命题“若。
>2,则方程必+心+ 1 = o 至少有一个实根,,时,应假设() A.方程J+破+ 1 = 0没有实根湖南省永州市重点名校2019-2020学年高二下学期期末统考数学试题 一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列等式不正确的是( ) 777 + 1 A. C —C1 c. A';*: 【答案】A【解析】 【分析】 根据排列组合数公式依次对选项,整理变形,分析可得答案. 【详解】 n\ A,根据组合数公式,a,;" = - ., = ^x (^+1)!= n + 1 (m + l)!(n-m)! n + 1 tn + 1 八 m+l . 一 . —x" A不正确; B, - A^1 = (〃 +1)〃(〃-1)(〃 - 2)— m + 1) —〃—1)(〃 —2)(〃_所 + 1) = 〃2(〃_])(〃_2){n — m + \),W = w (” T)3-1) 3 - m +1)故 Cl 1 - 4':'=必4'目 B 正确;c, »Cf=n(n-1)(» - 2) (” - /« + !) = 故 C 正确; D, nC ; - kC : = (n - k)C : = (n - k)n(n - § (〃一上 + 1) = 〃(〃一1) (〃_上 + 1)("_上)=Cf*】故 D 正确; 【点睛】 本题考查排列组合数公式的计算,要牢记公式,并进行区别,属于基础题. 2.若曲线f(x) = $ , g ⑴=芝在点尸(1,1)处的切线分别为1撰2,且«上,2,则a 的值为() B. 2 1 D.—— 2 【答案】A 【解析】 试题分析:因为「3* 衣)妇,则 f' (1)=-2,g ,(l) =a,又曲线f(x) = Mg(x) = x"B.方程x2 +ov + l = 0至多有一个实根C. ^x- +ax + l = o至多有两个实根D. 方程x2+ax + \ = 0恰好有两个实根【答案】A【解析】分析:直接利用命题的否定写出假设即可,至少的反面是一个都没有。
安徽省太和中学2019—2020学年高二数学下学期期末考试试题 理考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟.2.答题前,考生务必用直径0。
5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,.在试题卷、草稿纸上作..........答无效...。
4.本卷命题范围:高考范围。
一、选择题:本题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数()226i1i z +=-的虚部为( )A .iB .i -C .1-D .12.已知集合{}113A x x =-<+<,()12log 1B x y x ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则A B ⋂=( )A .()1,-+∞B .()2,1--C .()1,2-D .()2,2-3.已知双曲线()222210,0x y a b a b -=>>的一条渐近线经过点,则该双曲线的离心率为( )A .2 BC .3D 4.某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示:不喜欢喜欢 男性青年观众 30 10 女性青年观众3050现要在所有参与调查的人中用分层抽样的方法抽取n 人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了6人,则n =( )A .12B .16C .24D .325.若某程序框图如图所示,则该程序运行后输出的B 等于( ) A .4 B .40 C .13 D .416.已知平面向量a ,b 满足()1236a b a -⋅=,且13a =,12b =,则向量a 与b夹角的余弦值为( )A .1B .12-C .12D .147.某几何体的三视图如图所示,则该几何体的体积为( )A 3B 3C .334D 438.函数()()sin 0,0,22f x A x A ππωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则当,122x ππ⎡⎤∈⎢⎥⎣⎦时,()f x 的值域是( )A .1,12⎡⎤-⎢⎥⎣⎦B .3,12⎡⎤-⎢⎥⎣⎦C .13,22⎡⎤-⎢⎥⎣⎦D .33,22⎡⎤-⎢⎥⎣⎦9.函数()2e e 2x xf x x x --=+-的部分图象大致是( )A .B .C .D .10.在ABC△中,角A,B,C的对边分别为a,b,c ,若1b =,()2sin 33cos a B C c A =,点G 是ABC △的重心,13AG =,则ABC △的面积为( )A 3B 333C 323D 3 11.已知四棱锥S ABCD -,SA ⊥平面ABCD ,AB BC ⊥,BCD DAB π∠+∠=,2SA =,BC =二面角S BC A --的大小为3π.若四面体SACD 的四个顶点都在同一球面上,则该球的表面积为( ) A. B .4π C .8π D .16π12.已知函数()e e xx f x -=-,若对任意的()0,x ∈+∞,()f x mx >恒成立,则m 的取值范围为( )A .(],2-∞B .(],1-∞C .(),2-∞D .(),1-∞ 二、填空题:本题共4小题。
绝密★启用前数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2230A x x x =+-<,{}2log 1B x x =<,则A B =()A .{}02x x << B .{}01x x << C .{}31x x -<<D .{}12x x -<<2.若复数z 满足()1210z i i +=,则z =() A .42i - B .42i + C .42i --D .42i -+3.512x x ⎛⎫- ⎪⎝⎭的展开式中含3x 项的系数是()A .40B .-40C .80D .-804.已知向量(),1a m =,()2,3b =-.若()2a b b -⊥,则m =() A .194-B .194C .23-D .235.某中学有高中生3600人,初中生2400人,为了解学生课外锻炼情况,用分层抽样的方法从校学生中抽取一个容量为n 的样本.已知从高中生中抽取的人数比从初中生中抽取的人数24,则n =() A .48 B .72C .60D .1206.已知1sin 35πθ⎛⎫-= ⎪⎝⎭,则sin 26πθ⎛⎫-= ⎪⎝⎭() A .225-B .2325-C .225D .23257.已知l ,m ,n 为不同的直线,α,β,γ为不同的平面,则下列判断错误的是()A .若m α⊥,n β⊥,//αβ.则//m nB .若m α⊥,n β⊥,//m n ,则//αβC .若l αβ=,m βγ=,n γα=,//l γ,则//m nD .若αγ⊥,βγ⊥,则//αβ8.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .若8cos 3ABC b A S =,则22cos sin 122sin cos B CA A A++-=-() A .-2B .2C .12-D .129.已知函数()()2log ,142,1x a x f x a x x +>⎧⎪=⎨-+≤⎪⎩,是R 上的单调递增函数,则a 的取值范围是()A .()1,4B .[) 2,4C .[) 3,4D .(]1,310.已知抛物线2:4C x y =的焦点为F ,若斜率为一的直线l 过点F ,且与抛物线C 交于A ,B 两点,则线段AB 的中点到准线的距离为() A .658B .654C .12916D .129811.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体外接球的表面积是() A .41πB .414π C .25πD .254π12.已知函数()sin f x x =的图象与直线()00kx y kx k --=>恰有三个公共点,这三个点的横坐标从小到大分别为1x ,2x ,3x ,则()12123tan x x x x x -++属于()A .10,3⎛⎫ ⎪⎝⎭B .11,32⎛⎫⎪⎝⎭C .1,12⎛⎫⎪⎝⎭D .31,2⎛⎫⎪⎝⎭第II 卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.函数()3tan 23f x x π⎛⎫=+⎪⎝⎭的图象的对称中心是_____________. 14.已知函数()f x 是偶函数.且当0x ≥时,()()23log 1f x x x =++,则()2f -=_____________. 15.黄金三角形有两种,一种是顶角为36︒的等腰三角形,另一种是顶角为108︒的等腰三角形.例如,一个正五边形可以看成是由正五角星和五个顶角为108︒的黄金三角形组成的,如图所示,在黄金三角形1A AB中,112A A AB =.根据这些信息,若在正五边形ABCDE 内任取一点,则该点取自正五边形11111A BCDE 内的概率是_____________.16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,直线:36l y x =+过点1F ,且与双曲线C 在第二象限交于点P ,若点P 在以12F F 为直径的腰上,则双曲线C 的离心率为_____________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知数列{}n a 的前n 项和为n S ,且12a =,()(21)n n S n a n *=+∈N . (1)求{}n a 的通项公式; (2)令()()1422n n n b a a +=++,求数列{}n b 的前n 项和n T .18.(12分)某航空公司规定:国内航班(不构成国际运输的国内航段)托运行李每件重量上限为50kg,每件尺寸限制为40cm 60cm 100cm ⨯⨯,其中头等舱乘客免费行李额为40kg ,经济舱乘客免费行李额为20kg .某调研小组随机抽取了100位国内航班旅客进行调查,得到如下数据:(1)请完成答题卡上的22⨯列联表,并判断是否在犯错概率不超过0.05的前提下,认为托运超额行李与乘客乘坐座位的等级有关;(2)调研小组为感谢参与调查的旅客,决定从托运行李超出免费行李额且不超出10kg 的旅客中(其中女性旅客4人)随机抽取4人,对其中的女性旅客赠送“100元超额行李补助券”,记赠送的补助券总金额为X 元,求X 的分布列与数学期望.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++.其中n a b c d =+++.参考数据:19.(12分)图1是由平行四边形ABCD 和Rt ABE 组成的一个平面图形.其中60BAD ∠=︒,AB AE ⊥,22AD AE AB ===,将ABE 沿AB 折起到ABP 的位置,使得PC =2.(1)证明:PA BD ⊥;(2)求二面角A PD B --的余弦值.20.(12分)已知函数()32136f x x x mx =--++0x =处取得极值.(1)求m 的值;(2)若过()2,t 可作曲线()y f x =的三条切线,求t 的取值范围. 21.(12分)已知椭圆()2222:10x y C a b a b +=>>的离心率为12,左、右焦点分别为1F ,2F ,且2F 到直线:1x yl a b+=的距离为7.(1)求椭圆C 标准的方程;(2)过1F 的直线m 交椭圆C 于P ,Q 两点,Q 为坐标原点,以OP ,OQ 为邻边作平行四边形OPDQ ,是否存在直线m ,使得点D 在椭圆C 上?若存在,求出直线m 的方程;若不存在,说明理由.22.(12分)已知函数()ln 1f x x ax =-+有两个零点. (1)求a 的取值范围:(2)设1x ,2x 是()f x 的两个零点,证明:()121f x x a '⋅<-.2019~2020第二学期高二期末考试数学参考答案(理科)一、选择题1.B 由题意可得{}31A x x =-<<,{}02B x x =<<,则{}01A B x x =<<.2.A 因为()1210z i i +=,所以()()10121021242125i i i z i i i i -===-=++,则42z i =-.3.C 512x x ⎛⎫- ⎪⎝⎭展开式的通项为()()525155122rrrr r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭.令253r -=,得4r =,则()44335280n T C x x =-=,故512x x ⎛⎫- ⎪⎝⎭的展开式中含3x 项的系数是80.4.B 由题意可得()222,5a b m -=-.因为()2a b b -⊥,所以()222150m --=,解得194m =.5.D 由题意可知该校高中生人数与初中生人数之比为3:2,则322412055n ⎛⎫=÷-=⎪⎝⎭. 6.D 因为223cos 212sin 3325ππθθ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,即223cos 2325πθ⎛⎫-=⎪⎝⎭, 则2223sin 2sin 2cos 2632325ππππθθθ⎛⎫⎛⎫⎛⎫-=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 7.D 若αγ⊥,βγ⊥,则//αβ或α与β相交,故D 错误. 8.C 因为81cos sin 32bc A bc A =⨯,所以cos 2sin A A =,则3tan 4A =, 故()22cos sin 1cos sin 22sin cos 2sin cos B CA B C A A A A A ++-++=--sin cos tan 112sin cos 2tan 12A A A A A A --===---.9.C 由题意可得14042a a a a >⎧⎪->⎨⎪≥-+⎩,解得34a ≤<.10.A 由题意可得1,016F ⎛⎫⎪⎝⎭,设()11,A x y ,()22,B x y ,AB 的中点()00,M x y , 联立21122224x y x y ⎧=⎪⎨=⎪⎩,整理得()2212124x x y y -=-, 则()120111488AB k y y y ===+,解得01y =.因为点()00,M x y 在直线l 上,所以0011816y x ⎛⎫=- ⎪⎝⎭, 则012916x =,则线段AB 的中点到准线的距离为0129165216168p x +=+=. 11.A 如图,设正方体的棱长为4,三视图对应的几何体为三棱锥A BCD -,其中A 为棱的中点.由正方体的性质可知DC ⊥平面ABC ,4DC BC ==, 因为A为棱的中点,所以AB AC ==在ABC中,由余弦定理可得22243cos 5BAC +-∠==, 所以4sin 5BAC ∠=,所以ABC 的外接圆半径152sin2BC r BAC=⨯=∠, 则三棱锥A BCD -的外接球半径2R ==, 故三棱锥A BCD -的外接球表面积为2441R ππ=.12.B 函数()sin f x x =的图象关于(),0π对称,直线0kx y k π--=过(),0π,作出函数()sin f x x =的图象与直线()00kx y k k π--=>恰有三个公共点的图象, 由图象可知,13222x x x π+==,且352,2x ππ⎛⎫∈ ⎪⎝⎭. 由于()5cos ,2,2f x x x ππ⎛⎫'=∈ ⎪⎝⎭,所以333sin cos x x x π=-, 即33tan x x π=+,所以()3233123tan tan 11,3332x x x x x x x πππ--⎛⎫==∈ ⎪++⎝⎭.二、填空题 13.(),046k k ππ⎛⎫-∈⎪⎝⎭Z 令()232k x k ππ+=∈Z,解得()46k x k ππ=-∈Z ,则()f x 的图象的对称中心是(),046k k ππ⎛⎫-∈ ⎪⎝⎭Z . 14.5由题意可得()()()2322log 2125f f -==++=.15.72- 如图,过点B 作BH AC ⊥,垂足为H .设2AB =,由题意可得11AA AB ==,136A AB ∠=︒,则221411cos A AB +-∠==在Rt ABH 中,114AH cos A AB AB ∠==,则AH =.因为11AA =,所以1132A H AH AA =-=, 所以11123AB A H == 记正五边形ABCDE 与11111A BCDE 的面积分别为1S 和2S , 因为正五边形ABCDE 与11111A B C DE 相似,所以2211123722S A B S AB ⎛--⎛⎫=== ⎪ ⎝⎭⎝⎭,故所求概率1272S P S -==.16.2如图,由题意可得2c =,则1224F F c ==.因为直线l 的斜率是3,则12sin 10PF F ∠=,12cos 10PF F ∠=. 因为点P 在以12F F 为直径的圆周上,所以1290F PF ∠=︒,所以11212cos PF F F PF F =∠=,21212sin PF F F PF F =∠=,则2125PF PF a -==,故双曲线C的离心率为2c a =. 三、解答题17.解:(1)当2n ≥时,112n n S na --=,所以()()1212n n n a n a na n -=+-≥, 整理得()1)12(n n n a na n --=≥,则()121n n a nn a n -=≥-, 故()32112123222121n n n a a a na a n n a a a n -=⨯⨯⨯⨯=⨯⨯⨯⨯=≥-, 当1n =时,12a =满足上式,故2n a n =; (2)由(1)可知()()()()122224424n n n n b a a n ++++=+=()()2112121n n n n =+=-+++, 则1231111111123344512n n T b b b b n n ⎛⎫⎛⎫⎛⎫⎛⎫=++++=-+-+-++- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭112224nn n =-=++. 18.解:(1)补全22⨯列联表如下:因为()221005382374900 5.50 3.84190105545891K ⨯⨯-⨯==≈>⨯⨯⨯,所以:在犯错概率不超过0.05的前提下,认为托运超额行李与乘客乘坐座位的等级有关; (2)根据题意可得,托运行李超出免费行李额且不超过10kg 的旅客有7人,从中随机抽取4人,则其中女性旅客的人数可能为1,2,3.4,所以补助券总金额X 的所有取值可能为100元,200元,300元,400元,……()134347C C 4100C 35P X ===,()224347C C 18C 20350P X ===,()314347C C 12300C 35P X ===,()404447C C 1400C 35P X ===,则X 的分布列为故4181211600100200300400353535357EX =⨯+⨯+⨯+⨯=(元). 19.解:(1)证明:因为四边形ABCD 是平行四边形,60BAD ∠=︒,所以120ABC ∠=︒. 连接AC ,在ABC 中,根据余弦定理得2222?cos 7AC AB BC AB BC ABC =+⋅∠=-, 因为PC =222PC AC PA =+,所以PA AC ⊥, 因为PA AB ⊥,且ABAC A =,所以PA ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PA BD ⊥;(2)因为2BC =,1CD =,60BCD ∠=︒,所以3BD =,所以BD CD ⊥.由(1)可知PA ⊥平面ABCD ,则以D 为原点,以DB ,DC 的方向分别为x 轴,y 轴的正方向,以过点D 作P A 的平行线为z 轴,建立如图所示的空间直角坐标系D xyz -,则()0,0,0D,)1,0A -,)B,)1,2P -, 故()3,1,0DA =-,()3,1,2DP =-,()3,0,0DB =. 设平面P AD 的一个法向量为()111,,n x y z =, 则1111130320n DA x y n DP x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令11x =,可得()1,3,0n =.设平面PBD 的一个法向量是()222,,m x y z =, 则222230320m DB x m DP x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令22y =,可得()0,2,1m =. 故23cos ,25n m n m n m ⋅===⨯ 设二面角A PD B --为θ,由图可知θ为锐角,则15cos cos ,n m θ==. 20.解:(1)因为()32136f x x x m =--++,所以()2122f x x x m '=--+, 因为()f x 在0x =处取得极值,所以()00f m'==.经验证0m =符合题意;(2)设切点坐标为320001,36x x x ⎛⎫ ⎪⎝--⎭+,由()32136f x x x =--+,得()2000122f x x x '=--, 所以方程为()3220000011362y x x x x x x ⎛⎫⎛⎫---+=--- ⎪ ⎪⎝⎭⎝⎭, 将()2,t 代入切线方程,得3001433t x x =-+. 令()343g x x x =--+,则()24g x x '=-,则()240g x x '=-=,解得2x =±.当2x <-或2x >时,()0g x '>,所以()g x 在(),2-∞-,()2,+∞上单调递增;当22x -<<时,()0g x '<,所以()g x 在()2,2-上单调递减.所以()g x 的极大值为()2523g -=,()g x 的极小值为()327g =-. 因为有三条切线,所以方程()t g x =有三个不同的解,y t =与()y g x =的图象有三个不同的交点, 所以72533t -<<. 21.解:(1)因为椭圆C 的离心率为12,所以12c a =, 所以2a c =,b =,所以直线l的方程为12x c =,20y +-=.由题意可得()2,0F c7=,解得1c =.故椭圆C 的标准方程为22143x y +=; (2)①当直线PQ 的斜率存在时,设直线m 的方程为()1y k x =+,()11,P x y ,()22,Q x y .联立()221143y k x x y ⎧=+⎪⎨+=⎪⎩,整理得()22223484120k x k x k +++-=, 则2122834k x x k-+=+,212241234k x x k -=+. 设()00,D x y ,由四边形OPDQ 为平行四边形,得OD OP OQ =+, 则201220122834634k x x x k k y y y k ⎧-=+=⎪⎪+⎨⎪=+=⎪+⎩,即22286,3434k k D k k ⎛⎫- ⎪++⎝⎭, 若点D 落在椭圆C 上,则2200143x y +=, 即22222863434143k k k k ⎛⎫-⎛⎫ ⎪ ⎪++⎝⎭⎝⎭+=, 整理得()42221612134k k k +=+,解得k ∈∅.②当直线PQ 的斜率不存在时,直线m 的方程为1x =-, 此时存在点()2,0D -在椭圆C 上.综上,存在直线:1m x =-,使得点()2,0D -在椭圆C 上.22.解:(1)由题意,可得1ln x a x+=, 转化为函数()1ln x g x x +=与直线y a =在()0,+∞上有两个不同的交点.()()2ln 0x g x x x -'=>, 故当()0,1x ∈时,()0g x >;当()1,x ∈+∞时,()0g x '<. 故()g x 在()0,1上单调递增,在()1,+∞上单调递减, 所以()()max 11g x g ==. 又10g e ⎛⎫= ⎪⎝⎭,故当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x <; 当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >.可得()0,1a ∈;(2)证明:()1f x a x'=-, 由(1)知1x ,2x 是ln 10x ax -+=的两个根, 故12112212ln ln ln 10,ln 10x x x ax x ax a x x --+=-+=⇒=-. 要证()121f x x a '⋅<-,只需证121x x ⋅>,即证12ln ln 0x x +>, 即证()()12110ax ax -+->, 即证122a x x >+,即证121212ln ln 2x x x x x x ->-+. 不妨设120x x <<,故()1122112122212ln 1x x x x x x x x x x ⎛⎫- ⎪-⎝⎭<=++, 令()120,1x t x =∈,()()21ln 1t h t t t -=-+, ()()()()222114011t h t t t t t -'=-=>++, 则()h t 在()0,1上单调递增,则()()10h t h <=,故121212ln ln 2x x x x x x ->-+式成立,即原不等式得证.。
2019-2020年高二下学期期末考试(数学理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分共150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一.选择题(本大题共12个小题,每小题5分,共60分.在每个小题的四个选项中,只有一项是符合题目要求的.) 1.复数13)31(2-+i i 的值是 ( )A .2B .21C .21-D .2- 2.)('0x f =0是可导函数)(x f 在点0x x =处取极值的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.如果复数Z ai Z =+-<322满足条件||,那么实数a 的取值范围是 ( )A .)22,22(-B .(,)-22C .(,)-11D .(,)-334.已知(p xx-22)的展开式中,不含x 的项是2720,那么正数p 的值是 ( )A . 1B .2C .3D .45.如果654321,,,,,a a a a a a 的方差为3,那么2)3(1-a .2)3(2-a . 2)3(3-a .2)3(4-a .2)3(5-a .2)3(6-a 的方差是( )A .0B .3C .6D .12 6.今天为星期四,则今天后的第20062天是( )A .星期一B .星期二C .星期四D .星期日 7.函数22()()x a y x a b+=++的图象如右图所示,则 ( D )A .(0,1),(0,1)a b ∈∈B .(0,1),(1,)a b ∈∈+∞C .(1,0),(1,)a b ∈-∈+∞D .(1,0),(0,1)a b ∈-∈8.有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有 ( ) A .10 B .48 C .60 D .809.设随机变量~(0,1)N ξ,记)()(x P x <=Φξ,则(11)P ξ-<<等于 ( )A .2(1)1Φ-B .2(1)1Φ--C .(1)(1)2Φ+Φ-D .(1)(1)Φ+Φ-10.把语文、数学、物理、历史、外语这五门课程安排在一天的五节课里,如果数学必须比历史先上,则不同的排法有 ( ) A .48 B .24 C .60 D .120 11. 口袋里放有大小相同的2个红球和1个白球,有 放回的每次模取一个球,定义数列{}n a :⎩⎨⎧-=次摸取白球第次摸取红球第n n a n 11 如果n S 为数列{}n a 的前n 项之和,那么37=S 的概率为( )A .729224 B .72928C .238735D .7528 12.有A .B .C .D .E .F6个集装箱,准备用甲.乙.丙三辆卡车运送,每台卡车一次运两个.若卡车甲不能运A 箱,卡车乙不能运B 箱,此外无其它任何限制;要把这6个集装箱分配给这3台卡车运送,则不同的分配方案的种数为 ( ) A .168 B .84 C .56 D .42第Ⅱ卷(非选择题满分90)二、填空题:(本题共4小题,每小题4分,共16分) 13. (2x+x )4的展开式中x 3的系数是14.曲线1,0,2===y x x y ,所围成的图形的面积可用定积分表示为__________.15.从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第n 个等式为_________.16.已知函数)0(1)1(3)(223>+-+-=k k x k kx x f ,若)(x f 的单调减区间是 (0,4),则在曲线)(x f y =的切线中,斜率最小的切线方程是_________________.三、解答题17.(12分)求证:(1)223)a b ab a b ++≥+;(2)6+7>22+5.18.(12分)已知(41x +3x 2)n展开式中的倒数第三项的系数为45,求:(1)含x 3的项;(2)系数最大的项. 19.(本小题满分12分) 某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(Ⅰ)记“函数x x x f ξ+=2)(为R 上的偶函数”为事件A ,求事件A 的概率; (Ⅱ)求ξ的分布列和数学期望.20.(12分)已知函数3()3f x x x =-(1)求函数()f x 在3[3,]2-上的最大值和最小值(2)过点(2,6)P -作曲线()y f x =的切线,求此切线的方程21.(12分)函数数列{})(x f n 满足:)0(1)(21>+=x xx x f ,)]([)(11x f f x f n n =+(1)求)(),(32x f x f ;(2)猜想)(x f n 的表达式,并证明你的结论.22.(14分)已知a 为实数,函数23()()()2f x x x a =++.(I )若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围; (II )若(1)0f '-=,(ⅰ) 求函数()f x 的单调区间;(ⅱ) 证明对任意的12,(1,0)x x ∈-,不等式125()()16f x f x -<恒成立参考答案一、选择题 ABDCD A D DAC BD 二、填空题13.24 14.32 15.)321()1()1(16941121n n n n ++++-=⋅-++-+-++ 16.1280x y +-= 三、解答题17.证明:(1) ∵222a b ab +≥,23a +≥,23b +≥ ;将此三式相加得:222(3)2a b ab ++≥++,∴223)a b ab a b ++≥+.(2)要证原不等式成立,只需证(6+7)2>(22+5)2,即证402422>.∵上式显然成立, ∴原不等式成立.18.解:(1)由题设知2245,45,10.n n n C C n -==∴=即21113010363341211010710433101130()(),3,6,12210.r r rrr r r T C x x C xr x T C xC x x ---+-=⋅======令得含的项为 (2)系数最大的项为中间项,即55302551212610252.T C xx -==19.解:设该学生选修甲、乙、丙的概率分别为x 、y 、z依题意得⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧=----=-=--5.06.04.0,88.0)1)(1)(1(1,12.0)1(,08.0)1)(1(z y x z y x z xy z y x 解得(I )若函数x x x f ξ+=2)(为R 上的偶函数,则ξ=0当ξ=0时,表示该学生选修三门功课或三门功课都没选.)1)(1)(1()0()(z y x xyz P A P ---+===∴ξ=0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24∴事件A 的概率为0.24(II )依题意知ξ=0.2则ξ的分布列为∴ξ的数学期望为E ξ=0×0.24+2×0.76=1.5220.解:(1)'()3(1)(1)f x x x =+-当[3,1)x ∈--或3(1,]2x ∈时,'()0f x >,3[3,1],[1,]2∴--为函数()f x 的单调增区间当(1,1)x ∈-时,'()0f x <,[1,1]∴-为函数()f x 的单调减区间 又39(3)18,(1)2,(1)2,()28f f f f -=--==-=-,∴当3x =-时,min ()18f x =- 当1x =-时,max ()2f x =(2)设切点为3(,3)Q x x x -,则所求切线方程为32(3)3(1)()y x x x x x --=-- 由于切线过点(2,6)P -,326(3)3(1)(2)x x x x ∴---=--,解得0x =或3x = 所以切线方程为30x y +=或24540x y --= 21.解:(1)221111221)(1)())(()(x x x f x f x f f x f +=+==222221331)(1)())(()(xx x f x f x f f x f +=+==(2)猜想:)(1)(2*∈+=N n nx x x f n下面用数学归纳法证明: ①当n=1时,211)(xx x f +=,已知,显然成立②假设当)(*∈=N K K n 时 ,猜想成立,即21)(kxx x f k +=则当1+=K n 时,2222211)1(1)1(11)(1)())(()(xk x kx x kx xx f x f x f f x f k k k k ++=+++=+==+ 即对1+=K n 时,猜想也成立.由①②可得)(1)(2*∈+=N n nx x x f n 成立22.解: 解:(Ⅰ) ∵3233()22f x x ax x a =+++,∴23()322f x x ax '=++.∵函数()f x 的图象上有与x 轴平行的切线,∴()0f x '=有实数解. ∴2344302a D =-⨯⨯≥,…………………4分 ∴292a ≥.因此,所求实数a 的取值范围是32(,(,)-∞+∞. (Ⅱ) (ⅰ)∵(1)0f '-=,∴33202a -+=,即94a =. ∴231()323()(1)22f x x ax x x '=++=++. 由()0f x '>,得1x <-或12x >-; 由()0f x '<,得112x -<<-.因此,函数()f x 的单调增区间为(,1]-∞-,1[,)2-+∞;单调减区间为1[1,]2--.(ⅱ)由(ⅰ)的结论可知,()f x 在1[1,]2--上的最大值为25(1)8f -=,最小值为149()216f -=;()f x 在1[,0]2-上的的最大值为27(0)8f =,最小值为149()216f -=.∴()f x 在[1,0]-上的的最大值为27(0)8f =,最小值为149()216f -=. 因此,任意的12,(1,0)x x ∈-,恒有1227495()()81616f x f x -<-=.。