信与系统课后习题答案汇总
- 格式:docx
- 大小:438.40 KB
- 文档页数:11
信号与线性系统课后答案第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t (5))tf=r(sin)(t(7))tf kε(k=(2)(10))f kεk-=(k+]()1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
《信号与系统》课后习题参考答案第二章 连续信号与系统的时域分析2-9、(1)解:∵系统的微分方程为:)(2)(3)(t e t r t r '=+',∴r(t)的阶数与e(t) 的阶数相等,则h(t)应包含一个)(t δ项。
又∵系统的特征方程为:03=+α,∴特征根3-=α∴)()(2)(3t u Ae t t h t -+=δ∴)]()(3[)(2)(33t e t u e A t t h t t δδ--+-+'=')()(3)(23t A t u Ae t t δδ+-'=-将)(t h 和)(t h '代入微分方程(此时e(t)= )(t δ),得:)()(3)(23t A t u Ae t t δδ+-'-+3)(2)]()(2[3t t u Ae t t δδ'=+-∴A=-6则系统的冲激响应)(6)(2)(3t u et t h t --=δ。
∴⎰⎰∞--∞--==t td ue d h t g τττδτττ)](6)(2[)()(3⎰∞-=t d ττδ)(2⎰∞---t d u e τττ)(63 )()(6)(203t u d e u t t ⎰-∞--=τττ )()3(6)(203t u e t u t --=-τ)()1(2)(23t u e t u t -+=- )(23t u e t -=则系统的阶跃响应)(2)(3t u et g t -=。
2-11、解:①求)(t r zi : ∵系统的特征方程为:0)3)(2(652=++=++αααα,∴特征根:21-=α,32-=α ∴t t zi e C eC t r 3221)(--+= (t ≥0) ②求)(t r zs :t t e A eA t h 3221)(--+= (t ≥0),可求得:11=A ,12-=A (求解过程略) ∴)()()(32t u e e t h t t ---=∴)(*)()(*)()]()[(*)()(*)()(3232t u e t u e t u e t u e t u e e t u e t h t e t r t t t t t t t zs --------=-==)()2121()()(21)()(3232t u e e e t u e e t u e e t t t t t t t -------+-=---= ③求)(t r :)(t r =)(t r zi +)(t r zs ++=--)(3221t te C e C )2121(32t t t e e e ---+- t tt e C e C e 3221)21()1(21---++-+= (t ≥0) ∵)()(t u Ce t r t -=,21=C 21=C ∴ 011=-C , ∴ 11=C0212=+C 212-=C ∴=-)0(r 21211)0(21=-=+=+C C r zi , ='-)0(r 2123232)0(21-=+-=--='+C C r zi 2-12、解:(1)依题意,得:)(2)(*)()(t u e t h t u t r tzi -=+)()()(t t h t r zi δ=+∴)(2)]()([*)()(t u e t r t t u t r t zi zi -=-+δ)(2)()()()1(t u e t r t u t r t zi zi --=-+∴)()12()()()1(t u e t r t r t zi zi -=---,两边求导得:)()12()(2)()(t e t u e t r t r t t zi ziδ-+-=-'-- )(2)()()(t u e t t r t r t zi zi--=-'δ ∴)(11)(112)()()1(t p p t p t t r p zi δδδ+-=+-=- ∴)()(11)(t u e t p t r t zi -=+=δ (2)∵系统的起始状态保持不变,∴)()(t u e t r t zi -=∵)()()(t t h t r zi δ=+,∴)()()(t u e t t h t--=δ∴)]()([*)()()(*)()()(33t u e t t u e t u e t h t e t r t r t t t zi ----+=+=δ )()()(t u te t u e t u e tt t ----+=)()2(t u e t t --= 2-16、证:∑∑∞-∞=--∞-∞=--=-=k k t k t k t u e k t t u e t r )3()3(*)()()3(δ∑∞-∞=--=k k t k t u e e )3(3 ∵当t-3k>0即3t k <时:u(t-3k)为非零值 又∵0≤t ≤3,∴k 取负整数,则:3003311)(---∞=∞=----===∑∑e e e e e et r t k k k t k t 则t Ae t r -=)(,且311--=e A 。
信号与系统第三版郑君里课后习题答案第一章习题参考解1,判刑下列信号的类型解:()sin[()];y t A x t = 连续、模拟、周期、功率型信号 。
()()tt y t x e d τττ--∞=⎰ 连续、模拟、非周期、功率型信号。
()(2y n x n =) 离散、模拟、非周期、功率型信号。
()()y n nx n = 离散、模拟、非周期、功率型信号。
1-6,示意画出下列各信号的波形,并判断其类型。
(1) 0()sin()x t A t ωθ=+ 连续、模拟、周期、功率型(2) ()tx t Ae -= 连续、模拟、非周期、只是一个函数,不是物理量。
(3) ()cos 0t x t e t t -=≥ 连续、模拟、非周期、能量型 (4) ()2112,x t t t =+-≤≤ 连续、模拟、非周期、能量型(5) 4()(),0.5kx k k =≥ 离散、模拟、非周期、能量型 (6) 0().j kx k eΩ= 离散、模拟、周期、功率型()sin[()];()()()(2);()()tt y t A x t y t x ed y n x n y n nx n τττ--∞====⎰1-6题,1-4图。
t=-pi:1/200:pi;y1=1.5*sin(2*t+pi/6);subplot(4,1,1),plot(t,y1),title('1.5sin(2*t+pi/6)'),gridy2=2*exp(-t);subplot(4,1,2),plot(t,y2),title('2exp(-t)'),gridt1=0:1/200:2*pi;y3=10*exp(-t1).*cos(2*pi*t1);subplot(4,1,3),plot(t1,y3),title('10exp(-t1)cos(2*pi*t1)'),grid t2=-1:1/200:2;y4=2*t2+1;subplot(4,1,4),plot(t2,y4),title('2x+1'),grid习题1-6 5-6题 n=0:pi/10:2*pi; y=(0.8).^n;subplot(4,1,1),stem(n,y,'fill '),title('(0.8)^n'),grid n1=0:pi/24:2*pi;y1=cos(2*pi*n1);y2=sin(2*pi*n1);subplot(4,1,2),stem3(y1,y2,n1,'fill '),title('exp[2*pi*n1'),grid subplot(4,1,4),stem(n1,sin(2*pi*n1),'fill '),title('sin2pin1'),grid subplot(4,1,3),stem(n1,cos(2*pi*n1),'fill'),title('cos2pin1)'),grid1-8,判断下列系统的类型。
3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。
图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。
若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20=幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。
解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛==n tjn n tjn n e n Sa TE eF t f 112)(1ωωτωτ其直流分量为TE n Sa T EF n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。
2-1 对图2-1所示电路分别列写求电压)(0t v 的微分方程表示。
2(t ei )(t +-(e )(e )(t +-图2-1解 (a )对于图2-1(a )所示电路列写网孔电流方程,得[]⎪⎩⎪⎨⎧-=+-=-++⎰⎰⎰∞-∞-∞-t t t t v i d i i t e d i d i dt t di i )()()()()()()()(202122111ττττττττ 又 dtt di t v )(2)(20= 消元可得如下微分方程:)(3)(5)(5)(200022033t v t v dt dt v dtd t v dt d +++=2)(te dt d(b )对于图2-1(b )所示的双耦合电路,列写电路微分方程,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+++=+++⎰⎰∞-∞-)()(0)()()()(1)()()()()(10221221211t v t Ri t Ri dt t di M dt t di L d i Ct e t Ri dtt di M dt t di L d i C ttττττ 消元可得如下微分方程:)()(1)(2)(2)(2)()(22020022203304422t e dtd MR t v C t v dt d C R t v dtd R R L t v dtd RL t v dt d M L =++⎪⎭⎫ ⎝⎛+++- (c )对于图2-1(c )所示电路列写电路方程,得⎪⎪⎩⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡+++=⎰∞-)()()(1)()()()(10101011t v t v dt d C dt t v L R t v R t v t v dt d C t i t μ 消元可得如下微分方程:)()(1)(1)()(101011022110331t i dt dR t v RL t v dt d R R L C t v dt d R C R C t v dt d CC μ=+⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++ (d )对图2-1(d )所示电路列写电路方程,电流)(t i 如图2-2所示,得⎪⎪⎩⎪⎪⎨⎧==+=++⎰∞-)()()()()()()()(1)(1011t v t v t e t v t Ri t e t v d i C t Ri t μμττ 消元可得如下微分方程:(t e )(t +-图2-2)()(1)()1(00t e Rt v R t v dt d Cμμ=+-2-2 图2-3所示为理想火箭推动器模型。
第2章 习 题2-1 求下列齐次微分方程在给定起始状态条件下的零输入响应(1)0)(2)(3)(22=++t y t y dt d t y dt d ;给定:2)0(,3)0(==--y dt dy ; (2)0)(4)(22=+t y t y dt d ;给定:1)0(,1)0(==--y dtd y ;(3)0)(2)(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dt dy ; (4)0)()(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy ; (5)0)()(2)(2233=++t y dt d t y dt d t y dt d ;给定:2)0(,1)0(,1)0(22===---y dt d y dt d y 。
(6)0)(4)(22=+t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy 。
解:(1)微分方程的特征方程为:2320λλ++=,解得特征根:121, 2.λλ=-=- 因此该方程的齐次解为:2()t th y t Ae Be --=+.由(0)3,(0)2dy y dt--==得:3,2 2.A B A B +=--=解得:8, 5.A B ==- 所以此齐次方程的零输入响应为:2()85tty t e e--=-.(2)微分方程的特征方程为:240λ+=,解得特征根:1,22i λ=±.因此该方程的齐次解为:()cos(2)sin(2)h y t A t B t =+.由(0)1,(0)1d y y dx --==得:1A =,21B =,解得:11,2A B ==. 所以此齐次方程的零输入响应为:1()cos(2)sin(2)2y t t t =+.(3)微分方程的特征方程为:2220λλ++=,解得特征根:1,21i λ=-± 因此该方程的齐次解为:()(cos()sin())th y t e A t B t -=+.由(0)1,(0)2dy y dx--==得:1,2,A B A =-= 解得:1,3A B ==.所以齐次方程的零输入响应为:()(cos()3sin())ty t e t t -=+.(4)微分方程的特征方程为:2210λλ++=,解得二重根:1,21λ=-.因此该方程的齐次解为:()()th y t At B e -=+. 由(0)1,(0)2dy y dx--==得:1,2,B A B =-=解得:3, 1.A B == 所以该方程的零输入响应为:()(31)ty t t e -=+.(5)微分方程的特征方程为:3220λλλ++=,解得特征根: 1,21λ=-,30λ=. 因此该方程的齐次解为:()()th y t A Bt C e -=++.由22(0)1,(0)1,(0)2d d y y y dx dt---===得:1,1,22A C B C C B +=-=-=. 解得:5,3,4A B C ==-=-.所以方程的零输入响应为:()5(34)ty t t e -=-+.(6)微分方程的特征方程为:240λλ+=,解得特征根:120,4λλ==-. 因此该方程的齐次解为:4()th y t A Be -=+.由(0)1,(0)2d y y dx --==得:1,42A B B +=-=.解得:31,22A B ==-. 所以此齐次方程的零输入响应为:431()22ty t e -=-.2-2 已知系统的微分方程和激励信号,求系统的零状态响应。
1-4 分析过程:(1)例1-1的方法:()()()()23232f t f t f t f t →−→−→−− (2)方法二:()()()233323f t f t f t f t ⎡⎤⎛⎞→→−→−−⎜⎟⎢⎥⎝⎠⎣⎦(3)方法三:()()()()232f t f t f t f t →−→−+→−−⎡⎤⎣⎦ 解题过程:(1)方法一:方法二:(1)()−f at 左移0t :()()()000−+=−−≠−⎡⎤⎣⎦f a t t f at at f t at (2)()f at 右移0t :()()()000−=−≠−⎡⎤⎣⎦f a t t f at at f t at (3)()f at 左移0t a :()()000⎡⎤⎛⎞+=+≠−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a (4)()f at 右移0t a :()()000⎡⎤⎛⎞−−=−+=−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a 故(4)运算可以得到正确结果。
注:1-4、1-5题考察信号时域运算:1-4题说明采用不同的运算次序可以得到一致的结果;1-5题提醒所有的运算是针对自变量t 进行的。
如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。
1-9 解题过程: (1)()()()2tf t eu t −=− (2)()()()232tt f t ee u t −−=+(3)()()()255ttf t e eu t −−=− (4)()()()()cos 1012tf t et u t u t π−=−−−⎡⎤⎣⎦1-12 解题过程:((((注:1-9、1-12题中的时域信号均为实因果信号,即()()()=f t f t u t 1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即()()()()1e o f t f t f t =+其中,()e f t 为偶分量,()o f t 为奇分量,二者性质如下:()()()()()()23e e o o f t f t f t f t =−=−−()()13∼式联立得()()()12e f t f t f t =+−⎡⎤⎣⎦ ()()()12o f t f t f t =−−⎡⎤⎣⎦ 解题过程:(a-1) (a-2)(a-3)(a-4)f t为偶函数,故只有偶分量,为其本身(b) ()(c-1)(c-2)(c-3)(c-4)(d-1)(d-2)(d-3)(d-4)1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性(1)线性(Linearity):基本含义为叠加性和均匀性即输入()1x t ,()2x t 得到的输出分别为()1y t ,()2y t ,()()11T x t y t =⎡⎤⎣⎦,()()22T x t y t =⎡⎤⎣⎦,则()()()()11221122T c x t c x t c y t c y t +=+⎡⎤⎣⎦(1c ,2c 为常数)。
1试分别指出以下波形是属于哪种信号?题图1-11-2试写出题1-1图中信号的函数表达式。
1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴)2(1-t x ⑵)1(1t x -⑶)22(1+t x⑷)3(2+t x ⑸)22(2-t x ⑹)21(2t x - ⑺)(1t x )(2t x -⑻)1(1t x -)1(2-t x ⑼)22(1t x -)4(2+t x 1-4已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴)12(1+n x ⑵)4(1n x -⑶)2(1n x ⑷)2(2n x -⑸)2(2+n x ⑹)1()2(22--++n x n x⑺)2(1+n x )21(2n x -⑻)1(1n x -)4(2+n x ⑼)1(1-n x )3(2-n x1-5已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。
题图1-51-6试画出下列信号的波形图:⑴)8sin()sin()(t t t x ΩΩ=⑵)8sin()]sin(211[)(t t t x ΩΩ+= ⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1)(t tt x = 1-7试画出下列信号的波形图:⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --=⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。
⑴)1(1)(2Ω-Ω=Ωj e j X ⑵)(1)(Ω-Ω-Ω=Ωj j e e j X ⑶Ω-Ω---=Ωj j e e j X 11)(4⑷21)(+Ω=Ωj j X 1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。
信与系统课后习题答案汇总SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第一章习题参考解答绘出下列函数波形草图。
(1) ||3)(t et x -=(2) ()⎪⎪⎨⎧<≥=02021)(n n n x n n (3) )(2sin )(t t t x επ= (5) )]4()([4cos )(--=-t t t et x tεεπ(7) t t t t x 2cos)]2()([)(πδδ--=(9) )2()1(2)()(-+--=t t t t x εεε)5- (11) )]1()1([)(--+=t t dtdt x εε (12) )()5()(n n n x --+-=εε (13) ⎰∞--=td t x ττδ)1()((14) )()(n n n x --=ε确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。
(1) ||3)(t et x -=解 能量有限信号。
信号能量为:(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号。
信号能量为:(3) t t x π2sin )(=解 功率有限信号。
周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。
(4) n n x 4sin)(π=解 功率有限信号。
n 4sin π是周期序列,周期为8。
(5) )(2sin )(t t t x επ=解 功率有限信号。
由题(3)知,在),(∞-∞区间上t π2sin 的功率为1/2,因此)(2sin t t επ在),(∞-∞区间上的功率为1/4。
如果考察)(2sin t t επ在),0(∞区间上的功率,其功率为1/2。
(6) )(4sin)(n n n x επ=解 功率有限信号。
由题(4)知,在),(∞-∞区间上n 4sin π的功率为1/2,因此)(4sinn n επ在),(∞-∞区间上的功率为1/4。
如果考察)(4sinn n επ在),0(∞区间上的功率,其功率为1/2。
(7) te t x -=3)(解 非功率、非能量信号。
考虑其功率: 上式分子分母对T 求导后取极限得∞→P 。
(8) )(3)(t e t x tε-=解 能量信号。
信号能量为:已知)(t x 的波形如题图所示,试画出下列函数的波形。
(1) )2(-t x (2) )2(+t x1-1 0 1 2)2(t x (4) (x (3)(5) )(t x - (6) )2(+-t x(7) )2(--t x(8) )22(+-t x)221(-t x (9) )221(--t x (10)(11) )221()(-+t x t x(12) )21()2(t x t x ⋅(13)d(14)⎰∞-t d x ττ)(=⎪⎪⎪⎩⎪⎪⎪⎨⎧-<≥<≤+<≤-++=122320210121221t t t t t t t已知)(1t x 及)(2t x 的波形如题图所示,试分别画出下列函数的波形,并注意它们的区别。
(1) )2(1t x(3) )2(2t x1 -3 -2 -1 0 10 1 2 3 41-1/2 0 11-2 -1 0 1 2 3 41-2 -1 0 110 1 2 31 -4 -3 -3 -1 010 1 3/21 -8 -4 -2 010 1 2 3 4 5 6 7 81-1 0 1 2 3 4 5 6 7 81-1/2 0 11-1 03/21/2-1 0 1 2 t2 1-1/2 1/2(3) )3(--n x(7) )1()()(--=∇n x n x n x任何信号可以分解为奇分量和偶分量的和: )()()(t x t x t x o e += 或 )()(x n x n x o e +=其中e x 为偶分量;o x 为奇分量。
偶分量和奇分量可以由下式确定:)]()([21)(t x t x tx e -+=, )]()([21)(t x t x t x o --=)]()([21)(n x n x n x e -+=, )]()([21)(n x n x n x o --=(1) 试证明)()(t x t x e e -=)()(t x t x o o --=或)()(n x n x o o --=。
(2) 试确定题图(a)和(b)分量,并绘出其波形草图。
(1) 证明 根据偶分量和奇分量的定义: 离散序列的证明类似。
(2) 根据定义可绘出下图nn x 2)(=,试求)(),(),(),(22n x n x n x n x ∆∇∆∇。
210 1 2 t22 2 2 1 18 8 8 6 411-2 -1 01/2-2 -1 0 1 2 1/2-2 -10 1 2 t2-3 3解 11222122)1()()(--=⋅=-=--=∇n nn n n x n x n x 判断下列信号是否为周期信号,若是周期的,试求其最小周期。
(1) )64cos()(π+=t t x解 周期信号,21π=T(2) )()2sin()(t t t x επ=解 非周期信号。
(3) )2cos()(t et x tπ-=解 非周期信号。
(4) )3(4)(-=t j et x π解 周期信号,81=T 。
(5) )cos()5sin()(t b t a t x π+=解 若,0,0≠=b a 则)(t x 为周期信号,21=b T ;若,0,0=≠b a 则)(t x 为周期信号,π521=a T ;若,0,0≠≠b a 则)(t x 为非周期信号。
(6) )38cos()(+=n n x π解 周期信号,161=N 。
(7) )97cos()(n n x π= 解 周期信号,181=N 。
(8) )16()(n con n x =解: 非周期信号。
(9) n j en x 152)(π=解: 周期信号,151=N 。
(10) )34sin(2)3sin()6cos(3)(ππππ+-+=n n n n x 解: 周期信号,最小公共周期为241=N 。
计算下列各式的值。
(1)⎰∞∞--dt t t t x )()(0δ解: 原式dt t t x )()(0δ⎰∞∞--==).(0t x - (2)⎰∞--td t x ττδτ)()(0解: 原式ττδd t x t)()(0⎰∞--=)()(0t t x ε⋅-=(3)⎰∞∞--dt t t t x )()(0δ解: 原式dt t t x )()(0δ⎰∞∞-=)(0t x =(4)⎰∞∞--dt t t t x )(')(0δ解: 原式)(')(000't x t t x t --=--==(5)⎰∞∞---dt t t t t )2()(00εδ 解: 原式dt t t t t )()2(000-⋅-=⎰∞∞-δε)2(0t ε=(6)⎰∞---td t t ττετδ)2()(00解: 原式=⎰∞---td t t t τετδ)2()(000=⎰∞---t d t t ττδε)()(00)()(00t t t --=εε=⎩⎨⎧<->0)(00000t t t t ε (7)⎰∞∞-dt t )(δ解: 原式1= (8)⎰-∞-0)(dt t δ 解: 原式0= (9)⎰∞+)(dt t δ解 原式0= (10)⎰+-00)(dt t δ解 原式1= (11)⎰∞∞--+-dt t tt )12)(33(2δ解 令t v 3=得:原式dv v vv 31]132)3)[(3(2-+-=⎰∞∞-δ32]132)3[(31=-+=x v v 32=(12)⎰∞∞-+dt t x t )()1('δ 解: 原式)1()('1'--=-=-=x t x t(13) ⎰∞∞--dt et t)('δ解: 原式1][0'=-==-t t e (14)⎰--3131)()32(dt t x t δ解: 令t v 2=得:原式dv v x v 21)2()3(3232⋅-=⎰-δ=dv v x v 21)2()3(3232⋅-=⎰-δ因为0)3(3232=-⎰-dv v δ,所以: 原式=0设)(t x 或)(n x 为系统的输入信号,)(t y 或)(n y 为系统的输出信号,试判定下列各函数所描述的系统是否是:(a) 线性的 (b) 时不变的 (c) 因果的 (d) 稳定的 (e) 无记忆的 (1) )4()(+=t x t y解 )(a 线性的.若 );4()()(111+=→t x t y t x )4()()(222+=→t x t y t x则: )()()4()4()()()(212121t by t ay t bx t ax t y t bx t ax +=+++=→+)(b 时不变的.若 )4()()(+=→t x t y t x则: )4()(ττ-+→-t x t x)(c 非因果的.t 时刻的响应取决于0t 以后时刻(即40+t 时刻)的输入. )(d 稳定的.若|M t x ≤|)(<∞ 则:∞<≤M t y |)(| )(e 有记忆的若系统的输出仅仅取决当前时刻的输入,则称此系统为无记忆系统。
题给系统显然不满足此条件。
(2) )()()(τ-+=t x t x t y (0>τ,且为常数)解 )(a 线性的.若 )()()()(1111τ-+=→t x t x t y t x ,)()()()(2222τ-+=→t x t x t y t x则: )]()([)]()([)()()(221121ττ-++-+=→+t x t x b t x t x a t y t bx t ax =)()(21t by t ay +)(b 时不变的.若 )()()()(τ-+=→t x t x t y t x则: )()()()(0000t t y t t x t t x t t x -=--+-→-τ )(c 当0>τ时为因果的.当0>τ时:系统0t 时刻的输出仅与0t 及0t 以前时刻的输入有关. 当0<τ时:系统0t 时刻的输出与0t 以后时刻的输入有关. )(d 稳定的.若|)(|t x ∞<, 则∞<|)(|t y )(e 有记忆的.系统0t 时刻的输出与0t 时刻以前的输入有关. (3) )2/()(t x t y =解:)(a 线性的. (说明略) )(b 时变的若)2()()(t x t y t x =→ 则: )2()2()(τττ-≠-→-t x t x t x )(c 非因果的.)21()1(-=-x y . 即1-=t 时刻的输出与1-=t 时刻以后)21(-=t 的输入有关.)(d 稳定的. (说明略))(e 有记忆的.)21()1(x y =. 即1=t 时刻的输入与1=t 时刻以前)21(=t 的输入有关.(4) )()(2t x t y =解:)(a 非线性的.若 )()()(2111t x t y t x =→, )()()(2222t x t y t x =→则: )()()()()]()([)()(21222122121t by t ay t bx t ax t bx t ax t bx t ax +=+≠+→+)(b 时不变的.若)()()(2t x t y t x =→ 则: )()()(2τττ-=-→-t y t x t x)(c 因果的. (说明略) )(d 稳定的. (说明略) )(e 无记忆的.0t 时刻的输出仅取决于0t 时刻的输入.(5) )(2)(t x et y =解:)(a 非线性的. (说明略))(b 时不变的. (说明略) )(c 因果的. (说明略)(d)稳定的.若 |)(t x |∞<≤M , 则∞<≤M e t y 2|)(|(e)无记忆的. (说明略) (6) t t x t y π2sin )()(=解: (a)线性的.若 )(]2[sin )()(111t x t t y t x π=→,)(]2[sin )()(222t x t t y t x π=→ 则: )()()]()([2sin )()(212121t by t ay t bx t ax t t bx t ax +=+→+π (b)时变的.若 )()(t y t x →则: )()](2[sin )()()2(sin )(ττπττπτ--=-≠-→-t x t t y t x t t x (c)因果的. (说明略)(d)稳定的.若∞<≤M t x |)(|, 则∞<≤≤M t M t y |2sin ||)(| (e)无记忆的. (说明略) (7) ⎩⎨⎧>=0)()()(t x t x t y解: (a)非线性的.若 0)()0()(1≠→<t y t x而0<a 时: )(0)()0)((12t ay t y t ax ≠=→<,即不满足均匀性. (b)时不变的.若 )()(t y t x → 则: )(0)(00)()()(00000t t y t t x t t x t t x t t x -=⎩⎨⎧<->--→-(c)因果的.0t 时刻的输出仅与0t 以后时刻的输入无关. (d)稳定的. (说明略) (e)无记忆的. (说明略) (8) dtt dx t y )()(=解:(a) 线性的.若 dt t dx t y t x )()()(111=→,dtt dx t y t x )()()(222=→ 则: )()()]()([)()(212121t by t ay t bx t ax dtdt bx t ax +=+→+ (b)时不变的.若: dtt dx t y t x )()()(=→ 则: )()()()()(τττττ-=--=-→-t y t d t dx dt t dx t x(c)因果的. (说明略) (d)非稳定的.(e)无记忆的 (说明略) (9) ⎰∞-=td x t y ττ)()(解: (a)线性的. (说明略) (b)时不变的.若: ⎰∞-=→td x t y t x ττ)()()(则: )()()()(0000t t y dv v x d t x t t x t t t-==-→-⎰⎰-∞-∞-ττ(c)因果的. (说明略)(d)非稳定的.若∞<=|)(||)(|t u t x 1,但∞→|)(|t y (e)有记忆的. (说明略) (10) )1()()(-⋅=n x n x n y解: (a)非线性的若 )1()()()(1111-⋅=→n x n x n y n x ,)1()()()(2222-⋅=→n x n x n y n x则: )()()]1()1()][()([)()(2122121n by n ay n bx n ax n bx n ax n bx n ax +≠-+-+→+(b)时不变的.若 )1()()()(-⋅=→n x n x n y n x则: )()1()()(N n y N n x N n x N n x -=--⋅-→- (c)因果的.0n 时刻的输出与0n 时刻以后的输入无关. (d)稳定的.若 |∞<≤M n x |)(, 则: |∞<≤2|)(M n y(e)有记忆的.0n 时刻的输出与0n 时刻以前的输入有关.(11) )()(n nx n y =解: (a)线性的.若 )()()(11n nx n y n x =→,)()()(222n nx n y n x =→ 则: )()()]()([)()(212121n by n ay n bx n ax n n bx n ax +=+→+ (b)时不变的.若 )()()(n nx n y n x =→则: )()()()(N n y N n x N n N n x -=--→-(c)因果的. (说明略)(d)非稳定的.即使M n x <|)(|,∞→n 时,∞→)(n y (e)无记忆的. (说明略) (12) 6)(5)(+=n x n y解: (a)非线性的.若 6)(5)()(111+=→n x n y n x ,6)(5)()(222+=→n x n y n x 则: )(6)(6)]()([5)()()(212121n y n ay n bx n ax n y n bx n ax +≠++=→+ (b)时不变的. (说明略) (c)因果的. (说明略) (d)稳定的. (说明略) (e)无记忆的. (说明略) (13) )()(n x n y -=解: (a)线性的. (说明略) (b)时变的.若 )()()(n x n y n x -=→则: )]([)()()(N n x N n y N n x N n x --=-≠--→-(c)非因果的.)1()1(x y =- . 即 1-=n 时刻的输出与 1-=n 以后时刻(1=n 时刻)的输入有关. (d)稳定的. (说明略)(e)有记忆的.).1()1(-=x y 即 1=n 时刻的输出与1=n 以前时刻(1-=n 时刻)的输入有关.* 已知)22(t x -的波形如题图所示,试画出)(t x 的波形。