概率论 常用的离散分布
- 格式:ppt
- 大小:2.51 MB
- 文档页数:25
概率分布的种类与性质概率分布是概率论中的重要概念,用于描述随机变量的取值与其对应的概率。
不同的随机变量具有不同的概率分布,而概率分布又可以分为多种种类。
本文将介绍常见的概率分布种类及其性质。
一、离散型概率分布离散型概率分布是指随机变量取有限个或可数个值的概率分布。
常见的离散型概率分布有以下几种:1. 伯努利分布(Bernoulli Distribution)伯努利分布是最简单的离散型概率分布,它描述了只有两个可能结果的随机试验,如抛硬币的结果(正面或反面)。
伯努利分布的概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),其中k=0或1,p为成功的概率。
2. 二项分布(Binomial Distribution)二项分布是一种重要的离散型概率分布,它描述了n次独立重复的伯努利试验中成功次数的概率分布。
二项分布的概率质量函数为: P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中k=0,1,...,n,C(n,k)为组合数,p为成功的概率。
3. 泊松分布(Poisson Distribution)泊松分布是一种用于描述单位时间或单位空间内随机事件发生次数的离散型概率分布。
泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!,其中k=0,1,2,...,λ为平均发生率。
二、连续型概率分布连续型概率分布是指随机变量取值为连续区间内的概率分布。
常见的连续型概率分布有以下几种:1. 均匀分布(Uniform Distribution)均匀分布是一种简单的连续型概率分布,它在给定区间内的取值概率相等。
均匀分布的概率密度函数为:f(x) = 1 / (b-a),其中a为区间下界,b为区间上界。
2. 正态分布(Normal Distribution)正态分布是一种重要的连续型概率分布,也被称为高斯分布。
正态分布具有钟形曲线,对称分布于均值周围。
二项分布与泊松分布比较二项分布与泊松分布是概率论中常见的两种离散概率分布,它们在实际问题中有着广泛的应用。
本文将对二项分布和泊松分布进行比较,分析它们的特点、适用范围以及优缺点,帮助读者更好地理解和应用这两种分布。
一、二项分布二项分布是最基本的离散概率分布之一,描述了在一系列独立重复的伯努利试验中成功的次数。
在每次试验中,事件发生的概率为p,不发生的概率为1-p。
若进行n次试验,成功的次数为X,则X服从参数为n和p的二项分布,记为X~B(n,p)。
二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中C(n,k)表示组合数。
二项分布的期望和方差分别为E(X) = np,Var(X) = np(1-p)。
二项分布适用于满足以下条件的问题:1)进行n次独立重复的伯努利试验;2)每次试验只有两种可能的结果;3)每次试验中成功的概率为常数p。
二、泊松分布泊松分布描述了单位时间或单位空间内随机事件发生的次数,适用于描述低概率事件在长时间或大空间内的发生情况。
泊松分布的参数λ表示单位时间或单位空间内事件的平均发生率。
泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!,其中e为自然对数的底。
泊松分布的期望和方差均为E(X) = Var(X) = λ。
泊松分布适用于满足以下条件的问题:1)事件在时间或空间上是独立分布的;2)事件在任意非重叠的时间或空间区间内的发生概率相等;3)事件的平均发生率λ是已知的。
三、二项分布与泊松分布的比较1. 适用范围:二项分布适用于描述有限次独立重复试验中成功次数的分布,适用于成功概率固定的情况;而泊松分布适用于描述单位时间或单位空间内事件发生次数的分布,适用于事件发生率很低的情况。
2. 参数设定:二项分布需要设定试验次数n和成功概率p两个参数;泊松分布只需要设定平均发生率λ一个参数。
3. 连续性:二项分布是离散分布,描述的是离散的事件发生次数;泊松分布是连续分布,描述的是连续的事件发生情况。
概率第五讲——离散型随机变量的常见分布我们之前介绍了离散型随机变量,本节我们将介绍几种常用的离散分布。
1、两点分布例1 100件产品中有95件正品,5件次品,现从中任取1件,考查取出的次品数。
试用变量描述该试验的结果并写出概率分布。
一般地,只取两个可能值 x1,x2 的随机变量 X,其概率分布可写为称 X服从两点分布。
特别地,若x1=0,x2=1,这时称X服从0-1分布。
0-1分布描述只有两个可能的结果的随机试验,0-1分布的概率分布一般写为其中参数p:0<p<1.若以概率分布表表示,则为注:两点分布用于描述只有两种对立结果的随机试验。
2、二项分布(the Binomial Distribution)(记住这个英文单词,后面要考的)其中n是试验独立重复的次数, p是每一次基本试验中事件A发生的概率。
随机变量 X 指n 次试验中事件A发生的次数。
注:二项分布的试验背景是n重Bernoulli试验模型:例2 设张三做某事的成功率为1%,他重复努力 100次,则至少成功1次的概率为多少?这说明,有百分之一的希望,就要做百分之百的努力。
这里,小伙伴会问了,这里的二项分布表达式如此复杂,该怎么计算呢?我们可以借助Excel软件来计算。
操作方法如下:打开Excel→公式→插入函数(统计)BINOM.DIST(你一定发现了,这就是前面提到的二项分布的单词前面几个字母)例3 设一批产品共10000个,其中废品数为500个,现从这批产品中任取10个,求10个产品中恰有2个废品的概率。
3、泊松分布引例观察下列随机试验:(1)某地区某一时间间隔内发生的交通事故的次数;(2)北京某医院一天内的急诊人数;(3)放射性物质在单位时间内的放射次数;(4)《新编线性代数与概率统计》教材一页中印刷错误数;(5)北京地区居民中活到百岁的人数。
这些试验有一个共同点:描述在单位时间(空间)中随机事件的发生次数。
它们都服从或近似服从泊松分布。
概率统计分布列知识点总结一、离散分布对于离散型随机变量,它取值为有限个或者可数个。
在概率统计中,常见的离散分布包括:伯努利分布、二项分布、泊松分布等。
1. 伯努利分布伯努利分布是最简单的概率分布之一,它描述了只有两种可能结果的随机实验的分布。
例如,抛一次硬币的结果可以是正面或反面,这就是一个典型的伯努利分布。
伯努利分布的概率质量函数可以表示为:P(X=x) ={p, if x=11-p, if x=0}其中,p表示事件发生的概率,1-p表示事件不发生的概率。
伯努利分布的期望值为p,方差为p(1-p)。
2. 二项分布二项分布描述了一系列独立重复的伯努利试验的结果。
例如,抛n次硬币,其中正面的次数就是一个二项分布。
二项分布的概率质量函数可以表示为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,n表示试验的次数,k表示事件发生的次数,p表示事件发生的概率,C(n,k)表示组合数。
二项分布的期望值为np,方差为np(1-p)。
3. 泊松分布泊松分布描述了单位时间内随机事件发生次数的分布。
例如,单位时间内接到的电话数、单位时间内发生事故的次数等都可以用泊松分布来描述。
泊松分布的概率质量函数可以表示为:P(X=k) = (λ^k * e^(-λ)) / k!其中,λ表示单位时间内事件发生的平均次数。
泊松分布的期望值和方差都等于λ。
二、连续分布对于连续型随机变量,它可以取任意的实数值。
在概率统计中,常见的连续分布包括:均匀分布、正态分布、指数分布等。
1. 均匀分布均匀分布描述了取值在一定范围内的随机变量的概率分布。
例如,在区间[a,b]内取值的随机变量就可以用均匀分布来描述。
均匀分布的概率密度函数可以表示为:f(x) ={1 / (b-a), if x∈[a,b]0, otherwise}均匀分布的期望值为(a+b)/2,方差为(b-a)^2 / 12。
2. 正态分布正态分布是最常见的连续分布之一,它具有许多重要的性质,例如中心极限定理。
概率论里的分布概率论是研究随机事件发生的规律性和概率的一门学科。
在概率论中,分布是指随机变量在不同取值下对应的概率值。
分布可以分为离散型分布和连续型分布两种。
一、离散型分布离散型分布是指随机变量只能取有限个或者无限个离散值的情况下对应的概率分布。
常见的离散型分布包括:1. 伯努利分布:伯努利试验是指只有两种结果的试验,例如抛硬币正反面。
如果事件A发生,则记为1,否则记为0。
伯努利分布就是在这样的试验中,事件A发生的概率为p,不发生的概率为1-p。
2. 二项式分布:二项式试验是指进行n次独立重复实验,每次实验只有两种结果,成功和失败。
每次试验成功的概率为p,失败的概率为1-p。
在这样的试验中,在n次实验中恰好出现k次成功的概率就是二项式分布。
3. 泊松分布:泊松过程是指单位时间内某一事件发生次数服从泊松分布。
例如,在某个城市每小时发生的交通事故次数就可以用泊松分布来描述。
二、连续型分布连续型分布是指随机变量在某一区间内取值的情况下对应的概率分布。
常见的连续型分布包括:1. 均匀分布:均匀分布是指在一个区间内,每个点的概率密度相等。
例如,在[0,1]区间内随机选择一个实数的概率密度就是均匀分布。
2. 正态分布:正态分布也叫高斯分布,它是一种非常重要的概率分布。
正态分布具有钟形曲线,对称轴为均值。
很多自然现象都可以用正态分布来描述,例如人类身高、智商等。
3. 指数分布:指数过程是指在一段时间内某个事件发生的时间间隔服从指数分布。
例如,在某个工厂中设备损坏的时间间隔就可以用指数分布来描述。
以上仅列举了部分常见的离散型和连续型概率分布,还有很多其他类型的概率分布,例如负二项式、卡方、t、F等。
不同类型的概率分布有着不同的特点和应用场景,掌握它们对于理解概率论和统计学都是非常重要的。