晶粒尺寸计算
- 格式:pdf
- 大小:590.37 KB
- 文档页数:5
xRD晶粒尺寸分析XRD晶粒尺寸分析注:晶粒尺寸和晶面间距不同计算晶粒大小:谢乐公式:D=kλ/βcosθD—垂直于反射晶面(hkl)的晶粒平均粒度D是晶粒大小β--(弧度)为该晶面衍射峰值半高宽的宽化程度K—谢乐常数,取决于结晶形状,常取0.89θ--衍射角λ---入射X射线波长(Ǻ)计算晶面间距:布拉格方程:2dsinθ=nλd是晶面间距。
此文档是用XRD软件来分析晶粒尺寸,用拟合的办法,而不是用谢乐公式很多人都想算算粒径有多大。
其实,我们专业的术语不叫粒径,而叫“亚晶尺寸”,它表征的并不是一个颗粒的直径。
A 这么说吧,粉末由很多“颗粒”组成,每个颗粒由很多个“晶粒”聚集而成,一个晶粒由很多个“单胞”拼接组成。
X射线测得的晶块尺寸是指衍射面指数方向上的尺寸,如果这个方向上有M 个单胞,而且这个方向上的晶面间距为d ,则测得的尺寸就是Md 。
如果某个方向(HKL )的单胞数为N ,晶面间距为d 1,那么这个方向的尺寸就是Nd 1。
由此可见,通过不同的衍射面测得的晶块尺寸是不一定相同的。
B 如果这个晶粒是一个完整的,没有缺陷的晶粒,可以将其视为一个测试单位,但是,如果这个晶粒有缺陷,那它就不是一个测试单位了,由缺陷分开的各个单位称为“亚晶”。
比如说吧,如果一个晶粒由两个通过亚晶界的小晶粒组成(称为亚晶),那么,测得的就不是这个晶粒的尺寸而是亚晶的尺寸了。
C 为什么那么多人喜欢抛开专业的解释而用“粒径”这个词呢?都是“纳米材料”惹的祸。
纳米晶粒本来就很小,一般可以认为一个纳米晶粒中不再存在亚晶,而是一个完整的晶粒,因此,亚晶尺寸这个术语就被套用到纳米晶粒的“粒径”上来了。
实际上,国家对于纳米材料的粒径及粒径分布的表征是有标准的,需要用“小角散射”方法来测量。
比如,北京钢铁研究总院做这个就做了很长时间。
但是呢,一则,做小角散射的地方还不多,做起来也特别麻烦(现在好一些了,特别是对光能自动一些了),所以,很少有人去做,而且,用衍射峰宽计算出来的“粒径”总是那么小,何乐而不为呢?我私下地觉得吧,这些人在偷换概念。
XRD晶粒尺寸分析注:晶粒尺寸和晶面间距不同计算晶粒大小:谢乐公式:D=kλ/βcosθD—垂直于反射晶面(hkl)的晶粒平均粒度 D是晶粒大小β--(弧度)为该晶面衍射峰值半高宽的宽化程度K—谢乐常数,取决于结晶形状,常取0.89θ--衍射角λ---入射X射线波长(Ǻ)计算晶面间距:布拉格方程:2dsinθ=nλ d是晶面间距。
此文档是用XRD软件来分析晶粒尺寸,用拟合的办法,而不是用谢乐公式很多人都想算算粒径有多大。
其实,我们专业的术语不叫粒径,而叫“亚晶尺寸”,它表征的并不是一个颗粒的直径。
A 这么说吧,粉末由很多“颗粒”组成,每个颗粒由很多个“晶粒”聚集而成,一个晶粒由很多个“单胞”拼接组成。
X射线测得的晶块尺寸是指衍射面指数方向上的尺寸,如果这个方向上有M个单胞,而且这个方向上的晶面间距为d,则测得的尺寸就是Md。
如果某个方向(HKL)的单胞数为N,晶面间距为d1,那么这个方向的尺寸就是Nd1。
由此可见,通过不同的衍射面测得的晶块尺寸是不一定相同的。
B 如果这个晶粒是一个完整的,没有缺陷的晶粒,可以将其视为一个测试单位,但是,如果这个晶粒有缺陷,那它就不是一个测试单位了,由缺陷分开的各个单位称为“亚晶”。
比如说吧,如果一个晶粒由两个通过亚晶界的小晶粒组成(称为亚晶),那么,测得的就不是这个晶粒的尺寸而是亚晶的尺寸了。
C 为什么那么多人喜欢抛开专业的解释而用“粒径”这个词呢?都是“纳米材料”惹的祸。
纳米晶粒本来就很小,一般可以认为一个纳米晶粒中不再存在亚晶,而是一个完整的晶粒,因此,亚晶尺寸这个术语就被套用到纳米晶粒的“粒径”上来了。
实际上,国家对于纳米材料的粒径及粒径分布的表征是有标准的,需要用“小角散射”方法来测量。
比如,北京钢铁研究总院做这个就做了很长时间。
但是呢,一则,做小角散射的地方还不多,做起来也特别麻烦(现在好一些了,特别是对光能自动一些了),所以,很少有人去做,而且,用衍射峰宽计算出来的“粒径”总是那么小,何乐而不为呢?我私下地觉得吧,这些人在偷换概念。
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer 常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。
),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。
但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。
如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。
此时,Scherrer公式适用。
但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化, Scherrer公式不再适用。
2) 通常获得的XRD数据是由Kα线计算得到的。
此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。
3) 扫描速度也有影响,要尽可能慢。
一般2°/min。
4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。
当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOP20β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。
Scherrer公式计算晶粒尺寸()Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。
),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。
但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。
如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。
此时,Scherrer公式适用。
但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化,Scherrer公式不再适用。
2) 通常获得的XRD数据是由Kα线计算得到的。
此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。
3) 扫描速度也有影响,要尽可能慢。
一般2°/min。
4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。
当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。
其中积分宽度=衍射峰面积积分/峰高如何获得单色Kα1:1)硬件滤掉Kβ:K系射线又可以细分为Kα(L层电子填充)和Kβ(M层电子填充)两种波长略有差异的两种射线。
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。
),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。
但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。
如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。
此时,Scherrer公式适用。
但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化,Scherrer公式不再适用。
2) 通常获得的XRD数据是由Kα线计算得到的。
此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。
3) 扫描速度也有影响,要尽可能慢。
一般2°/min。
4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。
当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOPxiaogou •2007-09-25 10:21树型| 收藏| 小中大2#β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer 常数(通常为),λ为入射X射线波长(Cuka 波长为,Cuka1 波长为。
),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。
但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。
如何扣除仪器宽化和应力宽化影响在什么情况下,可以简化这一步骤答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。
此时,Scherrer公式适用。
但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化, Scherrer公式不再适用。
2) 通常获得的XRD数据是由Kα线计算得到的。
此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。
3) 扫描速度也有影响,要尽可能慢。
一般2°/min。
4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均还是有其它处理原则答:通常应当计算每个衍射峰晶粒尺寸后进行平均。
当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值能不能直接代入上面公式吗如果不能,如何根据XRD图谱获得半峰宽TOP 20β为衍射峰的半高峰宽时,k=β为衍射峰的积分宽度时,k=。
其中积分宽度=衍射峰面积积分/峰高如何获得单色Kα1:1)硬件滤掉Kβ:K系射线又可以细分为Kα(L层电子填充)和Kβ(M层电子填充)两种波长略有差异的两种射线。
谢乐公式计算XRD样品的晶粒尺寸的实例我们常见的谢乐(Scherrer)公式表达式为D=Kλ /(βcos θ)(K为常数;λ 为X 射线波长;β 为为衍射峰半高宽;θ为衍射角)。
在上式中常数K的取值与β的定义有关,当β为半宽高时,K取0.89。
当β为积分宽度时,K取1.0。
我们在计算晶粒尺寸时,一般采用低角度的衍射线,如果晶粒尺寸较大,可用较高衍射角的衍射线来代替。
谢乐公式适用范围为1-100nm,晶粒尺寸小于1nm大于100nm时,使用用谢乐公式不太准确,当晶粒尺寸在30nm时其计算的结果最准确。
同时,谢乐公式只适合球形粒子,对立方体粒子常数K应改为0.943,半高宽应该转化为弧度制,即[(β÷180)×3.14]。
下面这个图是Jade5.0所读的晶粒尺寸为264(A°)即为26.4nm。
38.26)2159.36(14.3180332.015405.0943.0=⨯⨯⨯=COS D 这边有的数据是X 射线波长λ=0.15405 nm , 半高宽β=0.332,2θ=36.159。
我是这样算的: 自己计算出来的值和用软件计算出来的值很接近。
我这里有2004的PDF 标准卡片,如果有哪位需要的话直接加我qq ,我发给你,我的qq 是425841088。
Scherrer 公式计算晶粒尺寸()Scherrer 公式计算晶粒尺寸(XRD 数据计算晶粒尺寸)根据X 射线衍射理论,在晶粒尺寸小于100nm 时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer 公式计算。
Scherrer 公式:Dhkl=k λ/βcos θ其中,Dhkl 为沿垂直于晶面(hkl )方向的晶粒直径,k 为Scherrer 常数(通常为0.89), λ为入射X 射线波长(Cuka 波长为0.15406nm ,Cuka1 波长为0.15418nm 。
等面积圆直径表示晶粒尺寸公式
晶粒尺寸通常用等面积圆直径来表示。
等面积圆直径是指一个与晶粒形状相似的圆的直径,其面积与晶粒的实际面积相等。
晶粒尺寸的公式可以根据晶粒的形状来确定。
对于球形晶粒,公式为:
D = 2 (V / π)^(1/3)。
其中,D是等面积圆直径,V是晶粒的体积。
对于立方形晶粒,公式为:
D = (6 V)^(1/3)。
其中,D是等面积圆直径,V是晶粒的体积。
对于其他形状的晶粒,公式可能会有所不同,因为不同形状的晶粒需要不同的等面积圆直径公式来表示其尺寸。
在实际应用中,需要根据晶粒的具体形状来选择合适的公式进行计算。
这些公式可以帮助科学家和工程师确定材料的晶粒尺寸,从而更好地理解材料的性能和行为。
Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)Scherrer公式计算晶粒尺寸(XRD数据计算晶粒尺寸)根据X射线衍射理论,在晶粒尺寸小于100nm时,随晶粒尺寸的变小衍射峰宽化变得显著,考虑样品的吸收效应及结构对衍射线型的影响,样品晶粒尺寸可以用Debye-Scherrer公式计算。
Scherrer公式:Dhkl=kλ/βcosθ其中,Dhkl为沿垂直于晶面(hkl)方向的晶粒直径,k为Scherrer常数(通常为0.89),λ为入射X射线波长(Cuka 波长为0.15406nm,Cuka1 波长为0.15418nm。
),θ为布拉格衍射角(°),β为衍射峰的半高峰宽(rad)。
但是在实际操作中如何从一张普通的XRD图谱中获得上述的参数来计算晶粒尺寸还存在以下问题:1) 首先,用XRD计算晶粒尺寸必须扣除仪器宽化和应力宽化影响。
如何扣除仪器宽化和应力宽化影响?在什么情况下,可以简化这一步骤?答:在晶粒尺寸小于100nm时,应力引起的宽化与晶粒尺度引起的宽化相比,可以忽略。
此时,Scherrer公式适用。
但晶粒尺寸大到一定程度时,应力引起的宽化比较显著,此时必须考虑引力引起的宽化,Scherrer公式不再适用。
2) 通常获得的XRD数据是由Kα线计算得到的。
此时,需要Kα1和Kα2必须扣除一个,如果没扣除,肯定不准确。
3) 扫描速度也有影响,要尽可能慢。
一般2°/min。
4)一个样品可能有很多衍射峰,是计算每个衍射峰对应晶粒尺寸后平均?还是有其它处理原则?答:通常应当计算每个衍射峰晶粒尺寸后进行平均。
当然只有一两峰的时候,就没有必要强求了!5) 有的XRD数据中给出了width值,是不是半高宽度的值?能不能直接代入上面公式吗?如果不能,如何根据XRD图谱获得半峰宽?TOPxiaogou •2007-09-25 10:21树型| 收藏| 小中大2#β为衍射峰的半高峰宽时,k=0.89β为衍射峰的积分宽度时,k=1.0。
晶粒尺寸计算步骤一:基本数据处理
1. XRD程序的运行
点击快捷方式
快捷方式 到 Pmgr.lnk 显示如下界面
2.基本数据处理(Basic Process)
原始数据的导入
点击Basic Process模块单元
Basic Process 界面显示如下:
点击文件夹图标
选择xddat文件夹
导入原始数据,进行数据处理:
!!注意:数据处理参数设置,Smoothing/B.G.Substruction/ kα
-kα2 Separate请选择Manual,
1
确保同类样品数据处理参数一致。
Basic Process数据处理后,获得衍射峰信息,如下图.
3.晶粒尺寸/显微畸变计算
点击Xtal.Size &Lattice Strain 模块,选择下拉菜单中Condition 选项
根据Basic Process 衍射峰 2-theta角度信息,输入所需计算的衍射峰角度!!注意:除样品的计算参数外,必需同时导入标准样品的计算参数
导入计算数据,如图所示
Go运行计算,并显示结果. 点击。