基于UG的传动机构有限元分析方法研究
- 格式:pdf
- 大小:1.19 MB
- 文档页数:4
UG有限元分析第12章第12章:有限元分析在结构密集度设计中的应用导言:有限元分析是一种基于离散化方法的数值分析技术,可以用于求解结构力学问题。
它已经成为现代工程设计的重要工具之一、本章将研究有限元分析在结构密集度设计中的应用,以及相关的优化算法。
1.结构密集度设计的概念和要求结构密集度设计是指通过优化设计,将结构尺寸和重量最小化的设计方法。
在工程实践中,通常需要同时考虑结构的强度、刚度、稳定性和减震等因素。
有限元分析为结构密集度设计提供了一种有效的数值分析方法。
2.有限元模型的建立在进行有限元分析之前,首先需要建立结构的有限元模型。
有限元模型的建立包括网格划分、单元类型的选择和边界条件的设定等步骤。
在结构密集度设计中,需要使用合适的单元类型和足够的网格密度来保证分析结果的准确性。
3.结构的优化设计在有限元分析的基础上,可以进行结构的优化设计,以实现结构密集度的最小化。
常用的优化算法包括遗传算法、粒子群算法和模拟退火算法等。
这些算法可以通过调整结构的参数,如尺寸、形状和材料等,来实现结构的优化设计。
4.结构密集度设计的应用案例本章还将介绍几个结构密集度设计的应用案例,包括飞机机翼、汽车车身和桥梁等结构的优化设计。
这些案例将展示有限元分析在结构密集度设计中的应用效果,并讨论其对结构性能和重量的影响。
5.研究进展和展望最后,本章将总结有限元分析在结构密集度设计中的应用,并对未来的研究方向进行展望。
随着计算机技术的不断发展和优化算法的改进,有限元分析在结构密集度设计中的应用将变得更加广泛和深入。
总结:有限元分析在结构密集度设计中发挥了重要作用。
通过建立合适的有限元模型和使用优化算法,可以实现结构的最优设计和重量的最小化。
未来的研究还应该关注如何进一步提高有限元分析的准确性和效率,以及如何将其与其他优化技术相结合,为工程实践提供更好的解决方案。
基于UG软件有限元分析的零件受力分析作者:李涛姜琨久来源:《中国高新技术企业》2013年第19期摘要:文章运用UG8.0软件的有限元分析来完成铝合金变速箱模具的换挡拔头力学分析,来体现有限元CAE在现代产品设计中的优势及其常见的分析功能。
通过一个简单结构静力学分析实例,详细介绍了建立高级仿真环境、有限元模型、仿真模型和后处理的操作步骤和解题思路。
关键词:UG8.0;有限元;高级仿真中图分类号:TH122 文献标识码:A 文章编号:1009-2374(2013)28-0063-021 对有限元法概述有限元法是现代产品及其结构设计的重要工具,它的基本思想是将连续的物理模型离散为有限个单位元,使其只在有限个指定的节点上互相连接,然后对每个单位选择一个比较简单的函数,近似模拟该单元的物理量,如单元的位移或者应力,并基于问题描述的基本方程建立单元节点的平衡方程组,再把所有单元的方程组集合为整个结构力学特性的整体代数方程组,最后引入边界约束条件求解代数方程组而获得数值解,如结构的位移分布和应力分布。
2 工艺分析UGNX高级仿真和其他有限元分析软件基本操作一致,分为创建有限元模型、创建仿真模型和后处理三大步骤。
还可以完成结构优化、疲劳耐久预测等任务。
本次工艺是利用结构静力学分析功能完成。
一般流程示意图如图1所示:图13 创建有限元模型对参数、材料、物理属性的定义,但是由于篇幅的限制我们就不列举说明。
3.1 网格划分在UG高级分析模块包括零维网格、一维网格、二维网格、三维网格和连接网格5种类型,每种类型都适用于一定的对象。
本次工艺我们所应用的是三维网格,3D四面体网格常用来划分三维实力模型。
在NX.NASTRAN解算器中包含四节点四面体和十节点四面单元。
单击工具栏中的【3D四面体网格】,弹出【3D四面体网格】对话框,默认【单元属性】的【类型】为【CTETRA(10)】,单击【单元大小】右侧【自动单元大小】,对话框现实【6.56】,手动将其修改为【3】,如图2所示:图23.2 有限元模型检查单击工具栏中的【有限元模型检查】图标,弹出【模型检查】对话框,单击【应用】按钮,在弹出的【信息】中出现【Numberfailed】,发现模型正常,没有出现划分失败的网格。
UGS产品在传动部件的仿真分析姜元庆现代传动技术是机电工业的关键基础技术。
它主要包括机械传动技术、流体传动技术和电气传动技术。
现代传动技术主要承担能量传递、改变运动形态、实现对能量的分配和控制、保证传动精度和效率等功能,它是机电产品向高速化、自动化、高效率、高精度、高可靠性、轻量化、多样化方向发展的不可缺少的关键技术之一。
最早的传动技术是机械传动,机械传动已经伴随人们走过了几千年的历史,无论是在生活还是生产方面,它都为人类的发展进程作出了巨大的贡献。
如今,随着电子技术、信息技术的广泛应用,使机械传动也进入了一个新的发展阶段。
机械传动系统在高速、高效、节能、环保以及小型化等方面有了明显的改进。
现在,单纯的机械或电气传动似乎更多地加入了流体技术、智能控制技术部分,机械、电子、传感器技术、软件的合成已成为一种重要的趋势。
作为现代传动技术的基础的基础产品、如机械传动及电传动产品、轴承及液压、气动、液力传动产品等在国民经济和国防建设中的地位和作用十分重要。
没有高性能的基础产品,就不可能有高水平的机电产品。
近年来,国外传动技术由于广泛应用了高新技术成果,使基础产品在水平、品种及扩展应用领域方面都有很大提高和发展,我国基础产品工业已形成门类齐全、有一定生产能力和技术水平的生产科研体系。
装备水平有所提高,目前已能生产品种规格齐全的产品,已能为汽车、工程机械、农业机械、机床、塑机、冶金矿山、发电设备、石油化工、铁路、船舶、港口、轻工、电子、医药以及国防工业提供品种基本齐全的产品。
通过科研攻关和产学研结合,在液压伺服比例系统和元件、气动控制系统、大功率调速型液力偶合器、高速齿轮、汽车和铁路轴承、精密主轴轴承等方面有所突破,不少成果已用于生产。
虽然取得上述成果,但和目前国内的需求和国外先进水平相比还有较大差距。
主要表现在产品性能低、可靠性差。
铁路轴承寿命约为100万km,为国外的1/2,重载高速齿轮寿命也低于国外同类产品水平。
UG有限元分析教程有限元分析(Finite Element Analysis,FEA)是一种计算方法,用于求解连续介质力学问题。
UG作为一款常用的三维CAD软件,也提供了相应的有限元分析功能,下面将介绍UG有限元分析的基本流程和步骤。
首先,建立几何模型是有限元分析的第一步。
在UG中,可以通过绘制线与曲线、创建体与表面等操作,构建出所需的几何形状。
在建模过程中,需要注意几何模型的准确性和合理性,以保证模拟结果的可靠性。
然后,进行网格划分。
有限元分析将几何模型离散化为多个小单元,每个小单元称为网格,通过将整个模型划分为有限个网格单元,可以更容易地对模型进行数值计算。
在UG中,可以选择不同的网格划分算法和参数设置,以求得较为合适的网格划分结果。
接下来,定义边界条件和加载条件。
在有限元分析中,需要对模型的边界进行约束和加载,以模拟真实的工程环境。
在UG中,可以通过选择特定面或边进行边界条件设置,例如固定边界条件、约束边界条件等。
同时,还可以对特定面或边进行加载条件设置,如施加力、施加压力等。
完成边界条件和加载条件的定义后,即可进行求解。
在UG中,可以通过调用有限元分析求解器进行计算。
求解过程中,UG会对模型进行离散化计算,并得到相应的应力、应变等结果。
求解的时间长短与模型的复杂性、计算机性能等因素有关。
最后,进行后处理。
在有限元分析中,后处理是对求解结果的分析和可视化。
UG提供了丰富的后处理工具,可以对应力、应变等结果进行图形显示和数据分析,并以形式化报告的形式输出结果。
总结而言,UG有限元分析是一项强大的工程分析工具,可以帮助工程师解决各种复杂的力学问题。
通过建立几何模型、网格划分、定义边界条件和加载条件、求解和后处理,可以得到模型的应力、应变等结果,以指导后续的工程设计和优化工作。
本文档如对你有帮助,请帮忙下载支持!
UG有限元分析-大致步骤
一、打开一实体零件:
二、点击开始,选择“设计仿真”
三、点设计仿真后会自动跳出“新建FEM和仿真”窗口,点击“确定”
四、确定新建FEM和仿真后,会自动跳出“新建解决方案”窗口,点击“确定”
五、指派材料,点击零件,选择所需要指派的材料,点击“确定”,本例为steel
六、生成网格,以3D四面网格为例:选择网格-输入网格参数,单元大小
七、固定约束,选择所需要约束的面,本例的两个孔为固定约束
八、作用载荷,选择作用力的面,输入压力的大小,本例按单位面积的承压
九、求解,选择求解命令,点击确定
十、求解运算,系统会自动运算,显示作业已完成时,可以关闭监视器窗口
十一、导入求解结果,选择文件所在的路径,结果文件为 .op2, 点击确定
十二、查看有限元分析结果:
十三、编辑注释,可以显示相关参数:
十四、动画播放,点击动画播放按键,可以设置动态播放速度的快慢。
ug有限元分析2篇第一篇:ug有限元分析一、引言UG有限元分析是一种基于物理模型的仿真分析方法,它可以模拟并分析各种工程场景下的结构响应、变形、应力、应变等物理现象。
UG有限元分析可以帮助工程师快速发现设计中的问题,缩短产品开发周期,提高生产效率和产品质量。
本文将介绍UG有限元分析的基本概念、工作流程、建模方法以及在工程应用中的实际案例。
二、基本概念1. 有限元模型是建立在有限元网格上的物理模型,通过将复杂结构分解为一系列简单的有限元单元来进行计算分析。
通过计算单元内各节点的位移、应力等物理量,计算出物理模型的响应情况。
2. UG软件中的有限元分析模块可以为工程师提供各种物理模型的仿真分析功能,包括静力分析、热力分析、疲劳分析、动态响应分析等。
3. UG有限元分析模块中内置的各种前处理、求解器和后处理功能均为工程师提供了方便、高效的分析工具。
基于该模块,工程师可以快速、准确地进行多种仿真分析,较大地提升了工作效率。
三、工作流程1. 准备阶段:确定分析场景、边界条件、材料参数等,准备建模。
2. 建模阶段:利用UG软件中构建造型、切割、分割、装配等功能构建有限元模型,并为有限元模型设置材料、边界条件等。
3. 网格划分阶段:根据分析精度的需求,将有限元模型划分为多个简单的有限元单元。
4. 分析求解阶段:选择适合分析场景的求解器,进行有限元分析计算求解。
5. 后处理阶段:根据需要选择分析结果生成报告、动画、图片等。
四、建模方法1. 结构建模:使用造型、切割、分割等功能构建有限元模型,为模型设置材料属性、边界条件等。
2. 网格划分:根据分析精度的需求,选择适合的网格划分方法,将有限元模型划分为多个有限元单元。
3. 材料属性设置:为有限元模型中的每个组件设置相应的材料属性,包括弹性模量、泊松比、线膨胀系数、密度、热膨胀系数等。
4. 边界条件设置:为有限元模型中的每个组件设置相应的边界条件,包括约束、力、压力、温度等。
UG有限元分析第2章有限元分析(Finite Element Analysis,FEA)是一种通过将实际结构或系统划分为有限个离散单元,然后用数学计算方法进行模拟和求解的工程分析方法。
有限元法是一种基于力学和数学基本原理的数值方法,适用于各种不同材料和几何形状的结构和系统。
在有限元分析中,首先需要对实际结构或系统进行离散化,将其划分为有限个离散单元,这些单元可以是三角形、四边形、六边形、棱柱或四面体等。
每个单元内部的变量通过插值函数进行逼近,然后通过数学方法求解得到整体结构或系统的响应。
有限元分析的基本步骤如下:1.建立几何模型:根据实际结构或系统的几何形状和尺寸,使用CAD软件或其他建模工具建立几何模型。
2.确定材料属性:根据实际结构或系统的材料性质,确定相应的材料属性,如弹性模量、泊松比和密度等。
3.网格划分:将几何模型离散为有限个离散单元,确定每个单元的形状和大小,常用的划分方法包括四边形单元、三角形单元和四面体单元等。
4.建立单元方程:根据单元的几何形状和材料属性,建立每个单元内部各个节点的本地坐标系,然后根据力学基本原理,建立每个单元的刚度矩阵和质量矩阵。
5.组装全局方程:将各个单元的刚度矩阵和质量矩阵按照节点编号的顺序组装成整体结构或系统的刚度矩阵和质量矩阵,并考虑边界条件的约束。
6.施加边界条件:根据实际情况,施加边界条件,如固支约束或力的施加等。
7.求解方程:通过求解线性或非线性方程组,得到结构或系统的位移响应、应力分布、变形情况和模态分析结果等。
8.后处理:对计算结果进行分析和评价,如应力云图、最大变形和动力响应等。
有限元分析为工程设计和科学研究提供了一种有效的工具,可以进行结构优化、故障分析和设计验证等工作,同时也可以降低试验成本和加速产品开发进程。
然而,有限元分析也有其局限性,如模型假设和计算误差等问题,因此在实际应用中需要合理选择有限元模型和进行验证。
基于UG工装设计中的有限元验证与分析摘要通过实例,分析工装设计中的常见问题,充分发挥软件特点,引入主流技术UG有限元对其进行验证、分析并提供直观的数据作为依据,用于解决实际问题,借此提高分析问题、解决问题的能力。
关键词:工装设计UG有限元受力分析1.UG简介UG是Unigraphics的缩写,是集计算机辅助设计、计算机辅助制造、计算机辅助分析功能于一体的软件集成系统。
在中国,它得到了越来越广泛的应用,已成为我国工业界主要使用的大型CAD/CAE/CAM软件之一。
Unigraphics适于完整的产品工程。
使公司能够在同一集成的数字化环境中去模拟、验证产品和他们的生产过程。
?如今制造业所面临的挑战是,通过产品开发的技术创新,在持续的成本缩减以及收入和利润的逐渐增加的要求之间取得平衡。
为了真正地支持革新,必须评审更多的可选设计方案,而且在开发过程中必须根据以往经验中所获得的知识更早地做出关键性的决策。
主要功能1.1产品设计UG为那些培养创造性和产品技术革新的工业设计和风格提供了强有力的解决方案。
UG包括了世界上最强大、最广泛的产品设计应用模块。
工业设计师能够迅速地建立和改进复杂的产品形状。
UG具有高性能的机械设计和制图功能,为制造设计提供了高性能和灵活性,以满足客户设计任何复杂产品的需要。
1.2仿真、确认和优化UG允许制造商以数字化的方式仿真、确认和优化产品及其开发过程。
通过在开发周期中较早地运用数字化仿真性能,制造商可以改善产品质量,同时减少或消除对于物理样机的昂贵耗时的设计、构建,以及对变更周期的依赖。
2工装设计中的问题合格工装的设计,不仅仅是把工装设计出来、制作出来那么简单;而是还要经过不断的试验,总结,改进,然后才能正式应用于生产。
这其中及时的发现问题和解决问题尤为重要。
下面通过一次典型的工装设计,来予以阐述。
某产品是一个液压双缸体零件,如图一所示,特点是产品双缸孔所在面及孔径要求精度高,面粗糙度要求在Ra1.6以内,孔径公差要求在0.02mm以内,而且壁薄。
UG有限元分析范文有限元分析(Finite Element Analysis,简称FEA)是一种力学分析方法,通过将连续物体的几何形状分割成有限数量的有限单元,再通过有限单元的力学行为对整个结构进行力学计算和应力分析。
有限元分析在工程设计、高科技制造、结构优化、材料研发等领域都有广泛应用。
有限元分析的基本过程是将问题的几何形状分割成有限数量的有限单元,并在每个单元上建立近似的解析解。
然后通过求解线性方程组,得到各个节点的位移、应力和应变等信息。
有限元分析的结果可以用来评估结构的强度、刚度、热传导、流体流动等性能,从而指导工程设计和优化。
有限元分析的主要步骤包括建立有限元模型、设定边界条件、施加荷载、求解方程和后处理结果。
建立有限元模型时,需要选择适当的有限元单元类型和网格划分方式,以便准确描述物体的几何形状和特性。
设定边界条件是指对有限元模型的边界进行约束,例如固支条件、周期边界条件和接触条件等。
施加荷载是指在有限元模型上施加外部力或位移条件,模拟实际工况。
求解方程通常使用数值方法,如有限差分法或迭代法,计算出线性方程组的解。
最后,根据求解得到的结果,可以进行应力分析、刚度分析和模态分析等,以评估结构的性能和安全性。
有限元分析的优点是能够描述复杂几何形状和边界条件下的结构行为,能够以较小的代价进行预测和分析,为结构设计提供直观和可靠的工具。
然而,有限元分析也有其局限性,例如需要合理的网格划分和有限元模型的准确度依赖于对材料特性和边界条件的准确描述等。
在工程实践中,有限元分析常用于求解固体力学、流体力学、热传导和电磁场等领域的问题。
例如,在机械工程中,有限元分析可以用于评估零件的强度、刚度和疲劳寿命等,辅助设计优化。
在航空航天领域,有限元分析可以用于评估航空器的结构安全性和气动特性。
在建筑工程中,有限元分析可以用于评估建筑物的地震响应和结构稳定性等。
总之,有限元分析是一种重要的力学分析工具,通过将物体分割为离散的有限单元进行计算,可以解决各种工程问题。