练习题解答:第五章集中趋势与离散趋势
- 格式:doc
- 大小:285.50 KB
- 文档页数:10
数据的集中趋势与离散程度统计学中,描述和衡量数据分布特征的两个重要方面是集中趋势和离散程度。
集中趋势指的是数据集中在哪个数值附近,而离散程度描述了数据的分散程度。
在本文中,我将详细介绍集中趋势和离散程度的定义、常用的衡量指标和如何应用。
一、集中趋势集中趋势是指数据集中在哪个数值处的趋势或位置,常用的衡量指标包括均值、中位数和众数。
1. 均值均值是数据集所有观测值的算术平均数。
它是最常用的衡量集中趋势的指标。
计算均值的方法是将所有观测值相加,再除以观测值的个数。
均值受极端值的影响较大。
2. 中位数中位数是将数据集按照大小排序后,位于中间位置的观测值。
如果数据集的个数是奇数,则中位数就是排序后位于中间的观测值;如果数据集的个数是偶数,则中位数是中间两个观测值的平均数。
中位数对极端值不敏感,更能反映数据的典型情况。
3. 众数众数是数据集中出现频率最高的观测值。
一个数据集可能存在一个众数,也可能存在多个众数,或者没有众数。
众数主要用于描述离散型数据。
二、离散程度离散程度是描述数据分散程度的指标,常用的衡量指标包括极差、方差和标准差。
1. 极差极差是数据集中最大观测值和最小观测值之间的差值。
极差越大,表示数据的离散程度越大;极差越小,表示数据的离散程度越小。
极差对极端值非常敏感。
2. 方差方差是数据集观测值与均值之差的平方的平均值。
方差衡量了数据与其均值之间的离散程度,数值越大表示数据的离散程度越大,反之亦然。
方差对极端值非常敏感。
3. 标准差标准差是方差的平方根,用于衡量数据集的离散程度。
标准差具有与原始数据相同的度量单位,比方差更容易解释和理解。
标准差越大,表示数据的离散程度越大,反之亦然。
三、应用集中趋势和离散程度的概念和指标在各个领域具有广泛的应用。
在金融领域,通过分析股票价格的均值和离散程度,可以评估股票的风险和收益。
在市场调研中,通过分析产品价格的中位数和标准差,可以了解市场需求和产品价值的稳定性。
集中趋势离散趋势的注意事项集中趋势和离散趋势是统计学中常用的描述数据分布的概念。
集中趋势主要关注数据的平均值,而离散趋势则关注数据的离散程度。
在研究数据时,我们需要同时考虑这两种趋势,以全面了解数据的特点。
以下是在分析集中趋势和离散趋势时需要注意的事项。
1. 选择合适的度量指标:在描述集中趋势时,通常使用均值、中位数和众数等指标。
均值是最常用的度量指标,但在存在极值或偏态分布的情况下,中位数可能更适用。
众数适用于描述离散型数据的集中趋势。
因此,在选择度量指标时,需要根据数据类型和分布情况权衡选择。
2. 注意极值的影响:极值数据可能会对集中趋势产生很大的影响。
均值很容易受到极值的干扰,因此在分析集中趋势时,应该考虑是否存在极值,并对其进行合理处理。
一种常见的处理方法是使用中位数来代替均值,以减弱极值对集中趋势的影响。
3. 理解离散趋势的度量:离散趋势可以通过范围、方差、标准差、四分位数范围等指标来度量。
范围描述了最大值和最小值之间的差异,但对极值较为敏感。
方差和标准差则考虑了每个数据点与均值的差异,是衡量离散趋势的常用指标。
四分位数范围指标描述了数据的中间50%的离散程度。
4. 观察分布的形状:集中趋势和离散趋势的分析应该结合观察数据分布的形状。
常见的数据分布形状包括对称型、偏态和峰态等。
对称型分布的集中趋势和离散趋势可以用单个指标描述,例如正态分布的均值和标准差。
而偏态和峰态分布可能需要使用更多的指标来描述集中和离散趋势。
5. 注意样本量的大小:样本量的大小对集中趋势和离散趋势的分析结果有很大的影响。
在样本较小的情况下,集中趋势和离散趋势的估计可能不够准确,容易受到抽样误差的影响。
因此,在分析数据时应考虑样本量的大小,并对统计推断结果进行适当的解释。
6. 针对特殊情况进行适当处理:在实际应用中,可能遇到一些特殊情况,如缺失值、异常值和重复值等。
对于缺失值,我们需要根据数据缺失的原因和模式进行处理,以减少对集中趋势和离散趋势分析结果的影响。
偏态分布的集中趋势和离散统计指标我们来介绍偏态分布的集中趋势指标。
均值是最常用的集中趋势指标,它表示一组数据的平均值。
均值的计算方法是将所有数据相加,然后除以数据的个数。
中位数是将一组数据按照从小到大的顺序排列,找出中间位置的数值,如果数据的个数为奇数,则中位数就是中间的那个数;如果数据的个数为偶数,则中位数是中间两个数的平均值。
众数是一组数据中出现次数最多的数值,可能有一个或多个众数。
我们来介绍偏态分布的离散统计指标。
方差是衡量数据分散程度的指标,它表示一组数据与其均值的偏离程度。
方差的计算方法是将每个数据与均值的差的平方相加,然后除以数据的个数。
标准差是方差的平方根,它的计算方法和方差类似,但是标准差更常用,因为它和原始数据的单位一致。
偏态分布的集中趋势和离散统计指标对数据的分布特征有很大的影响。
对于正偏态分布,均值大于中位数,表示数据的右侧尾部较长;对于负偏态分布,均值小于中位数,表示数据的左侧尾部较长。
通过观察均值和中位数的关系,我们可以初步判断数据的偏斜方向。
而方差和标准差则可以衡量数据的离散程度,数值越大表示数据越分散,数值越小表示数据越集中。
在实际应用中,我们经常使用偏态分布的集中趋势和离散统计指标来描述和分析数据。
例如,在金融领域,我们经常使用均值来衡量资产的收益率,使用标准差来衡量资产的风险;在人口统计学中,我们使用中位数来描述人口的收入水平,使用方差来衡量人口的收入差距。
偏态分布的集中趋势和离散统计指标是统计学中重要的概念和工具,它们可以帮助我们理解和描述数据的分布特征,从而进行更准确的数据分析和决策。
通过合理选择和运用这些指标,我们可以更好地理解数据背后的规律,并将其应用到实际问题中。
数据的集中趋势与离散程度知识梳理及典型问题作者:薛飞来源:《初中生世界·九年级》2016年第10期《数据的集中趋势与离散程度》这一章中我们主要学习了体现数据集中趋势的三种“数”——平均数、中位数和众数以及体现数据离散程度的两种“差”——极差与方差.平均数分“算术平均数”与“加权平均数”,我们重点理解加权平均数.加权平均数重在理解什么是“权”.课本中是这样定义“权”的:一组数据的平均数,不仅与这组数据中各个数据的值有关,而且与各个数据的“重要程度”有关.我们把衡量各个数据的“重要程度”的数值叫做“权”.例1 学校食堂午餐供应3元、4元和5元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,计算该月食堂销售午餐盒饭的平均价格.【分析】这个题目给出的两组数据分别是:①午餐盒饭的价格为3元、4元和5元;②不同价格的盒饭所占的比例.题目最后要求的是午餐盒饭的平均价格,也就是说第①组数据是题目研究的数据对象,第②组数据中盒饭所占的比例是“权”.解:该月食堂销售午餐盒饭的平均价格为[15%×5+25%×3+60%×415%+25%+60%]=3.9(元).答:该月食堂销售的午餐盒饭的平均价格为3.9元.求中位数的一般步骤:①把数据从小到大排列;②若该数据含有奇数个数,位于中间位置的数是中位数,若该数据含有偶数个数,位于中间位置的两个数的平均数就是中位数.例2 有奇数个数据10,20,80,40,30,90,50,40,50,40,60,求这一组数据的中位数.【分析】把这组数据按从小到大的顺序排列10、20、30、40、40、40、50、50、60、80、90,该数据含有奇数个数,位于中间位置的数是中位数,所以该组数据的中位数为40.例3 一组数据分别为1,2,8,4,3,9,5,4,5,6,求这组数据的中位数.【分析】首先把这组数据按从小到大的顺序排列1,2,3,4,4,5,5,6,8,9,该组数据共有10个,所以第5个和第6个数据的平均数4.5为中位数.【点评】中位数的求法一定要注意先排序,后根据总数的奇偶来找出中位数,从例3中可以看出中位数4.5并不是原始数据,所以中位数也不一定是原始数据中的一个.一组数据中出现次数最多的数据叫做这组数据的众数.众数可以没有,可以只有一个,也可以有多个.例3 一次数学测验后,老师将全班40名学生的成绩整理后绘制成频数分布直方图,判断下列命题正确的是.①全班成绩的中位数在84~96这一组;②全班成绩的众数在84~96这一组.【分析】命题①正确,命题②在判断众数的时候往往会掉入陷阱,看到84~96这一组最高,所以众数确定就在这一组.举个反例便知错在哪里:84~96之间一共是12人,其中84分,85分,86分,87分各3人,而72~84这一组中的9人分数都是80分,显然全班成绩的众数不在84~96这一组,所以这题正确的只有命题①.极差概念简单,通俗地说就是最大数据与最小数据的差,反映了一组数据的变化范围.例4 某位射击运动员射击5次命中的环数分别为6,7,9,10,8,求极差.【分析】找出最大值和最小值即可,最大值为10环,最小值为6环,所以极差为10-6=4.描述一组数据的离散程度还有方差,方差的计算公式:s2=[ (x1-x)2+(x2-x)2+…+(xn-x)2n].例6 为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:甲:8,7,10,7,8;乙:9,5,10,9,7.(1)将下表填写完整:(2)根据以上信息,若你是教练,选择谁参加射击比赛,理由是什么?(3)若乙再射击一次,命中8环,则乙这6次射击成绩的方差会 .(填变大或变小或不变)【分析】通过计算得出甲乙两人的平均数都是8环,但是甲的极差比乙小,更重要的是甲的方差也比乙小,方差越小越稳定,所以教练会选择发挥较为稳定的甲参加比赛.第(3)问的解决需要用到方差的计算公式,原来5次射击的方差是这样计算的s2(5次)=[ (x1-8)2+(x2-8)2+…+(x5-8)25],增加一次8环的射击后,方差计算变成s2(6次)=[ (x1-8)2+(x2-8)2+…+(x5-8)2+(8-8)5+12].不难发现分子虽然增加了一项,但是分子的值并没有变化,但是分母却变大了,所以分子不变,分母变大,最终方差变小.(作者单位:江苏省常州市武进区湖塘实验中学)。
数据的集中趋势和离散程度内容解读作者:何春华来源:《初中生世界·九年级》2015年第10期数据的集中趋势和离散程度包括两方面内容,一是表示一组数据集中趋势的统计量,有平均数、中位数和众数;二是表示一组数据离散程度(刻画数据的波动大小)的统计量,有极差和方差,今天何老师就带领大家一起走进数据的世界,正确认识“三数”和“两差”.一、平均数1. 算术平均数:数据x1,x2,x3,…,xn的算术平均数为=(x1+x2+…+xn),这是最简单的平均数,平均数反映的是一组数据中各个数据的平均水平,它与这组数据中的每个数据都有关系.例1 (2014·江苏盐城)数据-1,0,1,2,3的平均数是().A. -1B. 0C. 1D. 5【解析】直接利用算术平均数公式求解,得=1,故选C.2. 加权平均数:一般地,如果一组数据中共有n个不同的值,记它们分别为x1,x2,…,xn,并且x1有w1个,x2有w2个,……,xn有wn个,则w1,w2,…,wn分别叫作x1,x2,…,xn的权,数值=叫作这n个数值的加权平均数.例2 (2015·浙江湖州)在“争创美丽校园,争做文明学生”示范评比活动中,10位评委给某校的评分情况如下表所示:则这10位评委评分的平均数是_______分.【解析】由于本题中这10位评委给某校的评分情况的“权重”不同,因此本题需用加权平均数公式计算.这10位评委评分的平均数是=89(分).【点评】算术平均数是加权平均数的特例,加权平均数实质上就是考虑不同权重问题的平均数,当加权平均数中各项的权相等时,就变成了算术平均数.二、中位数把n个数据从小到大排列,相同的数重复进行排列.当n是奇数时,处于正中间位置的数叫作这n个数的中位数;当n是偶数时,处于中间位置的两个数的平均数叫作这n个数的中位数.中位数体现了一组数据中间位置的数据水平,它反映了具有不确定性的研究对象在中等状态下的水平.例3 (2015·山东东营)在一次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83. 则这组数据的中位数为_______.【解析】将这组数据从小到大排列为:72,77,79,81,81,81,82,83,85,89,处于中间位置的第5、6个数据的平均数就是这组数据的中位数,即×(81+81)=81.【点评】由于一组数据的中位数与最大和最小的数据无关,因此,确定一组数据的中位数只需将这组数据从小到大排列(即使相等的数也要全部参加排序),然后根据数据个数的奇偶性确定中位数的值.三、众数一组数据中出现的次数最多的数,叫作这组数据的众数. 众数表现了一组数据的热点,当一组数据中有较多的重复数据时,常用众数来描述这组数据的集中趋势.例4 (2015·江苏扬州)小亮上周每天的睡眠时间为(单位:小时):8,9,10,7,10,9,9.这组数据的众数是_______.【解析】∵数据中9出现的次数最多,∴这组数据的众数是9.【点评】众数是一组数据“多数水平”的重要数据代表,一组数据的众数有时不止一个,若几个数据出现的次数相同,并且比其他数据出现的次数都多,则这几个数据都是这组数据的众数.四、极差与方差1. 极差一组数据中最大值与最小值的差叫作极差,它反映了一组数据的变化范围.例5 (2014·四川凉山)某班数学学习小组某次测验成绩(单位:分)如下:63,72,70,49,66,81,53,92,69,则这组数据的极差是().A. 47B. 43C. 34D. 29【解析】这班数学学习小组某次检测成绩数据中,最大值是92,最小值是49,所以这组数据的极差是92-49=43.故选B.【点评】极差只跟一组数据中的两个极端数据(最大值、最小值)有关,跟其他数据无关,因此极差只能粗略地反映数据的离散程度.2. 方差为了精确地反映一组数据的离散程度,我们把一组数据中的全部n个数据x1,x2,…,xn的平均数作为基准,计算各数据与的差的平方,这些平方的平均数s2=[(x1-)2+(x2-)2+…+(xn-)2]就叫作这组数据的方差. 方差可以从整体上反映数据偏离平均数的程度,所以它成了反映研究对象离散程度的数值.例6 (2015·山东莱芜)有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是_______.【解析】数据2,3,a,5,6的平均数是4,所以2+3+a+5+6=20,解得a=4,因此这组数据的方差s2=[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2.【点评】计算方差的步骤是先计算该组数据的平均数,然后代入方差公式进行计算.例7 (2015·江苏连云港)某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差s2如表所示,如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是().A. 甲B. 乙C. 丙D. 丁【解析】从表格中可知乙、丙的平均成绩要比甲、丁高,而乙的方差比丙小,说明乙的成绩比较稳定,所以应选择学生乙,故选B.【点评】方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.最后,同学们在学习这部分知识时应注意结合一些具体事例去理解它们,要逐步体会这些知识在实际生活中的应用,而不是仅仅关注一些具体的计算.(作者单位:江苏省海门市实验学校初中部)。
《社会调查方法》试题(一)一、不定项选择题(2分×10,共20分)1.我国于2000年进行的全国人口调查属于()。
A.普查 B.抽样调查 C.典型调查 D.个案调查2. 统计分析方法的内容可以根据变量的多少划分为( ).A.单变量分析 B.双变量分析C.三变量分析 D.多变量分析3。
“将被调查者工资单上的应发金额数加上每月奖金发放统计表上他所得的奖金数额就是他的收入状况”是( )。
A.测量客体 B.测量内容C.测量法则 D.数字和符号4. 从12。
8万名大学生中抽取1000名大学生,一次直接抽取出40个班级,而以这40个班级中的全部学生(假定正好1000名)作为调查对象,则班级就是( )。
A.抽样框 B.抽样单位 C.元素 D.样本5。
最常见的集中量数有()。
A.平均数B.众数 C.中位数 D.标准差6. 社会调查中所研究的对象称之为()。
A.调查对象 B.研究内容C.分析单位 D.研究主题7. 现代社会调查主要采用( )两种方法收集资料。
A。
自填式问卷 B. 结构式访问C。
个别发送法 D. 电话访问法8. 属于定类测量层次。
A。
性别 B。
年龄 C.收入 D。
职业声望9. 社会调查研究的一般程序包括五个基本环节,即(1)确定研究课题(2)整理与分析资料(3)搜集资料(4)撰写调查研究报告(5)设计调查研究方案.合适的程序应为( )A.(1)—(2)—(3)-(4)—(5)B.(1)—(5)—(3)—(2)—(4)C.(3)—(1)-(5)—(2)—(4)D.(1)—(3)—(5)—(2)—(4)10. 下列抽样方法中属于概率抽样的是:( )A。
随机抽样 B. 偶遇抽样 C。
系统抽样 D. 整群抽样二、名词解释(4分×5,共20分)1。
应用性课题2. 离散趋势分析3. 统计值4。
操作化5. 交互分类三、计算题(15分)调查100名工人和100名教师的收入,得到下列资料。
问工人相互之间收入的差别与教师相互之间收入的差别哪个更大?收入工人数教师数300 30 20400 20 30500 30 40600 20 10四、综合题(15分)某校有4000毕业生,共80个班级。
数据的集中趋势与离散程度章末重难点题型
数据的集中趋势与离散程度是统计学研究中重要的内容。
它是一种检验数据的准确性及其所包含信息量的重要方法。
这对于对象所处的环境非常有用,可以帮助人们掌握分布趋势。
首先,要了解数据的集中趋势意味着深入分析数据的分布特征,进而找出数据的核心值,也就是“中心指数”。
通常情况下,数据的中心指数是指数据位置的中心点或者极值,可以大体上反映数据集的特征。
对于不同数据集,常见的中心指数包括均值(又称平均数)、中位数和众数。
其次,要了解数据的离散程度。
分析离散程度,可以检验数据集内元素数值的分布情况,从而确定其离散情况是偏态还是正态。
检验数据集的离散程度,可以使用方差,平均绝对偏差和峰度等三种标准度量指标。
最后,要区分这二者。
集中趋势包括均值、中位数和众数等,可以反映数据的大体特征;而离散程度是从细节上分析数据分布的特征,反映数据的离散程度。
所以说,集中趋势反映数据的大体特征,离散程度反映数据的细微范围。
总之,数据的集中趋势与离散程度是统计学研究中重要内容,能够有效提高数据分析的准确性和可信度,以便掌握更多有用的信息。
了解分布趋势对数据分析来说,是至关重要的一步,也是进行高效数据分析的必须尝试。
数据的集中趋势离散程度数据的集中趋势是指数据分布的中心位置,可以通过测量数据的均值、中位数和众数来描述。
数据的离散程度是指数据集中趋势的分散程度,可以通过测量数据的范围、方差和标准差来描述。
首先,数据的集中趋势可以通过均值来衡量。
均值是将所有数据加总后除以数据的个数得到的平均值。
它将数据集中在一个中心位置,可以反映数据的整体水平。
然而,均值容易受到极值的影响,因此需要结合其他指标综合考虑。
中位数是将数据按照大小排序后位于中间位置的值,可以将数据集合分为两部分。
中位数不受极值的影响,适用于有极值存在的情况。
中位数能反映数据的中间位置,相对稳定。
众数是在数据集中出现频率最高的值。
众数可以反映数据的最常见取值,适用于描述离散数据。
其次,数据的离散程度可以通过范围来衡量。
范围是最大值减去最小值,它反映了数据集的变化幅度。
范围简单直观,但不稳定,容易受到极值的影响。
方差是每个数据与均值差的平方的平均数,可以描述数据集与均值的偏离程度。
方差越大,数据越分散;方差越小,数据越集中。
方差让我们能够了解数据集内部的差异。
标准差是方差的平方根,它与均值具有相同的量纲,能更直观地反映数据的离散程度。
标准差比方差更常用,因为它的单位与原始数据相同,易于理解。
数据的集中趋势和离散程度是相互关联的,它们一起能够提供一个完整的数据描述。
例如,在比较两组数据的差异时,可以通过比较均值和标准差来判断其集中趋势和离散程度。
总体而言,数据的集中趋势和离散程度是统计分析中常用的指标,能够提供重要的数据特征,帮助我们理解数据的分布情况,从而进行决策和预测。
在实际应用中,我们需要根据具体情况选择合适的指标,并结合其他分析方法来综合评价数据的集中趋势和离散程度。
1.简述描述一组资料的集中趋势和离散趋势的指标。
集中趋势和离散趋势是定量资料中总体分布的两个重要指标。
(1)描述集中趋势的统计指标:平均数(算术均数、几何均数和中位数)、百分位数(是一种位置参数,用于确定医学参考值范围,P50就是中位数)、众数。
算术均数:适用于对称分布资料,特别是正态分布资料或近似正态分布资料;几何均数:对数正态分布资料(频率图一般呈正偏峰分布)、等比数列;中位数:适用于各种分布的资料,特别是偏峰分布资料,也可用于分布末端无确定值得资料。
描述离散趋势的指标:极差、四分位数间距、方差、标准差和变异系数。
四分位数间距:适用于各种分布的资料,特别是偏峰分布资料,常把中位数和四分位数间距结合起来描述资料的集中趋势和离散趋势。
方差和标准差:都适用于对称分布资料,特别对正态分布资料或近似正态分布资料,常把均数和标准差结合起来描述资料的集中趋势和离散趋势;变异系数:主要用于量纲不同时,或均数相差较大时变量间变异程度的比较2.举例说明变异系数适用于哪两种形式的资料,作变异程度的比较?度量衡单位不同的多组资料的变异度的比较。
例如,欲比较身高和体重何者变异度大,由于度量衡单位不同,不能直接用标准差来比较,而应用变异系数比较。
3.试比较标准差和标准误的关系与区别。
区别:⑴标准差S:①意义:描述个体观察值变异程度的大小。
标准差小,均数对一组观察值得代表性好;②应用:与均数结合,用以描述个体观察值的分布范围,常用于医学参考值范围的估计;③与n的关系:n越大,S越趋于稳定;⑵标准误SX:①意义:描述样本均数变异程度及抽样误差的大小。
标准误小,用样本均数推断总体均数的可靠性大;②应用于均数结合,用以估计总体均数可能出现的范围以及对总体均数作假设检验;③与n的关系:n越大,SX越小。
联系:①都是描述变异程度的指标;②由SX=s/n-1可知,SX与S成正比。
n一定时,s 越大,SX越大。
4.简述应用相对数时的注意事项。
集中趋势和离散趋势的作用和区别集中趋势和离散趋势是统计学中常用的概念,它们用于描述数据分布的特征。
集中趋势主要关注数据的中心位置,而离散趋势则关注数据的分散程度。
它们在统计分析中起着不同的作用,下面我将详细介绍集中趋势和离散趋势的作用和区别。
集中趋势,也称为中心趋势,用于度量数据分布的中心位置。
最常用的度量值包括均值、中位数和众数。
均值是所有观测值的总和除以观测值的个数,它反映了数据的平均水平。
中位数是将所有观测值按照大小顺序排列,然后找出中间位置的值,它可以用来表示数据的中间水平。
众数是数据中出现次数最多的值,它能够描述数据的典型水平。
这些集中趋势的度量值可以帮助我们了解数据的整体趋势,识别潜在的规律和特征,并进行比较和推断。
集中趋势的作用主要有以下几个方面。
首先,它可以提供数据的总体特征,帮助我们了解数据的平均水平和中间水平,从而更好地理解和分析数据。
其次,集中趋势可以用来进行数据的比较和推断。
通过比较不同数据集的均值、中位数和众数,我们可以判断两个数据集的差异和相似性,进而得出可能的结论。
此外,集中趋势还可以用来进行数据的预测和决策。
通过观察数据的中心位置,我们可以推断未来的趋势和发展方向,做出相应的决策。
离散趋势,也称为散布趋势,用于度量数据分布的分散程度。
最常用的度量值包括标准差、方差和范围。
标准差是观测值与均值之间差值的平方的平均值的平方根,它反映了数据的分散程度。
方差是标准差的平方,也是用于度量数据的离散程度。
范围是观测值的最大值和最小值之间的差,它可以用来描述数据的变化范围。
这些离散趋势的度量值可以帮助我们了解数据的分散程度,识别极值和异常值,并进行数据的采样和控制。
离散趋势的作用主要有以下几个方面。
首先,它可以帮助我们了解数据的分散程度和稳定性。
通过观察标准差、方差和范围的大小,我们可以得知数据的波动程度。
其次,离散趋势可以帮助我们识别异常值和极值。
通过观察数据的分散程度,我们可以判断是否存在异常情况,进而排除影响或做出相应的处理。
数据的集中趋势和离散程度知识点文章一:《啥是数据的集中趋势?》朋友们,咱今天来聊聊数据的集中趋势。
比如说,咱班这次考试的成绩。
要是大部分同学都考了 80 分左右,那 80 分就可能是这个成绩数据的集中趋势。
再比如,咱去菜市场买菜。
一堆苹果,大多数都在半斤左右,那半斤就是这堆苹果重量数据的集中趋势。
像平均数、中位数和众数,都是能帮咱找到数据集中趋势的好帮手。
就拿平均数来说,一家人一个月的水电费,把所有费用加起来除以天数,得到的那个数就是平均数,能大概反映出这家人每天用水电的平均情况。
数据的集中趋势能让咱一下子就明白一堆数据的中心在哪儿,是不是挺有用?文章二:《走进数据的集中趋势》亲爱的小伙伴们,今天咱们来探索一下数据的集中趋势。
想象一下,学校运动会上,大家跑步的时间。
如果很多同学都在2 分钟左右跑完,那 2 分钟差不多就是跑步时间这个数据的集中趋势啦。
还有,大家一起收集树叶,看看树叶的大小。
要是多数树叶的面积都差不多,那这个差不多的大小就是树叶面积数据的集中趋势。
咱举个例子哈,一个班级同学的身高,把所有人的身高加起来除以人数,得到的那个数就是平均身高。
这个平均身高就能让咱知道这个班同学大概的身高水平。
再比如说,一组数字 3、5、5、7、8,这里面 5 出现的次数最多,那 5 就是众数,也是这组数据的集中趋势之一。
所以说,了解数据的集中趋势能帮咱快速抓住重点,是不是很有意思?文章三:《数据的集中趋势,你懂了吗?》朋友们好呀!今天咱们要说的数据的集中趋势,其实不难理解。
比如说,咱们去超市买零食,看各种零食的价格。
要是大部分零食都在 5 块钱左右,那 5 块钱就是这些价格数据的集中趋势。
再比如,咱们统计一个月里每天的气温。
如果有好多天的气温都在 25 度上下,那 25 度就可能是这个气温数据的集中趋势。
就拿咱班同学的零花钱来说吧,把大家的零花钱都加起来,再除以人数,算出来的那个数就是平均零花钱。
通过这个平均零花钱,咱能大概知道同学们零花钱的一般情况。
练习题解答:第五章--集中趋
势与离散趋势
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
第五章 集中趋势与离散趋势
练习题:
1. 17名体重超重者参加了一项减肥计划,项目结束后,体重下降的重量分别为:
(单位:千克)
12 10 15 8 2 6 14 12 10 12 10 10 11 10
5 10 16
(1)计算体重下降重量的中位数、众数和均值。
(2)计算体重下降重量的全距和四分位差。
(3)计算体重下降重量的方差和标准差。
解:
(1)错误!中位数:
对上面的数据进行从小到大的排序:
序号 1 2 3 4 5 6 7 8 9 1 16 1
7
数据 2 5 6 8 1 11 12 12 12 14 15 16
Md的位置=2117=9,数列中从左到右第9个是10,即Md=10。
\o\ac(
○
,2)众数:
绘制各个数的频数分布表:
数据 2 5 6 8 1
频数 1 1 1 1 6 1 3 1 1 1
“10”的频数是6,大于其他数据的频数,因此众数MO=“10”
错误!
均值:
18.1016521nnxX
n
i
i
(2)错误!全距:R=max(xi)-min(xi)=16-2=14
错误!
四分位差:
根据题意,首先求出Q1和Q3的位置:
Q1的位置=41n=4117=4.5,则Q1=8+0.5×(10-8)=9
Q3的位置=4)1(3n=4)117(3=13.5,则Q3=12+0.5×(12-12)=12
Q= Q3- Q1=12-9=3
(3)错误!方差:
2
2
1222()1(210.18)(510.18)(1610.18) 171 =12.404niixxSn
+?+
错误!
标准差:
2
12.403.52SS
2.下表是武汉市一家公司60名员工的省(市)籍的频数分布:
省(市)籍 频数(个)
湖北
28
河南
12
湖南
6
四川
6
浙江
5
安徽
3
(1)根据上表找出众值。
(2)根据上表计算出异众比率。
解: (1)“湖北”的频数是28,大于其他省(市)籍的频数,因此众数MO=“湖北”
(2)异众比率的计算公式为:
mo
r
nfVn
( n代表总频数,mof代表众数的频数)
其中n=60,
mo
f
=28,则:
60280.5360rV
3.某个高校男生体重的平均值为58千克,标准差为6千克,女生体重的平均值
为48千克,标准差为5千克。请计算男生体重和女生体重的离散系数,比较男
生和女生的体重差异的程度。
解:计算离散系数的公式:
%100XSCV
男生体重的离散系数:
%34.10%100586CV
女生体重的离散系数:
%42.10%100485CV
男生体重的离散系数为10.34%,女生体重的离散系数为10.42%,男生体重的差异
程度比女生要稍微小一些。
4.在某地区抽取的120家企业按利润额进行分组,结果如下:
按利润额分组(万元) 企业数
200——299 19
300——399 30
400——499 42
500——599 18
600——699 11
合计 120
(1)计算120家企业利润额的中位数和四分位差。
(2)计算120家企业利润额的均值和标准差。
解:
(1) 错误! 中位数Md的位置=5.602112021n,Md位于“400—499”组,
L=399.5,U=499.5,cf(m-1)=49,fm=42,n=120,代入公式得
)(2)1(LUfcfnLMmmd
=
120
492399.5(499.5399.5)425.6942
职工收入的中位数为425.69元。
错误!
336.17)5.2995.399(301941205.299)(4111111LUfcfnLQ
497.12)5.3995.499(
4249412035.399)(43333333LUf
cf
n
LQ
四分位差
31
497.12336.17160.95QQQ
(2)错误!均值:
1199.5299.5299.5399.5399.5499.5499.5599.5599.5699.519304218112222212051140 =120 =426.17kiiiMfXn
\o\ac(○,2)标准差:
48.11611967.1614666112011)17.4265.649(18)17.4265.549(42)17.4265.449(30)17.4265.349(19)17.4265.249(1)(2222212
n
fxM
s
n
i
i
5.根据武汉市初中生日常行为状况调查的数据(data9),运用SPSS统计被调查
的初中生平时一天做作业时间(c11)的众数、中位数和四分位差。
解:《武汉市初中生日常行为状况调查问卷》:
C11 请你根据自己的实际情况,估算一天内在下面列出的日常课外活动上所花的时
间大约为(请填写具体时间,没有则填“0”)
平时(非节假日):
1)做作业_______小时
SPSS操作步骤如下:
错误!
依次点击Analyze→Descriptive Statistics→frequencies,打开如
图5-1(练习)所示的对话框。将变量“平时一天做作业时间(c11a1)”,放置在Variab
les栏中。
图5-1(练习) Frequencies对话框
○
2单击图5-1(练习)中Frequencies对话框中下方的Statistics(统计量)按钮,打开
如图5-2(练习)所示的对话框。选择Quartiles(四分位数)选项,Median(中位数)选
项和Mode(众数)选项。点击Continue按钮,返回到上一级对话框。
图5-2(练习) Frequencies:Statistics统计分析对话框
错误!
点击OK按钮,SPSS将输出如表5-1(练习)所示的结果。
表5-1 平时初中生一天做作业时间的中位数、众值和四分位差
从上表可以看出,平时初中生一天做作业时间的中位数是2.5小时,众数是2小时,四分位
差是1(即3.000-2.000)个小时。
6.根据武汉市初中生日常行为状况调查的数据(data9),运用SPSS分别统计
初
中生月零花钱的均值和标准差,并进一步解释统计结果。
解:《武汉市初中生日常行为状况调查问卷》:
F1 你每个月的零用钱大致为___________元。
SPSS操作的步骤如下:
错误!
依次点击Analyze→Descriptive Statistics→frequencies,打开
如图5-3(练习)所示的对话框。将变量“每个月的零花钱(f1)”,放置在Variable
s栏中。
N Valid 517
Missing 9
Median 2.500
Mode 2.0
Percentiles 25
2.000
50 2.500
75 3.000
图5-3(练习) Frequencies对话框
错误!
单击图5-3(练习)Frequencies对话框中下方的Statistics(统计量)按钮,
打开如图5-4(练习)所示的对话框。选择Mean(均值)选项和Std.deviation(标准差)选项。
点击Continue按钮,返回到如图5-3(练习)所示的对话框。
图5-4(练习) Frequencies:Statistics统计分析对话框
\o\ac(○,3)点击OK按钮,SPSS将输出如表5-2(练习)所示的结果。
表5-2(练习) 初中生月零用钱的均值和标准差
Statistics
你每个月的零用钱大致为_
498
28
109.80
114.200
ValidMissingN
Mean
Std. Deviation
从表5-2(练习)可以看出,“初中生月零用钱”的均值为109.80元,标准差为114.2
元。