05第5单元 锁相环与频率合成器应用
- 格式:ppt
- 大小:283.50 KB
- 文档页数:17
锁相环的组成和原理及应用一.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环(PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。
二.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则模拟乘法器的输出电压uD为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压uC(t)。
即uC(t)为:(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,uc(t)为恒定值。
锁相环频率合成技术及其应用在当今的调频广播发送技术中,为了适应对发射机输出频率稳定度和频率准确度的严格要求,以及方便更换发射机频率的需要,在固态调频发射机中普遍使用了锁相技术和频率合成技术。
锁相环频率合成器成为固态调频发射机重要的组成部分。
锁相环频率合成器的优点在于其能提供频率稳定度很高的输出信号,能很好地抑制寄生分量,避免大量使用滤波器,因而有利于集成化和小型化。
而频率合成器中的程序分频器的分频比可以使用微机进行控制,易于实现发射机频率的更换及其频率显示的程控和遥控,促进全固态调频发射机的数字化、集成化和微机控制化。
将一个标准频率(如晶振参考源),经过加、减、乘、除运算,变成具有同一稳定度和准确度的多个所需频率的技术,称为频率合成技术。
控制振荡器,使其输出信号和一个参考信号之间保持确定关系的技术,称为锁相技术。
把由基准频率获得不同频率信号的组件或仪器,称为“频率合成器”。
频率合成的方法很多,但大致可分成两大类:直接合成法和间接合成法。
固态调频发射机中的频率合成器采用间接合成法。
间接合成法一般可用一个受控源(例如压控振荡器)、参考源和控制回路组成一个系统来实现。
即用一个频率源,通过分频产生参考频率,然后用锁相环(控制回路),把压控振荡器的频率锁定在某一频率上,由压控振荡器间接产生出所需要的频率输出。
1锁相环基本工作原理一个基本的锁相环路由以下3个部件组成:压控振荡器(VCO)、鉴相器(PD)和环路滤波器(LF),如图1所示。
当锁相环开始工作时,输入参考信号的频率f i与压控振荡器的固有振荡频率f 0总是不相同的,即f i≠f 0,这一固有频率差△f=f i-f 0必然引起它们之间的相位差不断变化,并不断跨越2π角。
由于鉴相器特性是以相位差2π为周期的,因此鉴相器输出的误差电压总是在某一范围内摆动。
这个误差电压通过环路滤波器变成控制电压加到压控振荡器上,使压控振荡器的频率f 0趋向于参考信号的频率f i,直到压控振荡器的频率变化到与输入参考信号的频率相等,并满足一定条件,环路就在这个频率上稳定下来。
锁相环路频率合成器的工作原理锁相环路频率合成器的工作原理锁相环路频率合成器是一种能够生成稳定高精度时钟信号的电路,广泛应用于通信、电子测量、控制系统等领域。
下面将介绍它的工作原理。
一、引言在很多电子系统中,需要使用时钟信号来同步各个部件的操作。
而这些部件的时钟信号源可能存在波动或漂移,导致同步出现偏差。
所以需要一种能够生成稳定的时钟信号的电路,锁相环路频率合成器应运而生。
二、基本结构锁相环路频率合成器由相频检测器、环形滤波器、控制电压生成器、数字频率分频器和参考振荡器组成。
1、相频检测器的作用是将参考信号与输出信号进行比较,得出它们之间的相位差或频率差。
2、环形滤波器的作用是对相频检测器输出的误差信号进行滤波。
3、控制电压生成器的作用是将滤波器的输出误差信号转化为控制电压,来调整和控制输出信号的频率或相位差。
4、数字频率分频器的作用是将输出信号分频,即降低频率。
5、参考振荡器的作用是提供一个稳定的参考信号。
三、工作原理锁相环路频率合成器的工作原理分为两个阶段:捕获和锁定。
在捕获阶段,锁相环路频率合成器控制电压的输出不断改变以使输出频率趋近于参考信号频率,同时,环形滤波器将误差信号滤波,保证输出稳定,从而实现捕获参考信号的频率。
在锁定阶段,锁相环路频率合成器控制电压的输出基本不变,但仍会根据环形滤波器的输出误差信号进行微调,使得参考信号与输出信号的相位差和频率差最小,实现锁相。
四、应用实例锁相环路频率合成器广泛应用于各种电子系统中,如:1、数字通信中的时钟恢复电路。
2、多频段合成天线接收器中的频率转换器。
3、控制系统中的精密时序控制器。
4、频率合成器中的同步产生电路。
五、总结锁相环路频率合成器是一种能够生成稳定高精度时钟信号的电路,由相频检测器、环形滤波器、控制电压生成器、数字频率分频器和参考振荡器组成。
它的工作原理分为捕获阶段和锁定阶段,并广泛应用于通信、电子测量、控制系统等领域。
锁相电路(PLL)及其应用自动相位控制(APC)电路,也称为锁相环路(PLL),它能使受控振荡器的频率和相位均与输入参考信号保持同步,称为相位锁定,简称锁相。
它是一个以相位误差为控制对象的反馈控制系统,是将参考信号与受控振荡器输出信号之间的相位进行比较,产生相位误差电压来调整受控振荡器输出信号的相位,从而使受控振荡器输出频率与参考信号频率相一致。
在两者频率相同而相位并不完全相同的情况下,两个信号之间的相位差能稳定在一个很小的范围内。
目前,锁相环路在滤波、频率综合、调制与解调、信号检测等许多技术领域获得了广泛的应用,在模拟与数字通信系统中已成为不可缺少的基本部件。
一、锁相环路的基本工作原理1.锁相环路的基本组成锁相环路主要由鉴频器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分所组成,其基本组成框图如图3-5-16所示。
图1 锁相环路的基本组成框图将图3-5-16的锁相环路与图1的自动频率控制(AFC)电路相比较,可以看出两种反馈控制的结构基本相似,它们都有低通滤波器和压控振荡器,而两者之间不同之处在于:在AFC环路中,用鉴频器作为比较部件,直接利用参考信号的频率与输出信号频率的频率误差获取控制电压实现控制。
因此,AFC系统中必定存在频率差值,没有频率差值就失去了控制信号。
所以AFC系统是一个有频差系统,剩余频差的大小取决于AFC系统的性能。
在锁相环路(PLL)系统中,用鉴相器作为比较部件,用输出信号与基准信号两者的相位进行比较。
当两者的频率相同、相位不同时,鉴相器将输出误差信号,经环路滤波器输出控制信号去控制VCO ,使其输出信号的频率与参考信号一致,而相位则相差一个预定值。
因此,锁相环路是一个无频差系统,能使VCO 的频率与基准频率完全相等,但二者间存在恒定相位差(稳态相位差),此稳态相位差经鉴相器转变为直流误差信号,通过低通滤波器去控制VCO ,使0f 与r f 同步。
2.锁相环路的捕捉与跟踪过程当锁相环路刚开始工作时,其起始时一般都处于失锁状态,由于输入到鉴相器的二路信号之间存在着相位差,鉴相器将输出误差电压来改变压控振荡器的振荡频率,使之与基准信号相一致。
锁相环分频倍频的应用原理一、引言锁相环(Phase-Locked Loop,PLL)是一种常用的电子电路,它在现代通信、测量和控制系统中扮演着重要的角色。
锁相环可以实现信号的频率合成、频率转换和时钟恢复等功能。
其中的分频倍频功能在电子系统设计中得到广泛应用。
本文将介绍锁相环分频倍频的应用原理。
二、锁相环简介锁相环是由相位比较器、低通滤波器和波形整形器等组件组成的反馈系统,其输出信号与参考信号处于稳定的相位关系。
通过调节控制电压,锁相环能够跟踪输入信号的相位差,并使输出信号达到稳定的相位同步。
锁相环在通信系统中常用于时钟同步、频率合成和信号调理等应用。
三、锁相环的分频倍频功能锁相环中的分频倍频功能可以将输入信号的频率转换为所需的频率。
分频倍频是通过将输入信号在锁相环内部的振荡器中进行调整实现的。
以下是锁相环分频倍频的应用原理的具体步骤:1.输入信号分频:通过将输入信号分频,将其频率降低至锁相环振荡器可接受的范围。
一般情况下,使用分频器将输入信号频率降低到锁相环的工作范围内。
2.锁相环稳定:一旦输入信号的频率降低至锁相环可以处理的范围,锁相环开始跟踪输入信号。
通过比较输入信号和锁相环输出信号,相位比较器产生一个方向性的误差信号。
3.低通滤波:误差信号经过低通滤波器,滤除高频成分,获得稳定的控制电压。
该控制电压用于调节振荡器的频率,使其与输入信号的相位保持一致。
4.波形整形:控制电压经过波形整形器,将其转换为输出信号。
波形整形器通常将控制电压转换为方波,用于驱动输出信号的数码电路。
5.输出信号倍频:通过在输出信号路径中添加倍频电路,将波形整形之后的信号进行倍频。
倍频电路可以是原理上简单的倍频器,也可以是数字信号处理器实现的复杂倍频算法。
四、应用实例锁相环的分频倍频功能在很多电子系统中得到广泛应用。
以下列举几个应用实例:•频率合成器:通过将输入信号分频和倍频,锁相环可以根据需求合成所需的输出频率。
在无线通信系统中,频率合成器常用于产生无线信号的载波频率。
锁相环的基本原理和应用1. 什么是锁相环锁相环(Phase-Locked Loop,简称PLL)是一种电路模块,其基本原理是通过对输入信号和参考信号的相位进行比较和调节,以使输出信号与参考信号保持稳定的相位差。
锁相环广泛应用于通信、测量、频率合成等领域,因其能够实现信号调频、时钟控制等功能而备受关注。
2. 锁相环的基本结构锁相环由相位比较器(Phase Comparator)、环路滤波器(Loop Filter)、振荡器(VCO)和分频器(Divider)组成。
其基本结构如下所示:•相位比较器:相位比较器用于比较输入信号和参考信号的相位差,并产生一个与相位差成正比的控制电压。
•环路滤波器:环路滤波器用于平滑相位比较器输出的控制电压,并将其转换成稳定的直流电压。
•振荡器:振荡器根据环路滤波器输出的控制电压来调节其输出频率,使其与参考信号频率保持一致。
•分频器:分频器将振荡器输出的信号进行频率分频,以产生一个与参考信号频率一致且稳定的输出信号。
3. 锁相环的工作过程锁相环的工作过程可以分为四个阶段:捕获(Capture)、跟踪(Track)、保持(Hold)和丢失(Lose)四个阶段。
•捕获阶段:在捕获阶段,锁相环通过不断调节VCO的频率,使其与参考信号频率逐渐接近,并将相位差逐渐减小。
•跟踪阶段:当锁相环的输出频率与参考信号频率相等时,进入跟踪阶段。
在该阶段,VCO的频率和相位与输入信号保持一致。
•保持阶段:在保持阶段,锁相环维持着与输入信号相同的相位和频率。
任何相位和频率的变化都会通过反馈回路进行补偿。
•丢失阶段:如果输入信号的频率超出锁相环的捕获范围,锁相环无法跟踪该信号,进入丢失阶段。
在该阶段,锁相环输出的信号频率与输入信号频率不一致。
4. 锁相环的应用锁相环在各个领域有着广泛的应用,下面列举几个常见的应用:•频率合成器:锁相环可以将稳定的参考频率合成为其他频率,广泛用于通信、雷达、测量等领域。
锁相环频率合成器介绍锁相环频率合成器(Phase Locked Loop Frequency Synthesizer)是一种广泛应用于电子通信、无线电设备和测量仪器中的电路。
它主要用于产生稳定且精确的输出频率信号,可以将输入信号的频率放大、分频或合成,以满足不同应用的需求。
原理锁相环频率合成器的基本原理是通过负反馈控制,将输出频率与参考频率(或参考信号)比较,然后通过调整VCO(Voltage Controlled Oscillator,电压控制振荡器)的控制电压,使其输出频率与参考频率保持同步。
简单来说,锁相环频率合成器就是将输入信号锁定到某个特定的频率上。
组成部分锁相环频率合成器由多个部分组成,包括相位比较器、环路滤波器、VCO和分频器。
相位比较器(Phase Comparator)相位比较器用于比较参考信号的相位与VCO输出信号的相位之间的差异,并产生一个误差信号。
常见的相位比较器有模型相位比较器和数字相位比较器。
环路滤波器(Loop Filter)环路滤波器用于滤波和增益控制,将相位比较器输出的误差信号转换为VCO控制电压。
环路滤波器的特性会影响系统的稳定性和锁定时间。
VCO(Voltage Controlled Oscillator)VCO是锁相环频率合成器的核心组件,它根据控制电压的变化来产生不同频率的输出信号。
VCO的输出频率与输入的控制电压成正比。
分频器(Divider)分频器用于降低输出频率。
在一些应用中,需要将VCO的高频输出信号分频得到稳定的低频信号。
工作原理锁相环频率合成器的工作过程可以分为以下几个步骤:1.参考信号与VCO输出信号经过相位比较器进行相位比较。
2.相位比较器产生误差信号,通过环路滤波器转换为控制电压。
3.控制电压作用于VCO,使其输出频率发生变化。
4.VCO输出信号经过分频器得到稳定的输出信号。
5.输出信号经过反馈回到相位比较器,与参考信号进行相位比较。
6.如果相位比较器检测到相位差异,则通过反馈机制调整控制电压,使输出频率与参考频率保持同步。
锁相环及频率合成器的原理及电路设计方案介绍引言锁相环简称PLL,是实现相位自动控制的一门技术,早期是为了解决接收机的同步接收问题而开发的,后来应用在电视机的扫描电路中。
由于锁相技术的发展,该技术已逐渐应用到通信、导航、雷达、计算机到家用电器的各个领域。
自从20世纪70年代起,随着集成电路的发展,开始出现集成的锁相环器件、通用和专用集成单片锁相环,使锁相环逐渐变成一个低成本、使用简便的多功能器件。
如今,PLL技术主要应用在调制解调、频率合成、彩电色幅载波提取、雷达、FM立体声解码等各个领域。
随着数字技术的发展,还出现了各种数字PLL器件,它们在数字通信中的载波同步、位同步、相干解调等方面起着重要的作用。
随着现代电子技术的飞快发展,具有高稳定性和准确度的频率源已经成为科研生产的重要组成部分。
高性能的频率源可通过频率合成技术获得。
随着大规模集成电路的发展,锁相式频率合成技术占有越来越重要的地位。
由一个或几个高稳定度、高准确度的参考频率源通过数字锁相频率合成技术可获得高品质的离散频率源。
1 锁相环及频率合成器的原理1.1 锁相环原理PLL是一种反馈控制电路,其特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因PLL可以实现输出信号频率对输入信号频率的自动跟踪,所以PLL通常用于闭环跟踪电路。
PLL在工作的过程中,当输出信号的频率与输入信号的频率相同时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是PLL名称的由来。
PLL通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,PLL组成的原理框图如图1所示。
PLL中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控。
锁相环频率合成器原理锁相环频率合成器是一种广泛应用于无线通信系统和频率合成器中的电路。
它通过将输入信号的频率锁定到参考信号的频率上,实现对输入信号频率的稳定和精确控制。
锁相环频率合成器的原理是基于负反馈控制和锁相环电路。
锁相环频率合成器由三个主要组成部分组成:相位比较器、低通滤波器和电压控制振荡器。
首先,锁相环的参考信号和输入信号都被送入相位比较器。
相位比较器会将两个信号的相位进行比较,并输出相位差。
相位差是参考信号和输入信号之间相位的差异值。
接下来,相位差信号通过低通滤波器进行滤波,目的是消除高频噪声。
滤波器的作用是确保锁相环的输出信号是稳定的且没有抖动的。
经过滤波的相位差信号进入电压控制振荡器(VCO),VCO根据输入信号的相位差来调整自身的输出频率。
如果输入信号的频率低于参考信号的频率,那么相位差将是正值,VCO将增加输出频率。
如果输入信号的频率高于参考信号的频率,相位差将是负值,VCO将减小输出频率。
最后,VCO的输出信号通过反馈回路连接到相位比较器,与输入信号进行反馈。
这个反馈迫使VCO的输出频率与参考信号的频率越来越接近,最终达到精确的锁定。
锁相环频率合成器在无线通信系统中的应用非常广泛。
在接收方面,锁相环可以用于从复杂多路径传输的信号中恢复出原始信号,消除传播路径引起的相位偏差。
在发射方面,锁相环可以用于产生稳定的射频信号,通过倍频器和滤波器将原始频率倍增,然后放大后用于无线电通信。
此外,锁相环频率合成器还被广泛应用于频率合成器中,用于产生非常精确的时钟信号,以供数字电路和通信设备使用。
总结起来,锁相环频率合成器是一种将输入信号的频率锁定到参考信号的频率上的电路。
它通过相位比较、滤波和VCO调频的方式实现对输入信号频率的稳定和精确控制。
锁相环频率合成器在无线通信系统和频率合成器中有着广泛的应用,能够提供稳定的射频信号和精确的时钟信号,为无线通信技术的发展提供了重要支持。
锁相环频率合成器锁相环频率合成器是一种电路,主要用于产生高精度、稳定的频率信号。
它的工作原理是将一个参考信号与一个可调节的振荡器信号进行比较,通过调节振荡器信号的频率和相位,使得两个信号保持同步,从而实现对输出频率的控制。
锁相环频率合成器广泛应用于通讯、雷达、测量等领域。
一、锁相环基本结构锁相环主要由三个部分组成:相位检测器(Phase Detector)、低通滤波器(Low Pass Filter)和电压控制振荡器(Voltage Controlled Oscillator)。
1. 相位检测器相位检测器主要用于比较参考信号与振荡器信号之间的相位差。
常见的有两种类型:同步检测器和非同步检测器。
同步检测器适用于参考信号和振荡器信号具有固定的相位关系时,而非同步检测器则适用于相位关系不确定或者变化较快的情况。
2. 低通滤波器低通滤波器主要用于平滑输出电压,并消除高频噪声干扰。
它的作用是将相位检测器输出的误差信号进行滤波,得到一个直流电压信号,这个信号被用来控制振荡器的频率和相位。
3. 电压控制振荡器电压控制振荡器(VCO)是锁相环频率合成器中最重要的部分之一。
它可以产生可调节的频率信号,并且可以通过调节输入电压来改变输出频率。
VCO通常由一个反馈环路组成,其中参考信号和VCO输出信号经过比较后产生误差信号,通过低通滤波器后输入到VCO中,从而实现对输出频率的控制。
二、锁相环工作原理锁相环工作原理可以用以下几个步骤来描述:1. 参考信号与振荡器信号进行比较,产生误差信号;2. 误差信号经过低通滤波器平滑处理后输入到VCO中;3. VCO产生新的振荡器信号,并与参考信号进行比较;4. 如果两个信号之间存在相位差,则继续调整VCO输出频率和相位,直到两个信号同步为止;5. 输出的同步信号可以用于驱动其他系统或设备。
三、锁相环应用锁相环频率合成器在通讯、雷达、测量等领域有着广泛的应用。
以下是一些常见的应用场景:1. 时钟恢复在数字通信系统中,接收端需要恢复发送端的时钟信号。
摘要随着电子技术的不断发展,人们对频率源的要求越来越高,频率合成技术也跟着不断发展, 本文介绍了直接频率合成技术、间接频率合成技术和直接数字频率合成技术的基本原理以及用来进行频率合成的几种方法,根据各种方法的特点讨论了它们各自的优缺点.重点讨论了作为第三代频率合成技术(直接数字频率合成技术)的基本原理和误差分析,并结合其他频率合成技术,设计了一种高精度、高稳定度、高分辨率频率合成器.根据所提出的技术要求,采用直接数字频率合成芯片作为核心芯片完成了硬件设计.直接数字频率合成(DDS)技术用于产生和调节高质量波形,广泛用于医学、工业、仪器仪表、通信、国防等众多领域。
本文主要从五个方面介绍了频率合成器及应用。
首先讲述了频率合成器的研究背景和研究现状;其次介绍了频率合成技术的一些基本概念、分类、主要指标、基本方法以及长期频率稳定度和相位噪声;接着介绍了直接频率合成技术的原理和组成以及几个主要的组成电路;再次介绍了间接频率合成技术的基本组成和工作原理以及锁相环路的相位模型和动态方程;最后介绍了直接数字频率合成技术的基本原理、它的相位噪声和杂散以及它的一些芯片及其在铁路信号系统中的应用。
关键字:频率合成技术、IS、DDS、PLLABSTRACTAlong with the development of electrical and electronic technology, People to demand more and more frequency source,the synthetic technology of frequencywith continuous development.This paper introduces the direct frequency synthesis technology, Indirect frequency synthesis technology and direct digital frequency synthesis technology used for the basic principle and the synthesis methods offrequency, according to the characteristics of various methods discussed theirrespective advantages and disadvantages.A discussion on the third generation frequency as synthesis technology (direct digital frequency synthesis technology) the basic principle and the error analysis, and in combination with other frequency synthesis technology, design a kind of high precision, high stability, high resolution frequency synthesizer.According to the proposed technique requirements, use direct digital frequency synthesis chip as core chip completed the hardware design. Direct digital frequency synthesis (DDS) technology is used to produce and adjust the high quality waveform, widely used in medicine, industrial, instrument and apparatus, communication, national defense, etc.This paper mainly introduced from five aspects frequency synthesizer and application. First of all about frequency synthesizer background and the present situation of the research; Secondly introduces the synthesis technology of frequency some basic concept, classification, main index, the basic method and long-term frequency stability and phase noise; Then it introduces the principle of direct frequency synthesis technology and composition and several major component circuit; Again the indirect frequency synthesis technology introduced the basic composition and working principle and phase lock loop of the phase of the model and the dynamic equation; At last, the paper introduces the direct digital frequency synthesis technology, the basic principle of its phase noise and stray and some of its chip and its application in railway signal system.Key word: Frequency synthesis technology, IS, DDS, PLL目录第1章绪论 (1)1.1 频率合成器的研究背景 (1)1.2频率合成器的研究现状 (1)第2章频率合成技术 (3)2.1频率合成技术概述 (3)2.2频率合成器的主要指标 (3)2.3频率合成的基本方法 (5)2.4频率合成器的长期频率稳定度和相位噪声 (6)2.4.1长期频率稳定度 (6)2.4.2 相位噪声 (6)2.4.3噪声来源 (7)第3章直接频率合成(DS)技术 (8)3.1 直接频率合成器的基本原理和组成 (8)3.2直接频率合成器的几个主要组成电路 (9)3.2.1混频器 (9)3.2.2倍频器 (11)3.2.3分频器 (13)3.2.4压控振荡器 (14)3.2.5石英晶体振荡器 (15)第4章间接频率合成(IS)技术—锁相频率合成技术 (17)4.1 锁相环路的基本组成和工作原理 (17)4.1.1 锁相环路的基本组成 (17)4.1.2锁相环的基本原理 (18)4.2锁相环路的相位模型及动态方程 (20)4.2.1锁相基本方程和相位模型(时域) (20)4.2.2锁相基本方程和相位模型(复频域) (21)4.2.3锁相环路的工作状态 (21)第5章直接数字频率合成(DDS)技术 (24)5.1 直接数字频率合成的基本原理 (25)5.1.1 DDS技术与传统的频率合成相比有如下优点 (26)5.1.2 DDS组成及其特点 (27)5.2 直接数字频率合成的相位噪声和杂散 (28)5.2.1 直接数字频率合成的相位噪声 (28)5.2.2 直接数字频率合成的杂散分析 (29)5.2.3 降低杂散电平的方法 (29)5.3 集成直接数字频率合成器的芯片介绍和应用 (32)5.3.1集成直接数字频率合成器的芯片介绍 (32)5.3.2 DDS直接数字频率合成技术在铁路信号系统中的应用 (33)结束语 (36)致谢 (37)参考文献 (38)第1章绪论1.1频率合成器的研究背景频率合成(频率综合)是指由一个或多个频率稳定度和精确度很高的参考信号源通过频率域的线性运算,产生具有同样稳定度和精确度的大量离散频率的过程。