二次函数的应用拱桥问题解析
- 格式:ppt
- 大小:950.50 KB
- 文档页数:12
建立二次函数模型解决建筑类实际问题的一般步骤:(1) 根据题意建立适当的 ________________________ ; (2) 把已知条件转化为 __________________ ; (3) 合理设出函数 ___________________ ; (4) 利用 _________________ 法求出函数解析式;(5) 根据求得的解析式进一步分析、判断并进行有关的计算. 知识点1 :二次函数在桥梁中的应用1. 有一座抛物线拱桥,正常水位时桥下水面宽度为 20米,拱顶距离水面4米.在如图所示 的直角坐标系中,该抛物线的解析式为 ________________________ .2.有一座抛物线形的立交桥拱 ,这个桥拱的最大高度为 16 m ,跨度为40 m ,现把它的图形放在坐标系中(如图).若在离跨度中心 M 点5 m 处垂直竖立一根铁柱支撑拱顶 ,则这根铁柱的长为 _____ m.3. 如图是一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于 A , B 两点,拱桥最高 点C 到AB 的距离为9 m , AB = 36 m , D , E 为拱桥底部的两点,且DE // AB ,点E 到直线 AB 的距离为7 m ,则DE 的长为 ___________ m .知识点2 :二次函数在隧道中的应用 4. 某隧道横断面由抛物线与矩形的三边组成,尺寸如图如示,以隧道横断面抛物线的顶点16为原点,以抛物线的对称轴为y 轴,建立直角坐标系,则该抛物线的解析式为 知识点3:二次函数在其他建筑问题中的应用5.如图,某工厂大门是抛物线形水泥建筑, 大门底部地面宽4米,顶部距地面的高度为 4.4 米,现有一辆满载货物的汽车欲通过大门,其装货宽度为 2.4米,该车要想通过此门, 装货 后的高度应小于( ) A. 2.80 米B . 2.816 米C . 2.82 米D. 2.826 米\比米L -4 棊_'6•如图,某建筑的屋顶设计成横截面为抛物线形(曲线AOB 的薄壳屋顶.它的拱宽AB 为4 m拱高CO 为0.8 m •建立如图的直角坐标系,则屋顶的轮廓线所在的抛物线的解析式为知识点4 :二次函数在运动中的应用7.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平 面直角坐标系,水在空中划出的曲线是抛物线 y = — x 2 + 4x(单位:米)的一部分,则水喷出 的最大高度是( )A . 4米B . 3米C . 2米D .1米----- 6m ----- ►A .第3秒B .第3.5秒C .第4.2秒D .第6.5秒&军事演习在平坦的草原上进行 ,一门迫击炮发射的一发炮弹飞行的高度 y(m)与飞行时间 x(s)的关系满足y = — 5X 2 + 10x.经过 ________ 秒炮弹到达它的最高点,最高点的高度是________ 米,经过 ________ 秒炮弹落到地上爆炸了.9•竖直向上发射的小球的高度 h(m)关于运动时间t(s)的函数解析式为h = at + bt ,其图象如图所示.若小球在发射后第 2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是y(m)与滑行时间x(s)之间的函数关系式是 m 才能停下来.12.如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y = — 3x 1 2+ 3x + 1的一部分.5 (1)求演员弹跳离地面的最大高度;⑵已知人梯高BC = 3.4米,在一次表演中,人梯到起跳点 A 的水平距离是4米,问这次表 演是否成功?请说明理由.13•如图,小河上有一座拱桥,拱桥及河道的截面轮廓线由抛物线的一部分 ACB 和矩形的三 边AE, ED, DB 组成.已知河底 ED 是水平的,ED = 16米,AE = 8米,抛物线的顶点 C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为 y 轴建立平面直角坐标系. (1) 求抛物线的解析式;(2) 已知从某时刻开始的 40小时内,水面与河底 ED 的距离h(单位:米)随时间t(单位:时) 的变化满足函数关系 h =- ±(t — 19)2+ 8(0 w tw 40),且当水面到顶点 C 的距离不大于5米 时,需禁止船只通行,请过计算说明:在这一时段内 ,需多少小时禁止船只通行?1 当h = 2.6时,求y 与x 的关系式;(不要求写出自变量 x 的取值范围)2 当h = 2.6时,球能否越过球网?球会不会出界?请说明理由?10.如图,有一座抛物线形拱桥 水面下降1 m 后,水面宽为( ,当水位线在AB 位置时,拱顶离水面2 m ,水面宽为4 m , ) A . 5 mB . 6 mC/, 6 mD . 2 6m11.某一型号飞机着陆后滑行的距离 1.5x 2,该型号飞机着陆后滑行 —y = 60x —14.如图,排球运动员站在点O处练习发球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y = a(x —6)2 + h.已知球网与O 点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.4、有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m ,拱顶距离水面4m .(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y =ax 2,且过点(10,-4) ∴ 故(2)设水位上升h m 时,水面与抛物线交于点()则∴(3)当d =18时,∴当水深超过2.76m 时会影响过往船只在桥下顺利航行。
2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m ,如果水 位上升2m ,就将达到警戒线CD ,这时水面的宽为8m.若洪水到来,水位以每小时0.1m 速度上升,经过多少小时会达到拱顶解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)设抛物线为y=ax2+k.由B 、D 两点在抛物线上,有-==-4101252a a ×,y x =-1252d h 24,-h d -=-412542×d h =-10418104076=-=h h ,.0762276..+=解这个方程组,得所以,顶点的坐标为(0,)则OE=÷=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。
二次函数的实际应用(拱桥问题)教师work Information Technology Company.2020YEAR二次函数中抛物线形与拱桥问题1 有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m ,拱顶距离水面4m .(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h (m )时,桥下水面的宽度为d (m ),求出将d 表示为h 的函数表达式;(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.解:(1)设抛物线的解析式为y =ax 2,且过点(10,-4)∴故 (2)设水位上升h m 时,水面与抛物线交于点()则∴ (3)当d =18时,∴当水深超过2.76m 时会影响过往船只在桥下顺利航行。
2、如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m ,如果水位上升2m ,就将达到警戒线CD ,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶解: 以AB 所在的直线为x 轴,AB 中点为原点,建立直角坐标系,则抛物线的顶点E 在y 轴上,且B 、D 两点的坐标分别为(5,0)、(4,2)-==-4101252a a ×,y x =-1252d h 24,-h d -=-412542×d h =-10418104076=-=h h ,.0762276..+=设抛物线为y=ax2+k.由B、D两点在抛物线上,有解这个方程组,得所以,顶点的坐标为(0,)则OE=÷0.1=(h)所以,若洪水到来,水位以每小时0.1m速度上升,经过小时会达到拱顶.3、如图4,有一座抛物线形拱桥,抛物线可用y=表示.在正常水位时水面AB 的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)在正常水位时,有一艘宽8m、高2.5m的小船,它能通过这座桥吗(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通过:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?解:(1)由对称性,当x=4时,y=.当x=10时,y=.故正常水位时,AB距桥面4米,由,故小船能通过.(2)水位由CD处涨到点O的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x千米/时,当4x+40×1=280时,x=60.∴要使货车安全通过此桥,货车的速度超过60千米/时。
22.3(4.1)---(拱桥问题)一.【知识要点】1.现实生活中的抛物线:喷射的水流、投出的篮球运动轨迹、两端固定自然下垂的绳子、一些拱桥、涵洞等,都给人留下抛物线的印象。
如果把它们放到平面直角坐标系中,结合实际数据即可求解得出抛物线的解析式,再通过二次函数的性质来解决测量问题、最值问题等.二.【经典例题】1.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加__________m。
2.(6分)如右图所示,有一座拱桥圆弧形,它的跨度为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,•是否采取紧急措施?三.【题库】【A】1.如图,是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯,建立适当坐标系.则两盏景观灯之间的水平距离_________.【B】1.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需_____________ s.【C】1.一位运动员投掷铅球的成绩是14m,当铅球运行的水平距离是6m时达到最大高度4m,若铅球运行的路线是抛物线,则铅球出手时距地面的高度是m.【D】1.小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m,y2m,y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,①两人何时相距180m?②两人何时相距最近?最近距离是多少?。
2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题09 二次函数的实际应用—拱桥问题考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021九上·虹口期末)如图所示,一座抛物线形的拱桥在正常水位时,水而AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A .B .10米C .米D .12米【答案】B 【解析】【解答】以O 点为坐标原点,AB 的垂直平分线为y 轴,过O 点作y 轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax 2,∵O 点到水面AB 的距离为4米,∴A、B 点的纵坐标为-4,∵水面AB 宽为20米,∴A(-10,-4),B (10,-4),将A 代入y=ax 2,-4=100a ,∴125a =-,∴2125y x =-,∵水位上升3米就达到警戒水位CD ,∴C 点的纵坐标为-1,∴21125x -=-∴x=±5,∴CD=10,故答案为:B .【思路引导】先建立平面直角坐标系,设抛物线的解析式为y=ax 2,再求出解析式,最后利用二次函数的性质求解即可。
2.(2分)(2021九上·安阳期中)有一拱桥洞呈抛物线形,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图)放在坐标系中,则抛物线的解析式为( )A .y =125 x 2+ 58x B .y =-125 x 2+ 85 x C .y =- 58 x 2- 125 x D .y =- 125 x 2+ 85 x +16【答案】B 【解析】【解答】解:由图可知,该抛物线开口向下,对称轴为x =20,最高点坐标为(20,16),且经过原点,由此可设该抛物线解析式为 ()22016y a x =-+ ,将原点坐标代入可得 400160a += ,解得: 125a =- ,故该抛物线解析式为 ()22118201625255y x x x =--+=-+.故答案为:B.【思路引导】由题意可设抛物线解析式为y=a(x-20)2+16,将(0,0)代入可得a的值,据此可得抛物线的解析式.3.(2分)(2021九上·诸暨月考)如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加( )A.1m B.2mC.(﹣4)m D.(﹣2)m【答案】C【解析】【解答】解:如图,建立直角坐标系,设y=a(x-2)(x+2),∴2=a(0-2)(0+2),∴a=-12,∴y=-12(x-2)(x+2),当水面下降1米时,y=-1,∴-1=-12(x-2)(x+2),解得,∴水平宽度增加:(-4)m.故答案为:C.【思路引导】根据题意建立直角坐标系,结合数据求出二次函数解析式,再把y=-1代入抛物线解析式,则可求出此时的水面宽度,即可得出答案.4.(2分)(2020九上·郁南期末)如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为 2125y x =- ,当水面宽度 AB 为20m 时,此时水面与桥拱顶的高度 DO 是( )A .2mB .4mC .10mD .16m【答案】B 【解析】【解答】解:根据题意得B 的横坐标为10,把x=10代入 2125y x =-,得y=-4,∴OD=4m,故答案为:B .【思路引导】将x=10代入函数解析式求出y=-4,再求解即可。