药物化学复习总结(药学类)
- 格式:doc
- 大小:218.50 KB
- 文档页数:9
名词解释:药物化学(medicinal chemistry):研究药物设计优化,药代学和药效学和新药的合成。
药效学(pharmacokinamics):研究药物和细胞相互作用机理。
药代学:研究机体对药物处置过程(吸收、分布、代谢、排泄)的动态变化。
药物动力学:研究人体不同位点上药物随着时间变化的浓度变化关系。
药物代谢动力学(pharmacokinetics):定量研究药物在生物体内吸收、分布、代谢和排泄规律,并运用数学原理和方法阐述血药浓度随时间变化的规律的一门学科。
药物(drug):能影响机体生理、生化和病理过程,用以预防、诊断、治疗疾病和计划生育的化学物质。
拮抗剂(antagonists):与受体结合后,不能诱导产生生物活性变化的构象变化的化合物。
激动剂(agonists):能够诱导受体构象变化而引起生物活性的化合物。
竞争性拮抗剂(competitive antagonist):与相应激动剂相互竞争相同受体的拮抗剂。
翻译药物化学(medicinal chemistry)拮抗剂(antagonists)激动剂(agonists)抑制剂(inhibitor)受体(receptor)药物代谢动力学(pharmacokinetics)药效学(pharmacokinamics)阿司匹林(aspirin)临床试验(Clinical Trials)先导化合物(Lead compounds)填空题第一章:药物化学介绍药物如何改变社会结构:①改善了生活质量②延长了平均寿命为什么药物化学面临更大的挑战①由于过度使用抗生素,细菌产生耐药性②由于预期寿命的增加,癌症和神经退行性等老年病开始流行。
③新出现的疾病,特别是由病毒引起④改善生活质量类药物的需求好药的标准:没有毒性或副作用;容易摄入;能发挥功效普遍接受的坏药:吗啡、酒精、尼古丁、海洛因药物与毒物阿司匹林对人体是药物,对细菌是毒物;高剂量或者长期使用,药物变成毒物。
药学药物化学与药理学重点知识一、引言在现代医学领域中,药学药物化学与药理学是两个重要的学科。
药学药物化学主要关注药物的合成、纯化和分析等方面,而药理学则研究药物的作用机制和对人体的影响。
本文将重点介绍药学药物化学与药理学中的一些关键知识点。
二、药学药物化学知识点1. 药物分类药物可以根据其化学特性、作用机制和治疗疾病等方面进行分类。
常见的药物分类包括:麻醉药、抗生素、抗癌药物、抗高血压药物等。
不同类别的药物有着不同的特性和用途。
2. 药物合成药物的合成是药物化学的核心内容之一。
药物合成需要借助有机合成化学的知识和技术。
常见的合成方法包括碳链延长、环化反应、取代反应等。
药物合成的成功与否直接影响到药物质量和疗效。
3. 药物纯化药物纯化是指将药物中的杂质去除,使药物达到一定纯度的过程。
常用的纯化方法包括结晶、过滤、萃取等。
药物的纯化可以提高药物的纯度和疗效,降低药物对人体的毒副作用。
4. 药物分析药物分析是药物化学的重要内容之一。
药物分析的目的是确定药物的化学组成和浓度等参数。
常用的分析方法包括色谱法、质谱法、光谱法等。
药物分析的结果可以用于质检、药物疗效评估和药物剂量确定等方面。
三、药理学知识点1. 药物作用机制药物的作用机制是指药物与生物体内的目标结构发生反应,从而产生治疗效果的过程。
药物可以通过干扰生物体内的代谢过程、结构改变或刺激某些生理反应来发挥作用。
药物的作用机制对于合理使用药物和合理设计新药具有重要意义。
2. 药物代谢与排泄药物代谢与排泄是药物在体内被分解、转化和排出体外的过程。
药物代谢通常发生在肝脏中,代谢产物经尿液、粪便等方式排出体外。
药物代谢与排泄的研究可以帮助我们理解药物在人体内的代谢途径和药物的药动学。
3. 药物相互作用药物相互作用是指两种或多种药物一同使用时,互相影响药物的效果和毒副作用的现象。
药物相互作用可以是药物之间的增效作用、拮抗作用或不良反应增强等。
合理预防和管理药物相互作用对于确保患者用药的安全和疗效至关重要。
《药物化学》复习重点资料整理总结名词解释:1.稳态血药浓度:以半衰期为给药间隔时间,连续恒量给药后,体内药量逐渐累积,给药4、5次后,血药浓度基本达到稳态水平。
2.药物:是指调节机体生理、生化和病理过程,用以预防、诊断、治疗疾病的物质。
3.药理学:是研究药物与机体之间相互作用及其规律的一门学科,包括药物效应动力学、药物代谢动力学两个方面。
4.首关消除:有些口服药物在经胃肠壁及肝脏时,会被此处的酶代谢失活。
5.肝肠循环:有的药经胆汁排泄再经肠黏膜上皮细胞吸收,由门静脉重新进入全身循环,这种在小肠、肝脏、胆汁间的循环称为肝肠循环。
6.治疗指数:药物的半数致死量LD5a与半数有效量ED50的比值。
7.处方药:必须凭执业医师或执业助理医师处方才可调配。
8.肾上腺素升压作用的翻转:预先给予α受体阻断药能阻断肾上腺素激动α受体的缩血管作用,保留激动β受体的血管舒张作用,使升压作用翻转为降压作用。
9.耐受性:机体对药物的敏感性降低,需增加剂量才能发挥原有药效。
10.反跳现象:长期大剂量使用某药物后突然停药,导致原有病情再现或加重。
11.二重感染:长期使用广谱抗菌药,使得敏感菌被抑制,不敏感菌大量繁殖,引发新的感染。
模块-1、在机体方面,影响药物作用的因素有哪些?(填空题)年龄性别个体差异病理状态心里精神因素遗传因素2、“三致”反应致畸致癌致突变3、药物的二重作用包括什么?P5~防治作用和不良反应4、药物作用的主要类型包括哪些?P4-5兴奋作用和抑制作用局部作用和吸收作用选择性作用和普遍作用直接作用与间接作用预防作用和治疗作用模块二1、药品贮存条件中阴凉处、凉暗处、冷处、常温的条件P28阴凉处:系指不超过20℃阴暗处:系指避光并不超过20℃冷处:系指2℃~10℃常温:系指10℃~30℃2、批准文号的代表字母和数字各自的含义,批号的含义P27字母:化学药品:H 中药:Z 保健:B 生物制品:S体外化学诊断试剂:T 药用辅:F 进口分包装药品:J数字第1、2位为原批准文号的来源代码,第3、4位为换发批准文号之后(公元年号)的后两位数字,第5~8位为顺序号批号的含义:在药品生产过程中,将同一次投料、同一生产工艺所生产的药品定为同一个批号。
绪论1、药物化学(Medicinal Chemistry)是关于药物的发现、发展和确证,并在分子水平上研究药物作用方式的一门学科。
2、药物是对疾病具有预防、治疗和诊断作用或用以调节机体生理功能的物质。
3、根据药物的来源和性质不同,可以分为中药或天然药物、化学药物和生物药物。
4、化学药物是一类既有药物的功效,同时又有确切的化学结构的物质。
5、药物化学的三个时期:以天然产物为主的发现时期、以合成药物为主的发展时期、药物分子设计时期。
6、1899年,阿司匹林上市,标志着药物化学学科的形成。
第一章:新药研究和开发概论1、新化学实体(New Chemical Entities)是指在以前的文献中没有报道过的新化合物。
而有可能成为药物的新化学实体则需要时能够以安全和有效的方法治疗疾病的新化合物。
2、通常新药的发现分为4个主要的阶段:靶分子的确定和选择、靶分子的优化、先导化合物的发现和先导化合物的优化。
3、药品质量的主要含义是:A、药物的疗效和毒副作用,B、药物的纯度。
4、药品质量标准中,有两个重要的指征:一是药物的纯度,即有效成分的含量;二是药物的杂质限度。
5、药物的商品名通常是针对药物的最终产品,即剂量和剂型已确定的含有一种或多种药物活性成分的药品。
含同样活性成分的同一药品,每个企业应有自己的商品名,不得冒用、顶替别人的药品商品名称。
6、药物的通用名:也称为国际非专利药品名称,是世界卫生组织推荐使用的名称,通常是指有活性的药物物质,而不是最终产品,因此是药学研究人员和医务人员使用的共同名称,所以一个药物只有一个药品通用名,比商品名使用起来更为方便。
第二章:药物设计的基本原理和方法1、目前新药设计的靶点集中在受体、酶、核酸、离子通道和基因等上。
2、先导化合物(Lead Compound):通过各种途径得到的具有一定生理活性的化学物质。
3、先导化合物的发现方法和途径:a、从天然产物活性成分中发现先导化合物;b、通过分子生物学途径发现先导化合物;c、通过随机机遇发现先导化合物;d、从代谢产物中发现先导化合物;e、从临床药物的副作用或者老药新用途中发现新药;f、从药物合成中间体中发现先导化合物;g、通过计算机辅助药物筛选寻找先导化合物。
药物化学考试重点总结
一、药物化学基础知识
1. 药物的分类与作用机制:了解各类药物的基本作用机制和分类,如抗生素、抗肿瘤药、抗炎药等。
2. 药物的化学结构与性质:理解药物的化学结构与其理化性质、稳定性及生物活性的关系。
3. 药物代谢:掌握药物在体内的代谢过程,包括代谢酶及代谢产物的性质和作用。
二、药物合成与工艺
1. 药物合成方法:掌握常见的药物合成方法和技术,如还原反应、氧化反应、酯化反应等。
2. 药物合成工艺:理解工业化生产中药物的合成工艺流程及优化方法。
3. 药物合成路线的设计与选择:了解药物合成路线的评价标准,掌握设计药物合成路线的思路与方法。
三、药物分析
1. 药物分析方法:掌握药物分析中常用的检测方法和技术,如色谱法、光谱法等。
2. 药物质量控制:理解药物质量控制的标准和要求,掌握药品质量控制的常用方法。
3. 药物制剂分析:了解药物制剂的分析方法,掌握药物制剂的质量控制标准。
四、药物设计与新药开发
1. 药物设计的原理与方法:掌握基于结构的药物设计、基于片段的药物设计等原理与方法。
2. 新药发现的途径与方法:了解新药发现的途径和策略,如高通量筛选、虚拟筛选等。
3. 新药开发的流程与评估:理解新药开发的流程和评估标准,掌握新药开发的风险与机遇。
药学职业知识点总结大全药学领域的知识点非常广泛,涉及化学、生物学、医学等多个学科。
以下是药学职业知识点的总结大全:一、药物化学药物化学是药学的基础学科,研究药物的化学成分、结构和性质,为新药的研发和药物的合成提供理论基础和技术支持。
药物化学知识点主要包括:1. 药物的化学成分:药物可以是天然产物,也可以是合成药物。
药学专业的学生需要掌握各种药物的化学成分,并了解它们的生物活性和药理作用。
2. 药物的生物转化:药物在人体内的代谢和转化是药物化学研究的重要内容。
学生需要了解药物在体内的代谢途径、代谢产物以及代谢酶的介导作用。
3. 药物的结构与活性关系:药物的化学结构与其生物活性之间存在一定的关系,学生需要学习药物结构与活性的相关知识,以便设计和合成更有效的药物。
4. 药物的分析方法:药物的分析是药学研究的重要环节,学生需要掌握各种药物的分析方法,包括物理化学性质分析、结构鉴定方法、质量分析等。
二、药理学药理学是研究药物的作用机制、药效学和毒理学的学科,它为临床用药提供理论支持和指导。
药理学知识点主要包括:1. 药物在人体内的作用机制:药物在人体内通过与生物分子相互作用,来发生治疗作用或有害作用。
学生需要了解药物的作用机制和影响,包括药物的吸收、分布、代谢和排泄过程。
2. 药物的药效学:药效学研究药物的有效剂量、生物利用度、药理学作用等指标,帮助医师科学合理地选择、使用和调节用药。
3. 药物的毒理学:药物的毒理学研究药物的毒性作用、影响机制和应对措施,学生需要了解常见药物的毒性反应和预防措施。
三、药剂学药剂学是研究制剂、制药工艺和用药技术的学科,它关注的是将药物有效地传递到患者体内,以实现治疗目的。
药剂学知识点主要包括:1. 制剂学基础知识:包括固体制剂、液体制剂、半固体制剂等各种制剂的制备方法、工艺流程、质量标准等。
2. 药用辅料的性质和用途:学生需要了解各种药用辅料的性质和用途,包括各种药用溶剂、稳定剂、调味剂、保留剂等。
自考药学知识点总结一、化学与药物1、药物的化学分类药物按化学结构分类可分为有机化合物、无机化合物和生物制品三大类。
有机化合物药物中,又可分为醇、醛、酮、酸、酯、醚、酰胺等。
此外还有碱、酰胺、卡巴姆、卤代烃、芳烃、杂环化合物、多肽和萜烯等。
2、药物合成和制备药物的合成和制备是药学专业学生需要掌握的重要内容。
药物的合成方法包括有机合成、有机化学和合成化学等多种方法。
此外还需要了解药物的制备方法,如药物合剂、胶囊、颗粒、片剂等制备方法。
3、药物的结构与活性药物的结构与活性是指药物化学结构对其生物活性的影响。
药物的活性主要与其分子的结构有关,包括分子内的键合方式、键的构象,原子的空间排列等。
药物的结构与活性是药理学研究的基础,是研究药物作用机制的重要手段。
4、药物质量控制药物质量控制是指对药物产品的生产工艺、质量标准、质量控制等方面的控制。
其中包括药物的质量标准、药物的质量控制、药物的质量评价等内容。
二、基础药理学1、药理学概论药理学是一个科学的研究领域,主要研究药物对生物体的作用机理和药物的药效学、毒理学等方面的知识。
药理学是药学专业学生必修的课程,其知识内容包括药物的作用机理、药物的药效学、药物的毒理学等。
2、药物的作用机制药物的作用机制是指药物与生物体发生相互作用的方式。
药物的作用机制主要有药物的分子结构、药物的离子状态、药物对生物体的特异性结合等。
药物的作用机制是药理学研究的重要内容,也是药物研发的重要环节。
3、药物的药效学药物的药效学是指药物对生物体产生作用的属性和特征。
药物的药效学是药学专业学生需要掌握的重要内容,其中包括药物的药效、药物的毒性、药物的副作用、药物的安全性等方面的知识。
4、药物的毒理学药物的毒理学是研究药物对生物体产生毒性作用的科学,其研究内容包括药物毒性作用的发生机制、药物毒性作用的影响因素、药物毒性作用的病理生理学等。
药物的毒理学是药学专业学生需要了解的重要知识点。
三、药物分析1、药物分析的概念与意义药物分析是指对药物产品进行化学分析和质量控制的科学方法。
药物化学药物总结归纳近年来,随着医疗技术的迅速发展,药物化学研究取得了长足的进步。
药物化学是一门研究药物的合成、性质和作用机制的学科,它为药物设计和发现提供了重要的理论基础。
本文将对药物化学的一些重要概念和药物总结进行归纳,以期为药物研究和开发提供参考。
一、药物化学的基本概念1. 药物化学的定义药物化学是研究药物的合成、性质和结构与活性关系等问题的学科。
它涉及有机合成、药物分析、药物代谢等多个领域。
2. 药物分子的构成药物分子由原子构成,其中包括元素符号、原子序数和原子价数。
药物分子的结构决定了其化学性质和药理活性。
3. 药物的分类药物可根据其化学结构、作用方式、疗效和应用范围来进行分类。
常见的分类方法有化学分类、药理学分类和治疗用途分类等。
4. 药物化学与药物研发药物化学为药物研发提供了理论和实践基础。
药物研发涉及分子设计、合成优化、构效关系研究和药物代谢等。
药物化学为研究人员提供了工具和技术,加速了新药物的发现和开发过程。
二、药物化学的研究领域1. 药物分子设计与合成在药物研发的过程中,药物分子设计和合成是主要环节之一。
研究人员通过设计和合成不同结构的药物分子,寻找具有良好活性和选择性的化合物。
2. 构效关系研究构效关系研究是药物化学的核心内容之一,它通过改变药物分子的结构来探索药物的生物活性和作用机制。
这些研究为药物的优化提供了理论指导。
3. 药物合成路线开发药物合成路线开发是指通过合成化学方法合成药物分子的过程。
研究人员需要考虑反应选择性、产率、环境友好性等因素,制定高效可行的合成路线。
4. 药物分析与物性研究药物分析和物性研究旨在确定药物化学结构、纯度、溶解度等特性。
通过分析药物的物性,可以评估药物的质量和药效。
三、药物化学的应用与发展1. 新药物的发现与开发药物化学为新药物的发现和开发提供了理论和技术支持。
通过药物化学的研究,研究人员可以合成和优化具有良好活性的化合物,为疾病的治疗提供新的药物选择。
药学药物化学与药剂学重点考点总结药学是一门研究药物的发现、研制、生产、配制、分析、应用及药物的临床使用等方面的学科。
药物化学与药剂学是药学的两个重要分支,它们通过研究药物的化学性质和制剂的性质及其在人体内的作用,为药物的研发和临床应用提供了基础理论和实践依据。
本文将重点总结药学、药物化学与药剂学中的重点考点。
一、药物化学考点总结1. 药物的结构与性质药物的化学结构对其药理学和临床应用具有重要影响。
例如,苯环结构的药物通常具有镇痛、抗炎等作用;重氮酰胺结构的药物常用于抗癫痫等疾病的治疗。
了解药物的结构与性质,可以帮助我们理解其作用机制和临床应用。
2. 药物的合成方法了解药物的合成方法对研发新药具有重要作用。
常见的药物合成方法包括有机合成、化学修饰、天然产物提取等。
熟练掌握各类反应的机理,并能通过改变反应条件或合成路线获得目标药物,是药物化学的重要考点。
3. 药物代谢与药物代谢酶药物代谢是指药物在体内经过化学反应转化成代谢产物。
了解药物代谢的主要途径,如氧化、还原、水解等,以及参与药物代谢的主要酶类,如CYP450等,对于评估药物的安全性和药效性具有重要意义。
二、药剂学考点总结1. 药物剂型与制剂工艺药物剂型是指药物制剂的具体形式,如片剂、胶囊、注射液等。
了解药物剂型的特点和应用场景,以及制剂工艺中的关键技术和装备,对于药剂师的工作至关重要。
2. 药物质量控制药物的质量控制是保证制剂质量的重要环节。
了解药物质量控制的关键指标和检测方法,如纯度、含量、溶解度等,对于制剂的生产和质量监控具有重要意义。
3. 药物的稳定性与保存药物的稳定性是指药物在一定条件下的物理和化学性质是否发生变化。
了解药物稳定性的影响因素和保存条件,能够有效延长药物的保存期限,确保患者用药的有效性和安全性。
综上所述,药学、药物化学与药剂学是药学领域中的重要学科,对于药物的研发和临床应用起着关键作用。
熟练掌握药物化学和药剂学的重点考点,对于药学专业的学生和从事相关工作的人员来说,具有重要的理论和实践意义。
药物化学复习1. 引言药物化学是研究药物的化学性质和药物分子的结构与功能关系的学科。
它是药物研发过程中的重要组成部分,对于合成新药、改良药物和研究药物机制都起到了关键的作用。
本文将对药物化学的一些基本概念和常见的化学反应进行复习。
2. 药物化学基础知识2.1 药物分子的结构与功能药物分子通常由两部分组成:药效团和辅助基团。
药效团是药物分子中负责与目标生物分子相互作用的部分,它决定了药物的治疗效果。
辅助基团则是为了改变药物分子的物化性质、增强药物的溶解度和稳定性等而加入的。
2.2 药物分子的立体化学药物分子的立体结构对于其与靶标分子的结合和生物活性至关重要。
立体化学主要包括手性和反式异构体的概念。
药物分子的手性可以影响药物分子与生物体内的酶、受体等之间的相互作用,进而影响其生物活性。
2.3 药物的代谢和结构修饰代谢是指药物在生物体内发生化学变化的过程。
药物代谢可以通过改变药物分子的结构来影响其药效、药代动力学参数和毒性。
结构修饰是指通过对药物分子的化学修饰来改变其药物性质和生物活性,常见的修饰方法包括取代、合并和分子递减等。
3. 常见的药物化学反应在药物化学领域,有许多常见的反应被广泛应用于药物的合成和结构修饰过程。
以下是一些常见的药物化学反应的简要介绍:3.1 酯化反应酯化反应是指酸与醇反应生成酯的过程。
这种反应常用于药物分子的修饰和合成,例如酯类药物的合成和羟基酯药物的合成等。
3.2 还原反应还原反应是指还原剂与物质反应生成对应的还原物的过程。
在药物化学中,还原反应常用于合成醇类药物和氧化还原酶的抑制剂等。
3.3 氧化反应氧化反应是指氧化剂与物质反应生成对应的氧化物的过程。
在药物化学中,氧化反应常用于合成酮类药物和氧化酶的抑制剂等。
3.4 反应活性相关的修饰药物分子的反应活性和生物活性之间存在相关性。
一些修饰反应可以增加药物分子的反应活性,提高药物的疗效。
例如加成反应、酰化反应和取代反应等。
4.药物化学是研究药物分子结构和功能的学科,对于药物研发和改良具有重要意义。
药学综合知识2知识点总结药学是一门综合性学科,涉及药物的合成、性质、制剂、药理、临床应用、药物代谢动力学等领域,是医学领域中重要的学科之一。
药学综合知识包括药物的化学成分、作用机制、用药途径、剂量、药物相互作用等内容,对于医生、药剂师和病患都具有重要的指导意义。
本文将重点介绍药学综合知识中的几个重要知识点,包括药物的分子结构、药物的药理作用、药物的代谢和药物相互作用等方面。
一、药物的分子结构药物的分子结构是药物化学的基础,通常指的是药物的化学式、分子式、结晶形态等。
药物的分子结构决定了药物的化学性质、稳定性和药理活性。
药物的分子结构对于药物的合成、药效评价和药物剂型设计都具有重要的意义。
药物的分子结构通常由原子序号、原子间键的连接方式、原子空间排列等决定。
二、药物的药理作用药物的药理作用是指药物在机体内的作用机理和生物效应。
药物的药理作用通常包括药物的作用部位、作用机制、作用方式等方面。
药物的药理作用对于药物的临床应用、合理用药和副作用评价都具有重要的意义。
药物的药理作用通常通过分子靶点、信号通路、受体结合等方式实现。
三、药物的代谢药物的代谢是指药物在机体内被生物转化的过程,通常包括药物的吸收、分布、代谢和排泄等环节。
药物代谢对于药物的药效、安全性和药代动力学都具有重要的影响。
药物代谢通常由肝脏、肾脏和肠道等器官共同完成,其中药物的代谢酶和代谢产物都具有重要的指导意义。
四、药物的相互作用药物的相互作用是指不同药物在机体内相互影响的过程,通常包括药物的协同作用、拮抗作用和相互影响等方面。
药物的相互作用对于药物的疗效、副作用和用药安全性都具有重要的影响。
药物的相互作用通常涉及药物代谢酶、受体结合、药物传输通道等多个层面。
综上所述,药学综合知识涵盖了药物的分子结构、药理作用、药物代谢和药物相互作用等多个方面。
对于医学领域的从业者和研究者来说,掌握这些知识点对于合理用药、新药研发和药物安全监管都具有重要的指导意义。
药化知识点归纳总结1. 药物的分类根据药物的化学结构和作用机制,药物可以分为不同的类别。
根据其作用机制,药物可以分为激动剂、抑制剂和拮抗剂。
激动剂是指能够增强生物体功能的药物,如肾上腺素;抑制剂是指能够抑制生物体功能的药物,如抗生素;拮抗剂是指能够与激动剂结合,阻止激动剂产生效应的药物,如拮抗剂。
2. 药物的合成药物的合成是药化学的重要内容之一。
药物的合成可以通过化学合成、天然物提取和生物合成等方式进行。
化学合成是指通过有机合成化学方法,将单体有机化合物合成为所需的药物分子。
天然物提取是指从天然植物、动物中提取有活性成分的物质,如从植物中提取阿司匹林。
生物合成是指利用生物学方法,通过酶或微生物等生物体合成所需的药物。
3. 药物的结构活性关系药物的结构活性关系是指药物分子的化学结构与其药理活性之间的关系。
通过对药物分子的结构进行分析,可以揭示药物分子的作用机制,从而指导药物的设计与开发。
药物分子结构活性关系的研究主要包括定量结构-活性关系(QSAR)和分子模拟。
4. 药物代谢药物在生物体内经过一系列的代谢过程,包括吸收、分布、代谢和排泄。
药物的代谢是指药物在体内发生的化学变化过程,通常主要发生在肝脏中。
代谢过程可以改变药物的药理活性、毒性和药代动力学等特性。
了解药物的代谢特性,对于合理用药和减少不良反应具有重要意义。
5. 药物动力学药物动力学是研究药物在体内的吸收、分布、代谢和排泄等过程的科学。
了解药物动力学,可以帮助人们合理用药,并优化药物的治疗效果。
药物动力学主要包括药物的吸收、分布、代谢和排泄等过程的量化描述和研究。
6. 药物毒理学药物毒理学是研究药物和毒物对生物体产生的毒性效应以及其机制的科学。
了解药物毒理学对于评价药物的安全性和毒性有重要意义。
药物毒理学主要包括毒性效应的研究、毒性作用的机制研究以及毒物的作用途径和毒性评价等内容。
总之,药化学是一门综合性的学科,它涉及到药物的合成、结构活性关系、药代动力学和药物毒理学等方面的知识。
药物化学总结第一篇:药物化学总结术语解释1.生物烷化剂也称烷化剂,属于细胞毒类药物,在体内能形成缺电子活泼中间体或其他具有活泼的亲电性基团的化合物,进而与生物大分子(如DNA、RNA或某些重要的酶类)中含有丰富电子的基团(如氨基、巯基、羟基、羧基、磷酸基等)进行亲电反应和共价结合,使生物大分子丧失活性或使DNA分子发生断裂。
生物烷化剂是抗肿瘤药物中使用最早,也是非常重要的一类药物。
2.抗代谢药物是一类重要的抗肿瘤药物,通过抑制DNA合成中所需的叶酸、嘌呤、嘧啶及嘧啶核苷途径,从而抑制肿瘤细胞的生存和复制所必需的代谢途径,导致肿瘤细胞死亡。
3.生物电子等排体(bioisosteres)具有相似的物理及化学性质的基团或分子会产生大致相似、相关或相反的生物活性。
分子或基团的外电子层相似,或电子密度有相似分布,而且分子的形状或大小相似时,都可以认为是生物电子等排体。
4.潜效化(1atentiation)就是将具有生物活性而毒性较大的化合物,利用化学方法把结构作适当改造;变为体外括性小或无活性的化合物,进入体内后,通过特殊酶的作用使其产生活性作用,从而提高选择性。
增强疗效、降低毒性。
是前药的同义词。
按化学结构可将目前临床使用的生物烷化剂分为:①氮芥类;②乙撑亚胺类;③磺酸酯及多元醇类;④亚硝基脲类;⑤金属铂类配合物。
这些药物都具有在体内能形成缺电子的活泼中间体的化学结构。
氮芥类药物的结构由两部分组成:通式中的双-β-氯乙胺部分(氮芥基)称为烷基化部分,是抗肿瘤活性的功能基;R为载体部分,主要影响药物在体内的吸收分布等药代动力学性质,也会影响药物的选择性、抗肿瘤活性及毒性,因此通过选择不同的载体可以达到提高药物的选择性和疗效、降低毒性的目的,对氮芥类药物的设计具有重要的意义。
当载体R为脂肪烃基时,称为脂肪氮芥,如盐酸氮芥、氧氮芥等;当载体R为芳香基时,称为芳香氮芥,如苯丁酸氮芥等;当载体R为氨基酸时,称为氨基酸氮芥,如美法伦、氮甲等;当载体R为杂环时,称为杂环氮芥,如环磷酰胺、异环磷酰胺等。
硝酸甘油本品在弱酸性及中性条件下相对稳定,在碱性条件下迅速发生水解。
与氢氧化钾试液反应,生成甘油,再加硫酸氢钾,可产生丙烯醛的刺激性臭气。
本品临床用于各种心绞痛,舌下含服可通过口腔黏膜迅速吸收,发挥作用。
硝酸异山梨酯本品与适量的水和硫酸混合后可水解生成硝酸,沿管壁缓缓加入硫酸亚铁,在两液层接界面呈棕色环。
本品经硫酸水解后,生成的亚硝酸,可与儿茶酚溶液作用生成对-亚硝基儿茶酚,再加入硫酸,溶液显暗绿色。
临床主要用于缓解和预防心绞痛、心肌梗死和冠状循环功能不全等疾病。
单硝酸异山梨酯本品为硝酸异山梨酯的活性代谢产物,具有明显的扩血管作用。
口服吸收、分布迅速,不受肝代谢效应的影响,生物利用度几乎100%。
以原形药物进入体循环,主要以异山梨醇及本品的葡萄糖醛酸结合物的形式自尿液排出,半衰期5h 左右。
主要用于冠心病的治疗和预防心绞痛发作,效果优于硝酸异山梨酯。
在贮存和运输硝酸酯类药物应注意哪些问题?为什么?硝酸酯类药物在受热或剧烈震动下易发生爆炸,产生大量氮和二氧化碳等气体,故药用为其10%的无水乙醇溶液,运输或贮存时应避免剧烈碰撞。
抗心绞痛药作用机制 钙通道阻滞剂:钙通道阻滞剂通过抑制细胞外Ca2+内流,使心肌和血管平滑肌细胞内缺乏足够的Ca2+,结果导致心肌收缩力减弱,心率减慢,同时血管平滑肌松弛,血管扩张,血压下降,从而减少心肌耗氧量。
分类钙通道阻滞剂按化学结构可分为: 二氢吡啶类:硝苯地平、氨氯地平等 芳烷基胺类:维拉帕米、加洛帕米等 苯并硫氮杂zaozi002类:地尔硫zaozi002 二苯基哌嗪类:桂利嗪、氟桂利嗪、利多氟嗪等硝苯地平OOO 2NNO 2NO 2O 222HNH 3C CH 3O CH 3O H 3COO NO 21、本品的丙酮溶液,加20%的氢氧化钠溶液振摇后,溶液显橙红色。
2、本品遇光不稳定,分子内部发生光催化歧化反应,生成硝基苯吡啶的衍生物和亚硝基苯吡啶衍生物,后者对人体有害,故在生产和贮存中要注意遮光、密封贮存。
药学职称基础知识药物化学知识点麻醉药1.全身麻醉药:氟烷、盐酸氯胺酮、γ-羟基丁酸钠2.局部麻醉药:盐酸普鲁卡因盐酸丁卡因盐酸利多卡因镇静催眠药苯巴比妥、异戊巴比妥、硫喷妥钠、地西泮抗癫痫药苯妥英钠、卡马西平、丙戊酸钠抗精神失常药1.吩噻嗪类:盐酸氯丙嗪2.二苯并氮卓类:氯氮平3.丁酰苯类:氟哌啶醇抗抑郁药盐酸阿米替林解热镇痛药1.水杨酸类:阿司匹林2.乙酰苯胺类:对乙酰氨基酚非甾体抗炎药1.芳基烷酸类:吲哚美辛、布洛芬、萘普生2.1,2-苯并噻嗪类:美洛昔康抗痛风药丙磺舒、秋水仙碱镇痛药1.天然生物碱类:盐酸吗啡2.合成镇痛药:盐酸哌替啶、盐酸美沙酮3.半合成镇痛药:磷酸可待因胆碱受体激动剂1.M胆碱受体激动剂:乙酰胆碱、氯贝胆碱、硝酸毛果云香碱2.乙酰胆碱酯酶抑制剂:毒扁豆碱、溴新斯的明、氢溴酸加兰他敏3.胆碱酯酶复活剂:碘解磷定、氯磷定胆碱受体拮抗剂1.M胆碱受体拮抗剂:硫酸阿托品、哌仑西平2.N1、N2胆碱受体拮抗剂:1.非去极化型:筒箭毒碱、泮库溴铵、2.去极化型:氯化琥珀胆碱肾上腺素能受体激动剂盐酸肾上腺素、盐酸异丙肾上腺素、重酒石酸去甲肾上腺素、盐酸多巴胺、盐酸甲氧明、盐酸麻黄碱、沙美特罗肾上腺素能受体拮抗剂1.α受体拮抗剂:盐酸哌唑嗪本品为选择性突触后α1受体阻断剂2.β受体拮抗剂:盐酸普萘洛尔本品是一种非选择性的β受体阻断剂、阿替洛尔为β肾上腺受体阻断剂,对心脏的β1受体有较强的选择性。
用于治疗高血压、心绞痛及心律失常。
心血管系统药物调血脂药1.苯氧乙酸类:氯贝丁酯2.HMG-CoA还原酶抑制剂:辛伐他汀、洛伐他汀、阿托伐他汀3.贝特类:非诺贝特、吉非罗齐抗心绞痛药1.亚硝酸酯类:硝酸甘油、硝酸异山梨酯2.钙离子拮抗剂:①二氢吡啶类:硝苯地平、尼索地平和尼莫地平等。
②芳烷基胺类:维拉帕米,左旋体是室上性心动过速患者的首选药,右旋体用于治疗心绞痛。
③苯硫氮卓类:地尔硫卓。
④二苯哌嗪类:氟桂利嗪和桂利嗪等。
大二药物化学知识点总结药物化学是药学专业中的一门重要课程,它研究的是药物的化学性质、合成方法、结构与活性关系等内容。
在大二的学习中,我们学习了许多药物化学的知识点,下面我将对这些知识点进行总结。
一、药物分类1. 按药理作用分类:抗生素、抗肿瘤药、心血管药等。
2. 按化学结构分类:酰胺类、酮类、酯类等。
3. 按来源分类:中药、化学药物等。
二、药物的结构与活性关系1. 药效图解:通过一系列结构与活性关系的图表来研究化合物的药效。
2. 结构优化:通过对化合物结构的合理设计和改造来提高其活性。
3. 化合物的构效关系:活性基团、顺序、立体构型等对化合物活性的影响。
三、药物的合成方法1. 网站信息:在咨询网站和相关数据库时,需要注意信息的准确性和可靠性。
2. 化合物合成的基本方法:包括烯烃的合成、酰胺的合成、酮类的合成等。
3. 化合物合成路线的设计:通过对合成路径的优化设计,提高合成产率和效率。
四、药物的药代动力学1. 药物吸收:包括口服吸收、经皮吸收等。
2. 药物分布:主要分布在血液、组织和器官中。
3. 药物代谢和排泄:通过肝脏和肾脏等器官进行代谢和排泄。
五、药物的贮藏和稳定性1. 药物的贮藏条件:光线、温度和湿度等影响药物稳定性的因素。
2. 药物的分解和降解:药物在贮藏和使用过程中可能发生分解和降解反应,影响其活性和疗效。
3. 药物稳定性的评价:通过对药物的稳定性进行评价,选择合适的保存和使用条件。
六、药物剂型和药物制剂1. 药物剂型:包括片剂、胶囊剂、注射剂等。
2. 药物制剂的制备方法:通过研磨、混合、溶解、浸渍等方法制备成药物制剂。
七、药物质量控制1. 药物质量标准:通过药典等规定药物的质量指标。
2. 药物质量控制方法:包括药物含量测定、纯度测定等。
总结:大二药物化学的内容涵盖了药物分类、药物结构与活性关系、药物合成方法、药代动力学、药物的贮藏和稳定性、药物剂型和药物制剂以及药物质量控制等方面。
通过系统学习和掌握这些知识点,我们能够更好地理解药物的化学特性,并在日后的药物研究和开发中能够有所应用。
药物化学知识点药物化学是药学中的一个重要分支,研究的是药物的化学结构和性质以及药物在药理和药代方面的应用。
下面将介绍一些常见的药物化学知识点。
一、基本概念药物化学是研究药物的化学组成和性质的学科,它关注药物的结构与活性之间的关系,帮助人们理解药物的作用方式和药物设计的原则。
二、药物的分类药物可以根据其化学结构的不同而进行分类。
其中,常见的分类法包括:1. 有机化合物药物:这类药物的分子结构中含有碳原子,并且通常以有机合成的方式制备。
2. 无机化合物药物:这种药物的分子结构中不含碳原子,主要由无机合成方法或提取自天然矿物物质中。
3. 天然药物:这类药物是从植物、动物或微生物等自然界中提取的化合物,通常具有复杂的结构和多种药理活性。
三、药物的结构活性关系药物的结构活性关系是药物化学的核心内容之一。
研究者通过改变药物分子中的不同基团或原子的排列,来探索不同结构对于药物活性的影响。
这有助于药物设计师优化药物分子,以提高其疗效和安全性。
四、酸碱性质药物分子通常具有酸性或碱性的特性。
药物的酸碱性质对其在人体内代谢和排泄的过程中起到重要的影响。
酸性药物通常在碱性环境中离解得更好,而碱性药物则在酸性环境中表现更好。
药物的酸碱性质也与其与生物体内其他分子的相互作用有关。
五、代谢和药效活性药物在体内的代谢过程对于其药效活性和安全性都有着重要的影响。
代谢一般发生在肝脏中,通过一系列酶的催化作用将药物转化为代谢产物。
药物的代谢过程可以增加、减弱或改变药物的活性。
六、毒性和安全性的评价药物的毒性评价是药物化学研究中的关键环节之一。
通过一系列实验和研究方法,研究者可以评估药物的毒性和安全性,为药物设计、开发和临床使用提供重要的依据。
七、药物合成和制备药物的化学合成是药物化学的重要内容之一。
研究者通过合成合适的化合物,以改善其疗效、减轻毒性或增加稳定性。
合成药物的方法通常包括有机合成、无机合成和天然产物的提取与改造。
总结:药物化学作为药学领域的重要学科,研究药物的化学结构和性质,以及药物在药理和药代学方面的应用。
药物化学要点笔记(打印版)一、药物化学基础- 药物化学的定义:药物化学是研究药物的化学结构、性质、合成方法以及药物与生物体之间相互作用的科学。
- 药物分子的构成:药物分子由多个原子通过化学键连接而成,原子之间的连接方式和空间结构决定了药物的特性和药效。
- 药物化学的重要性:药物化学是药物研发的核心领域,通过药物化学的研究可以设计出更安全、更有效的药物。
二、药物分子的特性1. 化学键类型:- 共价键:药物分子中最常见的键,通过共享电子而形成。
- 离子键:通过正负离子间的电荷吸引而形成。
- 氢键:通过氢原子与氧、氮、氟等电负性较强的原子间的相互作用而形成。
2. 手性性质:- 手性分子:具有非对称碳原子的分子,分为左旋和右旋两种结构,分别表示为“L-”和“D-”。
- 光学异构体:由于手性性质不同而具有不同药理活性的同分异构体。
三、药物化学合成方法1. 有机合成:- 化学反应:药物分子的合成通常通过有机化学反应进行,如酰化、醇化、酯化等。
- 催化剂:合成过程中常使用催化剂来提高反应速率和收率。
- 保护基团:在合成中,常用保护基团来保护某些化学官能团,以避免其被其他反应影响。
2. 组合合成:- 组合法:通过将已有的药物分子组合起来形成新的药物分子。
- 序贯反应:通过按照特定的顺序进行多步反应合成药物。
四、药物与生物体的相互作用1. 药物靶标:- 药物作用靶标:在生物体内具有特定功能的蛋白质、酶或受体。
- 亲和力:药物与靶标之间的结合能力与稳定性。
2. 药效评价:- 作用方式:药物通过影响靶标的结构或功能来发挥药理作用。
- 半数抑制浓度(IC50):药物能抑制靶标活性的浓度。
以上是药物化学的一些要点笔记,希望对您有所帮助。
如有任何问题,请随时咨询。
第二章中枢神经系统药物第一节镇静催眠药异戊巴比妥①②③镇静、催眠、抗惊厥③本品与中枢苯二氮卓受体结合而发挥安定、镇静、催眠、肌肉松弛及抗惊厥作用。
临床上主要用于治疗神经官能症酒石酸唑吡坦主要的镇静催眠药第二节抗癫痫药物苯妥英钠①②③治疗癫痫大发作和局限性发作的主要用药,对小发作无效卡马西平①②③治疗癫痫大发作和综合性局灶性发作卤加比治疗癫痫化学名】N,N-二甲基-2-氯-10H-吩噻嗪-10-丙胺盐酸盐(冬眠灵)③治疗精神分裂症、躁狂症,大剂量可应用于镇吐、强化麻醉及人工冬眠氟哌啶醇治疗精神分裂症、躁狂症氯氮平治疗多种类型精神分裂症第四节抗抑郁药盐酸丙咪嗪治疗内源性抑郁症、反应性抑郁症及更年期抑郁症、小儿遗尿;盐酸氟西汀治抑郁症第五节镇痛药H吗啡①N②【结构特点】(1) 为含有部分氢化菲核的由五个环并合的刚性分子。
(2) 分子中有五个手性中心(5R,6S,9R,13S和14R),共16种光学异构体。
天然吗啡为左旋体。
(3) B/C环呈顺式,C/D环呈反式,C/E环呈顺式。
(4) C-5、C-6、C-14上的氢均与乙胺链呈顺势;C-4、C-5的氧桥与C-9、C-13的乙胺链呈反式。
(5) 整个分子呈T型。
③产生镇痛、镇咳、镇静作用,临床上主要用于抑制剧烈疼痛,亦可用于麻醉前给药盐酸哌替啶常用于分娩时镇痛③本品为阿片受体激动剂,镇痛效果强于吗啡、杜冷丁,其左旋体的作用=右旋体的20倍。
用作镇痛药,用于创伤、癌症剧痛及术后镇痛,并有显著镇咳作用。
主要用于海洛因成瘾的戒除治疗喷他佐辛镇痛为吗啡的三分之一第六节中枢兴奋药咖啡因用于中枢性呼吸衰竭、循环衰竭、神经衰弱和精神抑制吡拉西坦可改善轻度及中度老年痴呆者的认知能力,但对重度痴呆者无效。
还可用于脑外伤所致记忆障碍及弱智儿童第三章外周神经系统药物第一节拟胆碱药一胆碱受体激动剂氯贝胆碱用于手术后腹气胀、尿潴留以及其他原因所致的胃肠道或膀胱功能异常毛果芸香碱临床用其硝酸盐或盐酸盐制成滴眼液,用于治疗原发性青光眼③供口服。
甲硫酸新斯的明供注射用。
为经典的可逆性胆碱酯酶抑制剂,临床上用于治疗重症肌无力和术后腹气胀及尿潴留,并可作为肌松药过量中毒的解毒剂。
大剂量时可引起的恶心、呕吐、腹泻、流泪、流涎等副作用可用阿托品对抗。
盐酸多奈哌齐治疗AD症,对轻中度阿尔茨海默病患者有改善作用,对血管性痴呆患者也有显著疗效第二节抗胆碱药一 M受体拮抗剂硫酸阿托品用于解除平滑肌痉挛,抑制腺体分泌,抗心律失常,抗休克,临床用于治疗各种内脏绞痛,麻醉前给药,盗汗,心动过缓及多种感染中毒性休克。
眼科用于治疗睫状肌炎症及散瞳,还用于有机磷酸酯类中毒的解救溴丙胺太林对胃肠道平滑肌有选择性,用于胃与十二指肠溃疡、胃肠痉挛和妊娠呕吐,可减少胃液分泌哌仑西平抑制胃酸和胃蛋白酶的分泌,是一种新型的治疗消化性溃疡药二 N受体拮抗剂笨磺阿曲库铵肌松泮库溴铵肌松药,静注适用于各类手术、气管插管术、破伤风及惊厥时的肌肉松弛第三节肾上腺素受体激动剂肾上腺素①(R)-4-[2-(甲氨基)-1-羟基乙基]-1,2-苯二酚②d-(CHOHCOOH)2NH3.HClHOHOHNOHH2/Pd-CHOHOOHN.HClCH3NH2,HClPOCl3,ClCH2COOHHOHOClOHOHOR(-)-AdrenalineHOHOHNOHHOHOHNOH③用于过敏性休克、心脏骤停和支气管哮喘的急救,还可制止鼻黏膜和牙龈出血。
与局部麻醉药合用可减少其毒副作用,可减少手术部位的出血盐酸麻黄碱可预防支气管哮喘发作和治疗轻症支气管哮喘。
但对重症和急性支气管哮喘发作效果较差。
也可治鼻塞。
还可防治局麻药硬膜外、蛛网膜下腔麻醉和某些药物如氯丙嗪引起的低血压。
可缓解荨麻疹和血管神经性水肿引起的皮肤瘙痒沙丁胺醇治疗支气管哮喘,哮喘型支气管炎和肺气肿患者的支气管痉挛第四节组胺H1受体拮抗剂马来酸氯苯那敏①(R)-4-[2-(甲氨基)-1-羟基乙基]-1,2-苯二酚③用于过敏性鼻炎,皮肤黏膜的过敏,荨麻疹,血管舒张性鼻炎,枯草热,接触性皮炎以及药物和食物引起的过敏性疾病氯雷他定用于减轻过敏性鼻炎的症状,及治疗荨麻疹和过敏性关节炎;盐酸西替利嗪抗过敏药咪唑斯汀可以治疗过敏性鼻炎和慢性特发性荨麻疹第五节局部麻醉药盐酸普鲁卡因化学名:4-氨基苯甲酸-2-(二乙氨基)乙酯盐酸盐为临床上广泛使用的局麻药,用于浸润麻醉、阻滞麻醉、腰麻、硬膜外麻醉和局部封闭疗法。
盐酸利多卡因化学名:2-(二乙氨基)-N-( 2,6-二甲基苯基)乙酰胺盐酸盐一水合物盐酸达克罗宁第四章循环系统药物第一节β受体阻滞剂盐酸普萘洛尔①1-异丙氨基-3-(1-萘氧基)-2-丙醇盐酸盐②O NHH OH. HClH2NHClOO+OClOHO NHH OH③用于心绞痛、窦性心动过速、心房扑动及颤动等室上性心动过速,也可用于房性或室性早搏及高血压等病的治疗第二节钙通道阻滞剂硝苯地平1.高血压:用于轻、中度高血压2.心绞痛3.急性左心衰竭4.雷诺综合征:解除血管痉挛,增加支端供血。
也可用于冻疮的治疗盐酸地尔硫卓可用于轻、中度高血压。
对劳累型心绞痛及冠脉痉挛引起的变异型心绞痛在内的各种缺血性心脏病均有效。
也有减缓心率的作用第三节钠、钾通道阻滞剂一钠通道阻滞剂硫酸奎尼丁治疗心房颤动、阵发性心动过速和心房扑动盐酸美西律用于各种室性心率失常,如过早搏动、心动过速,尤其是洋地黄中毒、心肌梗死或心脏手术所引起者二钾通道阻滞剂盐酸胺碘酮③治疗心绞痛和抗心律失常,可用于其他药物治疗无效的严重心律失常。
为广谱抗心律失常药第四节血管紧张素转化酶抑制剂及血管紧张素Ⅱ受体拮抗剂一血管紧张素转化酶抑制剂(ACEI)卡托普利 1.轻、中、重度各型高血压:尤其适用于伴有慢性心功能不全、缺血心脏病及糖尿病所致肾病的高血压患者的治疗 2.慢性心功不全(可口服)二血管紧张素Ⅱ受体拮抗剂氯沙坦①【化学名】2-丁基-4-氯-1-[[2’-(1H-四唑-5-基)③抗高血压第五节NO供体药物硝酸甘油治疗心绞痛第六节强心药地高辛治疗充血性心力衰竭,房颤及心率不齐第七节调血脂药一羟甲戊二酰辅酶A还原酶抑制剂洛伐他汀①②③降低Ⅱa和Ⅱb型高脂蛋白血症(以胆固醇升高为主)及原发性高胆固醇血症二影响胆固醇和甘油三酯代谢药物吉非贝齐对血浆TG(甘油三酯)明显增高和伴有HDL(高密度脂蛋白)降低或LDL(低密度脂蛋白)升高类型的高脂血症疗效最好第八节抗血栓药氯吡格雷预防缺血性脑卒中、心肌梗死及外周血管病华法林钠治疗急性心肌梗死、肺栓塞及人工心脏瓣膜手术等发生的血栓栓塞性疾病第九节其他心血管系统药物一作用于α肾上腺素受体的药物二作用于血管平滑肌药物和作用于交感神经末梢药物利血平抗高血压第五章消化系统药物第一节抗溃疡药盐酸雷尼替丁①②③治疗十二指肠溃疡、良性胃溃疡、术后溃疡、反流性食管炎二质子泵抑制剂唑③能使十二指肠溃疡较快愈合第二节止吐药昂丹司琼用于对抗癌症化学治疗和放射治疗引起的呕吐,以及手术后的呕吐盐酸地芬尼多抗晕和镇吐,可用于运动病马来酸硫乙拉嗪治疗全身麻醉或眩晕所致的恶心和呕吐第三节促动力药西沙必利胃食管反流,慢性功能性、非溃疡性消化不良、胃轻瘫及便秘甲氧氯普胺可改善糖尿病性胃轻瘫和特发性胃轻瘫的胃排空速率。
对非溃疡性消化不良亦有效。
对反流病效果不佳。
大剂量时可作止吐药多潘立酮促进胃动力胃排空及止吐。
对反流病效果不佳第四节肝胆疾病辅助治疗药物一肝病辅助治疗药联苯双酯提高肝脏的解毒能力,促进干蛋白质合成,减轻肝细胞损伤,促进肝损伤的修复,降低血清丙氨酸氨基转移酶(ALT)水飞蓟宾改善肝功能,稳定肝细胞膜的作用。
适用于急、慢性肝炎,早期肝硬化,肝中毒等二胆病辅助治疗药熊去氧胆酸增加胆汁分泌使胆汁变稀。
促进脂肪消化吸收。
治疗胆囊及胆道功能失调、胆道感染、胆结石第六章解热镇痛药和非甾体抗炎药第一节解热镇痛药③1.解热镇痛:对感冒发热可使体温降到正常。
对轻中度的体表疼痛,尤其是炎性疼痛如头痛、牙痛、神经痛、月经痛和术后创口痛等有明显镇痛作用 2.抗炎抗风湿:治疗风湿或类风湿关节炎 3.抗血栓形成:血栓形成与血小板有关对乙酰氨基酚①②③用于感冒发热、神经痛、肌肉痛及对阿司匹林不能耐受或过敏的患者无抗炎抗风湿作用第二节非甾体抗炎药羟布宗可用于风湿性、类风湿性关节炎及强直性脊柱炎,尤其以急性进展期疗效较好。
较大剂量可促进尿酸排出,可用于治疗急性痛风甲芬那酸可用于风湿性、类风湿性关节炎吲哚美辛抗炎镇痛。
可用于风湿性、类风湿性关节炎,治疗急性痛风性关节炎,还可用于恶性肿瘤引起的发热及其他难以控制的发热③可用于风湿性、类风湿性关节炎和骨关节炎,也可用于一般解热镇痛萘普生有较强的抗炎抗风湿和解热镇痛作用。
适用于风湿性、类风湿性关节炎和骨关节炎及急性痛风等。
对三叉神经痛、头痛也有较好的疗效双氯芬酸钠解热,镇痛,抗炎吡罗昔康风湿性、类风湿性关节炎、痛风、多种疼痛塞来昔布治疗急性或慢性期骨关节炎和类风湿关节炎的症状和体症第七章抗肿瘤药第一节生物烷化剂③抗瘤谱广,主要治疗恶性淋巴瘤、多发性骨髓瘤、乳腺癌、卵巢癌、小细胞肺癌、神经母细胞瘤、视网膜母细胞瘤、软组织肉瘤以及急性白血病和慢性淋巴细胞白血病卡莫司汀脑瘤、转移性脑瘤及其他中枢神经系统肿瘤,恶性淋巴瘤白消安对慢性粒细胞白血病疗效显著,对慢性粒细胞白血病急性病变及急性白血病无效顺铂睾丸癌、卵巢癌、肺癌、鼻咽癌、淋巴癌、膀胱癌第二节抗代谢药物③广谱抗肿瘤,是目前治疗消化道癌症(胃癌、结肠癌、食管癌、肝癌、胰腺癌等)的主要药物。
也常用于治疗乳腺癌、卵巢癌、宫颈癌、绒毛膜上皮癌、膀胱癌等盐酸阿糖胞苷 治疗成人急性粒细胞或单核细胞白血病的有效药物巯嘌呤 对儿童急性淋巴性白血病疗效好 大剂量对绒毛上皮癌有一定疗效 甲氨蝶呤 儿童急性白血病、绒毛膜上皮癌、成骨肉瘤 第三节 抗肿瘤抗生素放线菌素D 对恶性葡萄胎、绒毛膜上皮癌、睾丸癌、淋巴瘤、肾母细胞瘤、横纹肌肉瘤及神经母细胞瘤等有较好疗效盐酸博来霉素 对鳞状上皮细胞癌、宫颈癌和脑癌都有效盐酸多柔比星治疗急性白血病,恶性淋巴瘤,乳腺癌,肺癌,多发性骨髓瘤,软组织肉瘤及骨肉瘤 盐酸米托蒽醌 治疗晚期乳腺癌、非何杰金氏病淋巴瘤和成人急性非淋巴细胞白血病复发 第四节 抗肿瘤的植物药有效成分及其衍生物羟基喜树碱 肠癌、肝癌、白血病 硫酸长春碱 淋巴瘤、绒毛膜上皮癌、睾丸肿瘤 紫杉醇 卵巢癌、乳腺癌、大肠癌 第八章 抗生素第一节 β-内酰胺抗生素 一 青霉素类青霉素钠 ①(2S,5R,6R)-3,3-二甲基-6-(2-苯乙酰氨基)-7-氧代-4-硫杂-1-氮杂双环[3.2.0]庚烷-2-甲酸钠盐②O③主要用于治疗革兰氏阳性菌,如链球菌、葡萄球菌、肺炎球菌等所引起的全身或严重的局部感染。