汽车电动助力转向系统的匹配分析及优化设计
- 格式:pdf
- 大小:1.83 MB
- 文档页数:6
汽车电动助力转向系统的控制策略分析陈军明(郑州宇通客车股份有限公司,郑州 450000)摘 要:汽车转向为汽车行业各项性能中的重要组成部分,电动助力转向技术属于其他类别的新兴技术,动力转向模式区别于传统电力的工作原理,其主要是通过电子控制系统的具体操作单元,电子控制系统传感器主要以采集信号控制功率的电机运行,从而辅助汽车在转向方面的功能实现。
总之,汽车电动助力转向系统是目前电子控制技术研究中的一项重要领域,应对其相关软件控制器进行合理设计,使系统基本助力特性得到有效调整,从而使驾驶要求得到有效提升。
关键词:汽车技术;电动助力转向;系统控制0 引言 交通工具的使用和发展人类社会在任何时代都具有技术提前性,汽车出现后,成为了陆地上的交通工具,有不可替代的作用在。
现代社会人们逐渐增强汽车的功能指标要求,同时在细节层面的优化发展的关键点之一。
操作汽车时,转向在驾驶的过程中是必不可少的步骤,除了司机需要按照操作标准进行设备调整,在汽车内部零件和设备系统的优化,科技水平也在不断上升,从传统转向系统液压制动转变为今天已经开始使用电动助力转向,这是一个技术的飞跃,同时,是汽车应用领域的一个巨大进步。
其改变了过去机械传动在实际运行中故障率高的问题,该技术的具体发展与汽车行业综合技术水平的提高密切相关。
1 汽车电动助力转向系统的概述 汽车电动助力转向系统的基本结构和位置各不相同,主要包括转向轴动力结构、齿轮动力结构和齿条动力结构。
虽然位置上有一定差异,但基本工作原理是相似的,其中最典型的是转向轴动力结构。
结构主要取决于输入轴和输出轴的力量,通过基本驱动机制来指导整个方向盘转向杆,也可以确保司机在现实操作过程中,通过输入角位移,速度传感器的对车速进行有效测试,确保传输操作信号及电子控制单元(ECU)的实现有效采集、从而确定电子控制单元(ECU)的功率大小和方向值,可以得出与之相对应的输出转矩功率,可以指导驱动电路的控制信号,以促进整体转向轴电压和电流对动力转向功能基本电机输出转矩的实现过程中的整体实时控制。
汽车电动助力转向系统设计毕业论文本章主要介绍汽车电动助力转向系统设计的背景和意义,以及论文的目的和结构安排。
汽车转向系统是车辆控制的重要组成部分,它直接影响着驾驶员的操控感受和行车安全性。
随着科技的发展,传统的液压助力转向系统逐渐被电动助力转向系统所取代。
电动助力转向系统通过电力传动装置提供操控力,相较于液压助力转向系统具有更高的效率、更好的节能性和可靠性。
本文的目的是设计一种可靠、高效的汽车电动助力转向系统。
在研究的基础上,将重点关注系统的结构设计、控制算法优化、故障诊断等方面。
通过对系统的设计和优化,可以提高汽车的操控性和安全性。
本文结构安排如下:第二章将介绍汽车电动助力转向系统的背景与发展;第三章将详细阐述系统的设计原理与结构;第四章将重点探讨控制算法的优化与实现;第五章将研究系统的故障诊断方法与技术;最后,第六章将总结全文,并提出进一步研究的展望。
通过本文的研究和实践,相信可以为汽车电动助力转向系统的设计与优化提供一定的参考和借鉴,推动汽车技术的发展与进步。
在这一部分,我们将对汽车电动助力转向系统设计相关的文献进行综述。
我们将总结已有的研究成果,以及当前存在的问题。
具体内容}本文详细介绍了汽车电动助力转向系统设计的方法和步骤,涵盖了传感器选择、电机控制、系统优化等方面。
传感器选择在汽车电动助力转向系统设计中,选择合适的传感器是至关重要的。
传感器可以检测车轮的转向角度、转向速度以及转向力等参数,为后续的电机控制提供必要的数据支持。
常见的传感器包括转向角度传感器、转向速度传感器和转向力传感器。
在选择传感器时,需考虑其精度、响应速度和可靠性等因素,并确保其能与电机控制系统良好地配合。
电机控制在汽车电动助力转向系统中,电机控制是实现转向功能的核心部分。
电机控制系统通过接收传感器提供的数据,计算并控制电机的输出力矩,从而实现汽车的转向功能。
电机控制的关键是控制算法的设计和实现。
常见的电机控制方法有PID控制、模糊控制和神经网络控制等。
图1 某7座运动型多功能车电机特性曲线图2 某7座运动型多功能车转向助力曲线
106
2018.12
图4 转向机安装点结构
2.3 转向系统刚度
经过多轮实车验证,转向管柱和转向机总成刚度的提升,最终
使转向系统刚度提升为1.8~1.9 N·m/°,再配合转向助力曲线调校,
能有效改善中间位置感觉,增强路感。
针对上述电动助力转向系统调校方法的陈述,电机输出力矩,
即转速曲线是在车型整车参数确定之后,EPS计算选型时进行确定。
一般情况下,电机特性曲线一经确定,后续调校过程不再更改。
转
向助力曲线和主动回正曲线是整个转向系统匹配调校过程中的主要图3 某7座运动型多功能车主动回正参数
2 硬件调试
某款运动型多功能车助力曲线调整到极限时,仍存在中间位置
感差问题,此时需从转向管柱和转向机硬件上,提升整个系统的刚
度以改善中间位置感。
2.1 转向管柱总成刚度
转向管柱总成刚度值低,转向时扭杆响应迟滞,产生较大的
中间位置“死区”;转向管柱总成刚度高,转向手力值大。
因此,合
适的总成刚度是提升转向性能的重要参数。
针对某款运动型多功能。
汽车电动助⼒转向机构的设计讲解汽车电动助⼒转向机构的设计引⾔在汽车的发展历程中,转向系统经历了四个发展阶段:从最初的机械式转向系统(Manual Steering,简称MS)发展为液压助⼒转向系统(Hydraulic Power Steering,简称HPS),然后⼜出现了电控液压助⼒转向系统(Electro Hydraulic Power Steering,简称EHPS)和电动助⼒转向系统(Electric Power Steering,简称EPS)。
装配机械式转向系统的汽车,在泊车和低速⾏驶时驾驶员操纵负担过于沉重,为了解决这个问题,美国GM公司在20世纪50年代率先在轿车上采⽤了液压助⼒转向系统[1]。
但是,液压助⼒转向系统⽆法兼顾车辆低速时的转向轻便性和⾼速时的转向稳定性,因此在1983年⽇本koyo公司推出了具备车速感应功能的电控液压助⼒转向系统。
这种新型的转向系统可以随着车速的升⾼提供逐渐减⼩的转向助⼒,但是结构复杂、造价较⾼,⽽且⽆法克服液压系统⾃⾝所具有的许多缺点,是⼀种介于液压助⼒转向和电动助⼒转向之间的过渡产品。
到了1988年,⽇本Suzuki公司⾸先在⼩型轿车Cervo上配备了Koyo公司研发的转向柱助⼒式电动助⼒转向系统;1990年,⽇本Honda 公司也在运动型轿车NSX上采⽤了⾃主研发的齿条助⼒式电动助⼒转向系统,从此揭开了电动助⼒转向在汽车上应⽤的历史。
第1章概述1.1电动助⼒转向的优点与传统的转向系统相⽐,电动助⼒转向系统最⼤的特点就是极⾼的可控制性,即通过适当的控制逻辑,调整电机的助⼒特性,以达到改善操纵稳定性和驾驶舒适性的⽬的。
作为今后汽车转向系统的发展⽅向,必将取代现有的机械转向系统、液压助⼒转向系统和电控制液压助⼒转向系统[2]。
相⽐传统液压动⼒转向系统,电动助⼒转向系统具有以下优点:(1)只在转向时电机才提供助⼒,可以显著降低燃油消耗传统的液压助⼒转向系统有发动机带动转向油泵,不管转向或者不转向都要消耗发动机部分动⼒。
线性电动助力转向系统的设计与性能分析引言随着汽车行业的发展,电动助力转向系统得到了广泛的应用。
传统的液压助力转向系统存在一些问题,例如油液泄露、能量浪费等。
而线性电动助力转向系统作为一种新兴的技术,具有更高效、更可靠的特点。
本文将探讨线性电动助力转向系统的设计原理和性能分析。
一、线性电动助力转向系统的原理线性电动助力转向系统是一种基于电机驱动的转向系统。
它通过电机控制活塞的运动,从而实现对转向系统的辅助力矩调节。
其基本原理是利用电机的力矩产生能力,通过齿轮和传动杆将电机的旋转运动转换为线性运动,进而作用于转向系统。
二、线性电动助力转向系统的设计要点1. 动力系统设计线性电动助力转向系统的动力系统设计是整个系统的核心。
首先需要确定所需要的动力大小和速度范围。
通过计算所需的辅助力矩和转向速度,选择合适的电机型号。
然后根据电机的特性,确定适当的减速比和传动杆长度,以保证系统能够提供足够的力矩和速度。
2. 控制系统设计线性电动助力转向系统的控制系统设计则需要考虑到系统的精度和稳定性。
通过传感器对转向系统的状态进行实时监测,将监测结果反馈给控制器。
控制器根据反馈信号调节电机的工作状态,以实现辅助力矩的精确调节。
同时,还需要考虑到系统的故障检测和保护功能,以确保系统的安全性和可靠性。
3. 机械结构设计线性电动助力转向系统的机械结构设计需要考虑到系统的紧凑性和可靠性。
通过合理设计的传动杆和齿轮系统,将电机的旋转运动转换为线性运动,并将辅助力矩传递给转向系统。
同时还需要考虑到系统的噪音和振动问题,通过合理的隔振和减震设计来提高系统的舒适性。
三、线性电动助力转向系统的性能分析1. 力矩输出性能线性电动助力转向系统的力矩输出性能是衡量系统性能的重要指标。
通过力矩传感器对系统的输出力矩进行实时监测,可以评估系统的稳定性和精度。
同时,还需要考虑到辅助力矩的增益和响应速度,以提高系统的灵敏性和控制性。
2. 能量效率线性电动助力转向系统的能量效率直接影响到系统的能耗和使用寿命。
电动助力转向系统助力电机的匹配本文对电动助力转向系统助力电机的匹配进行了分析,阐述了电机扭矩、转速参数的确定方法,为我国电动助力转向系统的设计提供了一定的借鉴。
标签:电动助力转向器;助力电机;匹配分析1 引言电动助力转向系统(EPS)具有操纵稳定、节能环保的特点,是转向系统的发展方向之一。
本文通过对EPS系统助力电机的扭矩、转速匹配,为EPS的设计提供了理论指导。
2 助力电机的匹配电动助力转向系统是一种新型的汽车转向系统,最先应用在日本的微型轿车上[1],具有以往任何助力转向系统所不具备的助力效果和车速感应能力,安装电动助力转向系统的汽车提高了汽车的操纵稳定性与轻便性、“路感”、回正性等。
电动助力转向系统要求助力电机的工作电压低,并且具有足够大的额定功率和额定电流。
为了能够提供稳定可靠的助力转矩,EPS系统必须具有扭矩较大、力矩波动、转动惯量较小、易于控制等性能。
2.1 布置形式EPS系统按照助力电机安装位置可分为转向轴助力式C-EPS、小齿轮助力式P-EPS、齿条助力式R-EPS三种类型[2]。
选择类别时,汽车电机的性能、前轮垂直负荷、转向器附近空间等因素都要综合考虑。
C-EPS和P-EPS适于前轴负荷小于9千牛,1.5升以下的中小型车上,R-EPS转向系统适于9千牛以上,超过2升的大型车。
2.2 类型选择助力电机主要分为永磁有刷直流电机和永磁无刷直流电机。
有刷电机由于其机构简单、技术成熟、成本低廉得到广泛应用,助力电机应用车载12V直流电源[3]。
2.3 转矩匹配转矩确定依据:汽车处于原地静止转向,施加于方向盘的最大手部转矩不超5.5~7.5牛.米,电动机最大输出转矩Tmax满足下式:Tmax>(Trmax-Tdmaxgp)/(gpgm)(1)式中,Tmax为转向盘最大转矩;gp为转向器角传动比;gm为减速机构传动比。
Trmax为最大转向阻力矩。
由上式可知:助力电机最大输出转矩与Trmax、Tdmax、gp和gm有关。
汽车电动助力转向系统匹配设计计算及验证作者:吕祥张晶韦锦佳刘春元杨魏绮来源:《时代汽车》2019年第02期摘要:转向系统是汽车重要的组成部分,本文根据实际工作情况,介绍了汽车电动助力转向系统计算匹配,并验证了该方法的实用可行性。
关键词:电动助力转向系统匹配;齿条力;电机匹配1 引言转向系统影响着汽车行驶中的操纵稳定性以及行车安全,是汽车重要的系统之一。
电动助力转向系统(Electric Power Steering,简称EPS)具有节能、环保、高效等诸多优势,成为目前转向系统发展的主流趋势。
电动助力系统基本工作原理:当驾驶员转动方向盘时,控制器接收外部输入信号进而控制电机产生适当的助力大小及方向,为汽车转向提供助力。
开发EPS系统首先需要对转向系统进行合理匹配,基于有刷电机技术成熟,控制器简单,成本低,国内生产的电动助力转向系统多为有刷电机管柱式助力(即C-EPS),本文根据实际需要对C-EPS系统(见图1)进行匹配。
2 转向器匹配转向器是汽车转向系统的核心部件,汽车上常用的转向器较多为齿轮齿条式转向器和循环球式转向器。
齿轮齿条转向器结构简单、紧凑,质量小,布置占用体积小,省去循环球式转向器的直拉杆和转向摇臂结构,传动效率高,制造成本低等优点,广泛应用于乘用车上[1]。
本文选用齿轮齿条式转向器。
2.1 转向器最大输出转矩汽车转向过程中主要克服原地转向阻力矩、重力回正力矩、转向系统内部摩擦阻力。
根据经验,汽车满载时原地转向到极限具有最大的转向阻力矩,转向器的最大输出转矩应根据这一工况满足下式:其中:R—轮胎静半径,mm;σ—主销内倾角,deg;rs—主销偏移距(见右图2),mm;δ—轮胎内转角,deg。
2.2 最大齿条力计算当汽车轮胎转到极限位置时,考虑转向系统内部摩擦阻力,此时最大齿条力计算如下公式:(2-4)其中:Fmax—最大齿条力,N;Ff—转向系统内部摩擦阻力,取Ff=200N;L—转向节臂有效长度(图3),mm。
毕业设计(论文)题目汽车电动助力转向系统的设计专业学号学生指导教师答辩日期 20**年12月28日毕业设计(论文)任务书说明:请同学们下载后,上述五页与论文使用同材质纸张打印,此页不必打印。
目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 汽车转向系统简介 (1)1.1.1 转向系的设计要求 (1)1.2 EPS的特点及发展现状 (2)1.2.1 EPS与其他系统比较 (2)1.2.2 EPS的特点 (2)1.2.3 EPS在国内外的应用状况 (3)1.3 本课题的研究意义 (4)第2章电动助力转向系统的总体组成 (5)2.1 电动助力转向系统的机理及类型 (5)2.1.1 电动助力转向系统的机理 (5)2.1.2 电动助力转向系统的类型 (7)2.2 电动助力转向系统的关键部件 (9)2.2.1 扭矩传感器 (9)2.2.2 车速传感器 (9)2.2.3 电动机 (9)2.2.4 减速机构 (10)2.2.5 电子控制单元 (10)2.3 电动助力转向的助力特性 (11)第3章电动助力转向系统的设计 (12)3.1 对动力转向机构的要求 (12)3.2 齿轮齿条转向器的设计与计算 (12)3.2.1 转向系计算载荷的确定 (13)3.2.2 齿轮齿条式转向器的设计 (14)3.2.3 齿轮齿条转向器转向横拉杆的运动分析 (22)3.2.4 齿轮齿条传动受力分析 (24)3.2.5 齿轮轴的强度校核 (24)第4章转向传动机构的优化设计 (29)4.1 结构与布置 (29)4.2 用解析法求内、外轮转角关系 (30)4.3 转向传动机构的优化设计 (32)4.3.1 目标函数的建立 (32)4.3.2 设计变量与约束条件 (33)4.4 研究结论 (36)结论 (37)致谢 (39)参考文献 (40)附录1 (41)附录2 (46)摘要汽车转向系统可按转向的能源不同分为机械转向系统和动力转向系统两类。
汽车电动助力转向系统的优化在现代汽车技术的发展进程中,电动助力转向系统(Electric Power Steering System,简称 EPS)已经成为了一项关键的创新成果。
它不仅提升了驾驶的舒适性和操控性,还在能源效率和安全性方面带来了显著的优势。
然而,如同任何技术一样,电动助力转向系统仍有进一步优化的空间,以满足不断提高的汽车性能和用户需求。
电动助力转向系统的工作原理相对较为复杂,但简单来说,它是通过传感器感知驾驶员的转向意图和车辆的行驶状态,然后由电子控制单元(ECU)计算出所需的助力大小,并驱动电机提供相应的辅助力量。
这种系统相较于传统的液压助力转向系统,具有更高效、更灵活和更易于集成车辆其他电子系统的特点。
在优化电动助力转向系统时,首先需要关注的是其助力特性的优化。
助力特性直接影响着驾驶员在转向操作时的手感和车辆的响应性。
理想的助力特性应该在低速时提供较大的助力,以减轻驾驶员的转向负担,而在高速时则减少助力,保证车辆的行驶稳定性。
为实现这一目标,需要对传感器的精度和响应速度进行提升,以便更准确地获取转向信息。
同时,通过改进ECU 的控制算法,使其能够根据不同的车速、转向角度和车辆负载等因素,实时调整助力大小,从而提供更加线性和自然的转向助力感受。
电机是电动助力转向系统中的核心执行部件,其性能的优劣对整个系统的表现有着至关重要的影响。
因此,电机的优化也是一个关键的方面。
目前,一些先进的无刷直流电机在电动助力转向系统中得到了应用,它们具有更高的效率、更低的噪声和更长的使用寿命。
此外,通过优化电机的磁路设计、绕组结构和控制策略,可以进一步提高电机的输出扭矩和响应速度,同时降低能耗。
除了硬件方面的优化,软件的优化同样不可忽视。
先进的控制算法和软件程序可以使电动助力转向系统更加智能和可靠。
例如,采用自适应控制算法,系统可以根据驾驶员的驾驶习惯和车辆的使用环境,自动调整助力特性,以提供个性化的驾驶体验。
图 7仿真加速度和实际加速度对比曲线能造成危险。
如何使输出更为平滑且将跳跃点消除 , 这还需要对模型做进一步的改进。
参考文献 :[1] Y i K , Hong J , Kwon Y D. A Vehicle Control for Stop -and -go Cruise Control[J].J. Proc. Instn. Mech. Engrs. ,Part D ,2001,215:1099Ο1115. [2] Lee G D , K in S W. A Longitudinal Control System for a Platoon of Vehicles Using a Fuzz -sliding Mode Algorithm [J ].J. Mechatronics , 2002, 12 (1 :97Ο118. [3] Henning H ,StefanG ,Christoph H ,et al. Intelligent Fuzzy Distance and Cruise Control for PassengerCars[J].Journal of Intelligen t and Fuzzy Systems , 1998,6:315Ο327.[4] Axel F ,Werner S. Nonlinear ACC in Simulation and Measurement [J ].J. Vehicle System Dynamics , 2001,36(2/3 :159Ο177.[5]周亮 , 李克强 , 连小珉. “启 -停” 巡航控制系统纵向车距控制方法 [J].清华大学学报 (自然科学版, 2004,44(8 :1138Ο1141.[6] Naranjo J E , G onzales C. ACC +Stop &Go Maneuvers with Throttle and Brake Fuzzy Control [J].J. IEEE T ransanction on Intelligent T ransportation Systems , 2006,7(2 :213Ο225. (编辑苏卫国作者简介 :施绍有 , 男 ,1974年生。
客车电动液压助力转向系统的匹配设计发布时间:2021-06-15T16:00:24.100Z 来源:《基层建设》2021年第7期作者:黄家升[导读] 摘要:在现代汽车转向系统中,EHPS系统既能保证低速状态转向助力充足同时高速状态路感清晰,即可做到根据不同的车速、路况及驾驶状态而实时调整其助力的大小,以使得系统能够在不同工况下均能提供大小适中的转向助力。
珠海广通汽车有限公司摘要:在现代汽车转向系统中,EHPS系统既能保证低速状态转向助力充足同时高速状态路感清晰,即可做到根据不同的车速、路况及驾驶状态而实时调整其助力的大小,以使得系统能够在不同工况下均能提供大小适中的转向助力。
同时相较于全液压系统而言,由于EHPS 系统加装了电子控制单元(ECU),故该系统可结合多种反馈信号并根据ECU中预先设定的控制算法对助力系统进行更精确的控制,从而提高了系统响应的快速性、精确性及稳定性。
因此,EHPS系统具有十分强大的实用性。
关键词:客车;电动液压助力转向系统;匹配设计一、客车EHPS系统的设计要求针对客车EHPS系统的机械结构,设计时主要考虑以下几点:(1)客车静止转向时转向阻力矩最大,所需助力也最大,因此设计系统时必需保证提供的最大助力能够克服最大阻力矩以使车轮偏转。
转向所需助力越大,转向油泵输出液压油压力越大,选择油泵时必须满足最大泵油压力和高的泵油效率。
(2)由于异步电动机起动电流可高至额定电流的6倍,如果频繁起动对电动机本身影响很大,容易使电动机过热减少电动机寿命,并且转向系统也要求助力能够快速响应,因此客车直线行驶时,电动机必须处于低速旋转状态。
电动机一直旋转驱动转向油泵,液压油一直在液压循环系统之中,容易造成油温过高粘度下降并引起泄漏使得系统无法高效率的完成工作,因此必须采取措施对油液进行温度控制。
(3)转向系统影响着客车的行驶安全,因此在设计系统时必须考虑过载保护功能,设计合适的限压阀使得油压过大时部分油液能回流到油罐中,避免因油压过大对系统造成破坏。
汽车电动助力转向系统跑偏分析与解决措施摘要:汽车电动助力转向(Electric-Power-Steering,简称EPS)系统,作为一种新型的汽车动力转向系统,是辅助驾驶员进行转向操作的转向系统,能够提高汽车安全性能,节约能源,有利于环保,是一项紧扣现代汽车发展主题“安全、节能、环保”的高新技术。
电动助力转向系统一经出现就受到国内外汽车公司和设计人员的重视。
本文对汽车电动助力转向系统跑偏分析与解决措施进行分析,以供参考。
关键词:电动助力转向系统;行驶跑偏;转向回正引言车辆行驶跑偏是指汽车在干燥平坦道路上直线行驶,在对方向盘不加任何力的情况下,车辆自动向一侧方向偏离原行驶轨迹的现象。
GB7258—2017《机动车运行安全技术条件》中规定:机动车在平坦、硬实、干燥和清洁的道路上行驶不应跑偏,方向盘(或方向把)不应有摆振等异常现象。
1功能安全的商用车电动助力转向系统近年来,随着汽车集成化、智能化程度的不断提高,汽车电子系统的复杂程度也在同步增加。
为进一步提升汽车电子、电气系统的功能安全,相关国际标准《道路车辆功能安全》(ISO26262:2018)和国家标准《道路车辆功能安全》(GB/T34590—2017)相继出台。
汽车转向系统作为车辆基础性功能器件,其性能直接影响到车辆的操纵稳定性和安全性。
随着电子技术在汽车中的广泛运用,转向系统也较多地采用了电子器件,其中汽车电动助力转向(EPS)系统也越来越多地被应用在汽车上,EPS系统功能安全设计因此也成为了影响车辆安全行驶的重要因素。
我国从2022年起开始实施国家标准《汽车转向系基本要求》(GB17675—2021),该标准明确指出,所有符合标准适用范围内的车辆均应满足功能安全开发要求;此外,该标准附录B中还规定了转向电子控制系统在功能安全方面的文档、安全策略及验证确认的具体要求。
对于汽车转向系统的功能安全设计及验证方法,国内外学者也开展了大量研究。
“汽车在中高速行驶时应防止线控转向系统发生非意向性转向力矩大于转向力矩边界值”和“汽车在中高速行驶时应防止线控转向系统发生无法转向”这2个功能安全目标和功能安全概念,并分别开展了相关设计及测试验证;针对汽车转向系统概念阶段的开发,提出了具体的测试场景及测试结果评价的安全度量参数;基于汽车EPS系统功能安全设计,提出了一套硬件在环测试方法,并验证了该EPS系统安全机制的设计效果;尚世亮等对汽车电子电气系统故障注入方法、整车可控性指标进行了详细表述和系统性总结。
汽车电动助力转向系统优化随着汽车工业的不断发展,汽车的操控性和安全性越来越受到人们的关注。
电动助力转向系统作为汽车转向系统的重要组成部分,其性能的优劣直接影响着驾驶者的驾驶体验和行车安全。
因此,对汽车电动助力转向系统进行优化具有重要的现实意义。
一、汽车电动助力转向系统的工作原理汽车电动助力转向系统主要由转矩传感器、车速传感器、电子控制单元(ECU)、电动机和减速机构等组成。
当驾驶者转动方向盘时,转矩传感器会检测到转向转矩的大小和方向,并将其转化为电信号传递给 ECU。
车速传感器则会检测车辆的行驶速度,并将车速信号传递给 ECU。
ECU 根据接收到的转矩信号和车速信号,计算出所需的助力转矩,并控制电动机输出相应的转矩,通过减速机构施加到转向机构上,从而实现助力转向。
二、汽车电动助力转向系统优化的必要性1、提高驾驶舒适性优化后的电动助力转向系统可以根据车速和转向转矩的变化,提供更加平滑和舒适的助力,减少驾驶者在转向过程中的疲劳感。
2、增强操控稳定性通过精确的控制策略,优化后的系统能够在高速行驶时提供适当的阻尼,提高车辆的直线行驶稳定性;在低速行驶时提供较大的助力,使转向更加轻便灵活,增强车辆的操控性。
3、降低能耗高效的电动助力转向系统可以在满足助力需求的前提下,降低电动机的能耗,提高能源利用率,延长车辆的续航里程。
4、适应多样化的驾驶需求不同驾驶者对转向助力的需求可能存在差异,优化系统可以提供多种助力模式供选择,满足个性化的驾驶需求。
三、汽车电动助力转向系统优化的关键技术1、传感器技术高精度的转矩传感器和车速传感器是实现精确助力控制的基础。
优化传感器的测量精度、响应速度和可靠性,可以提高系统的性能。
2、控制算法控制算法是电动助力转向系统的核心。
先进的控制算法如模糊控制、神经网络控制等,可以更好地处理复杂的非线性系统,实现更加精准的助力控制。
3、电动机技术选择高效、低噪音、高扭矩的电动机,并优化其驱动电路和控制策略,能够提高系统的助力性能和可靠性。
电动助力转向系统的研究与设计摘要电动助力转向系统(Electric Power Steering System,简称EPS),是汽车工程领域的热门课题之一。
本文在研究了电动助力转向系统工作原理的基础上,设计开发了EPS的电子控制单元ECU (Electronic Control Unit)的硬件电路和相应的控制软件框图。
本文详细分析了电动助力转向系统电子控制单元的功能,研究开发了以89c52单片机为微处理器的电子控制单元。
控制单元具有实时数据信号采集和系统控制功能,根据采集的数据信号,确定电动机输出的目标电流,利用PWM脉宽调制技术,通过H桥式电路控制电动机的输出电流和转动方向,实现助力转向功能。
在研制了实验用ECU装置后,开发了相应的控制软件。
控制软件分为控制策略的实现和数据信号采集与分析两部分。
整个软件系统采用了模块化的设计思想。
在数据信号采集与控制部分,设计了系统主程序、A/D采集程序、车速信号采集程序和PWM控制程序。
本文所设计的EPS电子控制单元性能稳定,结构合理,与整车匹配性能好,可保证EPS实现良好的转向助力效果。
关键词:电动助力转向电子控制单元单片机控制策略Electronic power steering system Research and DesignABSTRACTElectric Power Steering System (EPS) is one of the focuses research in automotive engineering. This paper is based on the principles of EPS to study the operation, designed and developed the Electronic Control Unit (ECU) and the soft ware diagram of the ECU.The thesis Considers the functions of the electronic control unit of EPS, studied and developed the hardware that adopted 89c51as its microprocessor. The control unit was able to realize real-time data/signal acquisition and system control. The target current of motor output could be determined by the obtained data; and utilizing the Pulse-Width Modulation (PWM) technology, power could be provided to the steering system by controlling the output current and rotation direction through H-bridge circuit.The software program, which was divided into the realization of control strategy and the acquisition & control of data/signal, was developed in modular after the design of experimental ECU was completed. And the main program, A/D acquisition program, speed signal acquisition program and PWM control program are developed in the second part.The result showed that the electronic control unit designed was with stable performance, appropriate structure and excellent matching condition, and the excellent power steering effect could be ensured by EPS.Key words: Electric Power Steering System (EPS) Electronic Control Unit Single-Chip Microprocessor Control Strategy目录前言 (1)第1章绪论 (2)1.1汽车电动助力转向系统的特点 (2)1.2电动助力转向系统国内外的研究现状 (4)1.3 EPS的发展趋势和急待解决的核心技术 (5)1.4本课题研究的目的与意义 (6)第2章电动助力转向系统方案确定及工作原理 (7)2.1电动助力转向系统的工作原理 (9)2.1.1电动助力转向系统的组成和工作原理 (9)2.1.2电动助力转向系统的分类 (11)2.1.3电动助力转向系统的技术要求 (12)2.2电动助力转向系统的数学模型 (13)2.2.1转向盘和转向柱输入轴子模型 (14)2.2.2电动机模型 (14)2.2.3输出轴子模型 (16)2.2.4齿轮齿条子模型 (16)2.3电动助力转向系统的主要部分 (17)2.3.1转矩传感器 (18)2.3.2车速传感器 (19)2.3.3直流电动机 (20)2.3.4电磁离合器 (21)2.3.5减速机构 (22)2.3.6电子控制单元ECU (23)第3章电动助力转向系统的硬件设计 (24)3.1电子动力转向系统控制器的总体结构 (24)3.2控制器微处理芯片的选择 (26)3.2.1控制器微处理器常用芯片及选型 (26)3.2.2 89C52芯片及A/D转换芯片介绍 (26)3.2.3 89C52外部总线扩展及片外ROM的连接 (28)3.3控制器输入通道的设计 (30)3.3.1转矩信号的采集 (30)3.3.2电动机电流信号的采集 (31)3.3.3车速信号的采集 (33)3.4控制器输出通道的设计 (34)3.4.1电动机的PWM控制 (34)3.4.2电磁离合器和显示控制电路的设计 (39)3.4.3 电动机保护电路及继电器驱动电路设计 (40)3.5系统供电电源电路设计 (41)3.6系统硬件抗干扰措施 (42)第4章电动助力转向系统的软件设计 (45)4.1 EPS的控制策略 (45)4.1.1 EPS的PID控制 (45)4.2电子动力转向系统各功能模块的软件设计 (48)4.2.1 A/D采集程序 (48)4.2.2 PWM控制程序 (49)4.2.3车速信号采集程序 (51)4.2.4系统主程序 (53)结论 (55)谢辞 (56)参考文献 (57)附录 (59)外文资料翻译 (66)前言转向系统作为汽车的一个重要组成部分,其性能的好坏将直接影响到汽车的转向特性、稳定性和行驶安全性。
汽车电动助力转向系统硬件设计摘要:绿色环保背景下电动汽车被提出,电动汽车结构与传统汽车差异较大,其中电动助力转向系统更是具备环保、节能等特性,因此,在对其进行设计时,应注重其与传统转向系统的差异,并着重注意硬件设计。
本文以汽车电动助力转向系统构成为基础,继而提出汽车电动助力转向系统的硬件设计,以供参考。
关键词:电动汽车;转向系统;硬件设计引言:近几年,电动助力转向系统(EPAS)发展迅速,国外已有全新或改进的系统投入使用。
从长远来看,为中小型车配备电动助力转向系统是汽车转向系统发展的一个重要趋势,国内对电动助力转向系统的研究也很重要。
但由于种种原因,国内的研究大多集中在电动助力转向系统的动力学分析和建模上,尚未针对电动助力转向系统种的硬件设计进行探究,为此,有必要在未来发展中对其展开深入剖析。
一、汽车电动助力转向系统构成电动助力转向系统符合现代汽车机电一体化的设计思想,主要由以下部件组成:电子控制单元(FCU)、速度和扭矩传感器、伺服电机、驱动机构和转向柱部件。
关键是电子控制单元,它在很大程度上决定了电动助力转向的控制效率。
电动转向系统的具体支持是:在车辆启动或低速时操作方向盘并将其安装在转向柱上。
扭矩传感器不断检测作用在转向柱上的扭矩,并向电子控制系统发送信号和速度信号。
处理器计算并处理输入信号以确定辅助扭矩的大小和方向,从而控制发动机的电流和方向,并最终为驾驶员提供辅助转向动力。
在如今车流密集化环境内,针对更多不同水平的驾驶人群, 汽车的操纵设计显得尤为重要,如果车速超过某个阈值或发生错误,EPAS将退出支持模式,转向系统将切换到手动转向模式[1]。
二、汽车电动助力转向系统硬件设计1.电机设计(1)EPS系统控制电路的分层设计。
嵌入式EPS系统硬件主要包括整车点火信号、功率监测、扭矩角传感器、转速传感器、负载传感器信号处理、辅助电机驱动和电流反馈、A/D转换、电磁离合器驱动等模块,系统通信和系统错误诊断。