大跨径系杆拱桥的系杆设计
- 格式:pdf
- 大小:103.18 KB
- 文档页数:3
大跨钢结构下承式系杆拱桥设计分析摘要:本文介绍了一座全钢结构下承式系杆拱桥的设计分析,重点从拱肋、纵横梁、桥面板、吊杆等主要构件方面探讨了桥梁的设计要点,并介绍了桥梁钢结构加工的焊缝形式、焊接质量要求等施工关键控制要点。
关键词:下承式;系杆拱桥;钢结构;焊接质量检验1 引言拱桥结构合理、受力明确、跨越能力大、能够充分发挥材料性能,在大跨桥梁中被广泛应用,同时由于其结构新颖、造型美观,近年来在城市景观桥梁中应用也越来越广泛。
但此类桥梁构造复杂,设计及施工难度均较大。
本文结合工程实例,介绍了一座全钢结构下承式系杆拱桥的设计分析,重点从拱肋、纵横梁、桥面板、吊杆等主要受力构件方面探讨了桥梁的设计构思,并针对桥梁钢结构较多、焊接工作量大的特点,介绍了桥梁钢结构加工的焊缝形式、焊接质量要求等施工关键控制要点。
本文对同类桥梁的设计及施工具有较大的参考价值。
2 工程概况本项目为城市跨河桥梁,由主桥及两侧引桥组成,全长226m,跨径布置为40m(引桥)+106m(主桥)+(2x40)m(引桥)。
主桥为单跨钢结构下承式系杆拱桥,引桥为预应力混凝土现浇箱梁结构,桥梁全宽50m。
桥梁总体布置图3 主要技术标准根据桥梁结构特点、建设规模、使用环境条件等因素,桥梁设计采用的主要技术标准如下:道路等级:城市主干路,设计车速60km/h;结构安全等级:一级,重要性系数:1.1;桥梁设计基准期:100年;荷载标准:汽车荷载:城市—A级,人群荷载:3.5kN/m2;抗震设防烈度:抗震设防烈度为7度,地震动峰值加速度值为0.15g。
4 主桥结构设计本项目主桥为单跨钢结构下承式系杆拱桥,跨径106m,横断面全宽50m。
主桥由拱肋、纵横梁、桥面板、吊杆等主要受力构件组成。
拱肋:主桥横桥向共设置三道拱肋,横向间距19.9m,立面呈非对称形偏态拱,最高点处拱高19m,矢跨比为1/5.6。
拱肋截面呈倒梯形,横截面高度总体呈跨中高两侧低,靠拱脚处截面高1.8m,截面高度向跨中方向逐渐增大,待增大至4.5m后逐渐减小至拱脚处的1.5m。
1-128m跨钢箱系杆拱桥架设施工工艺摘要:本文讨论了 1-128m 跨钢箱系杆拱桥架设施工的步骤,概述了拱、桩布置施工、钢箱系杆定位、拱架钢筋等现场施工过程,以及钢箱系杆拱架设施的性能特征。
最后,指出应注意钢箱系杆拱架设施施工中存在的安全隐患。
关键词:1-128m跨度;钢箱系杆拱架;施工安全正文:1-128m跨度钢箱系杆拱架设施工是一项复杂的工程建设项目,考虑到施工时间长、施工工期紧、施工任务重、施工风险大,因此,它必须进行精准的设计与施工,否则将存在安全隐患。
施工过程包括拱、桩布置施工、钢箱系杆定位、拱架钢筋安装等步骤。
其中,拱、桩布置施工是拱架构造形式最主要的一部分,承担着支撑、对设施整体力学特征具有决定性作用,影响设施的安全性能,因此应进行严格的现场施工把关。
钢箱系杆定位时,应进行精准的拉线定位,以确保钢箱系杆拱架设施构件形状正确。
拱架结构在配筋时,应考虑拱周线形状,以确保结构受力安全,并保证施工中用钢量与设计规定一致。
钢箱系杆拱架设施是重要的桥梁施工存在着严格的施工技术要求,在施工安全方面,应注重定位力学性能、钢箱系杆组合分析、钢筋结构容重量、拱周线形状等,以保证钢箱系杆拱架设施的安全性能。
拱架的几何结构形式是施工工艺的重要内容,应根据拱架构造特征及其力学性能特点,精心选择最佳几何结构形式,保证整体的顺利实施。
施工过程中,应优先使用焊接施工方法,有助于提高杆件的结构安全性,以及提高钢箱系杆拱架设施的使用寿命和耐久性。
此外,施工过程中,还应整体布置设备,避免在施工过程中遗漏,以保证整体质量水平。
钢箱系杆拱架施工工艺中,应注意安全生产。
施工现场要做好职业危害防护,比如劳动者在执行上高处作业时,要佩戴完善的安全带。
施工中应做好消除电击、落物危险等工作,并重视安全技术指导。
总之,1-128m跨度钢箱系杆拱架设施工施工要求严格,施工过程中应做好风险防范,以保证施工中的安全要求。
由于钢箱系杆拱架设施施工的复杂性,有必要考虑到它在运行稳定性方面的需求。
张镇河大桥系杆拱桥施工工艺一、工程概况下承式钢管混凝土拱桥计算跨径L=112m,矢高f=25m,跨比D=1/4.48,拱轴线为二次抛物线型,拱轴线为二次抛物线,主拱拱轴线方程为:y=4fx(L-x)/L 。
两侧人行道通过横梁悬挑于边系梁外侧。
系梁采用箱梁截面,高2.5m,宽1.5m,顶板厚40cm,底板厚40cm,在拱脚处变为矩形断面,高2.5--4.2m,宽2m。
拱肋采用哑铃型钢管混凝土,截面高2.8m,由两根外径120cm壁厚16mm的Q345qD钢管组成,内灌C40微膨胀混凝土。
单片拱肋公设20跟吊杆,吊杆间距为5m,吊杆采用Φ299*12mmQ235qC无缝钢管,内穿FPES--109平行钢丝成品索,标准强度1670Mpa,采用双层HDPE防护,在管内压注发泡剂,锚具为冷铸墩头锚。
单幅桥拱肋横向设6道风撑,其中哑铃型撑2道,K型撑4道,于拱肋构成系杆拱空间稳定体系。
中横梁为T型断面,高1.7m--2.055m,底宽70cm,翼缘板厚20cm--40cm,顶宽110cm。
中横梁内设置5束12Φs钢绞线,施工采用预制吊装,通过湿接头与系杆连接。
15-端横梁为箱型断面,高2.45m--2.795m,受伸缩缝宽度的影响,宽度为2.8m、2.88m(使用于D80型伸缩缝端),顶板厚40cm,底板厚40cm,腹板宽40cm。
端横梁内设置4束11Φs、15-4束13Φs钢绞线,由于端横梁位于拱脚位置附近,且其自重较大预制、吊装困难,施15-工采用支架现浇施工。
行车道板中跨采用27cm厚C30钢筋砼实心板,边跨采用37cm厚C30钢筋砼实心板。
一片板宽1.1m,横向共布置16块。
横梁预留70cm宽后浇带,待预制行车道板吊装到位后再与湿接头浇筑形成整体。
行车道通过系杆外侧挑梁形成,挑梁对应横梁设置。
端横梁处挑梁宽2.8m,高0.7m--1.0m,与端横梁形成一体,为预应力砼结构;中横梁处挑梁宽70cm,高0.7m--1.0m,与中横梁形成一体,为预应力砼结构。
系杆拱桥柔性吊杆施工技术系杆拱桥柔性吊杆分项分批张拉,吊杆受力均匀,防腐施工措施到位,保证桥梁使用耐久性。
一、工程概况前湖大道K1+591系杆拱桥位于南昌市红角洲新区前湖大道中心桩号K1+591处,分为上下行两座分离桥。
设计桥长66 m,共1跨,跨径66m(计算跨径63.8m)。
全桥处于R=8000m的竖曲线内。
桥宽21.75m,桥面最大纵坡0.625%。
上部构造采用跨径66m下承式钢管拱,矢跨比f/L=1/5,下部结构采用钢筋混凝土柱型埋置式桥台,基础采用φ1.2m钻孔灌注桩。
主桥部分上部结构为系杆拱结构。
主要由系梁、横梁、桥面板、钢管拱肋、吊杆及横撑等组成。
因该桥较宽,吊杆采用柔性吊杆,为柳州建筑机械总厂生产的85Φ7低应力防腐成品索。
高强钢丝标准强度1670MPa,锚具采用冷铸锚OVMLZM (K)7-85。
吊杆顺桥向间距为4.9m(详见下图桥型布置图)。
二、工程特点和难点2.1、该桥吊杆是柔性吊杆,张拉程序比较麻烦,施工控制较困难。
因为吊杆的预应力施工对拱肋、系梁、及吊杆组成的结构内力及变形有很大影响,为保证各根吊杆受力均匀,吊杆张拉需采用分项分批张拉。
2.2、吊杆采用在拱肋上端张拉,在高空需多次搬运张拉设备,安全问题是重要问题,在搭设拱肋支架时需统一考虑。
三、施工工艺3.1、主桥上部结构的施工方案因本桥桥位处为陆地,采用回填砂碾压密实来支撑上部所有的荷载。
桥梁施工完成后开挖渠道。
3.2、主桥上部结构的施工步骤上部构造的施工工序,具体如下:1、对桥主梁范围内的原地面进行夯实碾压,并在系梁及横梁范围内浇筑20cm厚C10素砼垫层作为底模。
浇筑中间段系梁,同时进行中横梁预制。
2、同时现浇两边段系梁、端横梁及拱脚(预埋2m钢管拱肋),张拉系梁腹板钢束及端横梁钢束。
3、吊装(2、4、6、7、8、10、12)等7片中横梁、施工湿接缝、张拉2#束,在各根系梁两侧搭设临时拱肋支架,用高强螺栓铰接。
待三段拱肋及横撑精确定位后现场进行焊接。
6.4 系杆拱桥施工6.4.1系杆拱桥工程概况滩地公路引桥在黄河大堤附近平面弯出后,南北两岸铁路采用钢管混凝土系杆拱桥立交跨越黄河大堤。
拱桥为自平衡简支系杆拱桥,单孔跨径94m ,矢高18.8 m,主梁采用混凝土边主箱梁截面,拱肋采用钢管混凝土结构,拱肋矢跨比为1/5,吊索纵桥向间距6m 。
桥式布置见下页图所示。
铁路跨堤钢管混凝土系杆拱结构图拱桥为自平衡简支系杆拱桥,单孔跨径94m ,矢高18.8 m,在纵桥向设置两处支承,一处为固定支承,一处为竖向支承,横桥向设置两个支座。
吊索纵桥向间距6m 。
主梁顶部全宽16m,底部全宽17.2m 。
拱肋面与竖直面夹角为14°,拱顶截面钢管顶部宽5.484m ,底部宽6.939m ,高3m。
跨中横截面见下图。
6.4.2系杆拱桥施工步骤施工步骤一:(1)拱两侧墩身施工,等待墩身混凝土强度达到100 %铁路跨堤钢管混凝土系杆拱跨中横截面图(2)钢管拱肋制作。
施工步骤二:(1)施工拱脚满堂红支架。
(2)安装支座,浇筑端横梁、拱脚和拱脚部分相连的纵梁。
(3)待端横梁砼强度达到100 %,龄期大于10 天,张拉端横梁钢束到设计吨位施工步骤三:(1)满堂红支架继续搭设,施作拱形安装平台,拱肋分四段在拱形作业平台上安线形拼装完成。
(2)采用履带吊进行拱肋吊装,调整轴线位置。
用千斤顶调整两拱肋到同一标高,使两个半拱形成接触,乃至形成三铰拱。
拱肋内部产生压应力,促使两半拱的下挠部分上拱,及时进行支垫,最后合拢处间隙进行焊接处理。
拱肋合拢焊接后,用超声波进行100 %焊缝检测,对拱顶进行射线检测,焊缝合格方可进行下一步工作。
(3)拱肋脱架后,拉紧缆风绳,用缆风绳调整拱轴线至设计和规范要求。
在架设拱肋过程中,检测拱脚位移情况,若拱脚位移大于1.5cm ,张拉临时钢束进行调整。
(4)穿好吊杆。
施工步骤四:(1)张拉拱肋至设计张拉力要求。
(2)用砼泵灌筑拱肋无收缩混凝土,浇筑时同时进行并一次性浇筑完成。
确定系杆拱桥吊杆索力张拉值的方法系杆拱桥是通过系杆将拱桥上的拱肋与桥墩连接起来的一种结构形式,其系杆起到了承担桥面上荷载的重要作用。
而拱桥吊杆则是系杆拱桥中承担垂直荷载的元素,其张拉值的确定非常重要,直接关系到桥梁的安全运行。
下面将介绍确定系杆拱桥吊杆索力张拉值的方法。
首先,在设计拱桥吊杆时,需要根据结构的受力分析来确定吊杆的安装位置和数量。
通常情况下,吊杆会与拱肋呈45度角交汇,此时吊杆所受的荷载为拱肋的一半。
通过受力分析,可以确定吊杆的垂直分力和水平分力。
其次,在确定吊杆的负荷时,需要考虑桥面上的荷载以及桥面所受的风荷载等因素的影响。
根据拱桥结构的各个部位所受的荷载及其分布情况,可以计算出吊杆所需承受的荷载值。
需要注意的是,吊杆所受的负荷应考虑较大安全系数,以确保桥梁的安全运行。
然后,在确定吊杆的截面尺寸时,需要根据吊杆所受荷载的大小来选取合适的截面尺寸。
一般情况下,吊杆采用圆形截面,通过计算其截面积和强度来确定合适的尺寸。
在选取截面尺寸时,还需要考虑吊杆的材料性能,如强度、韧性等因素。
最后,在确定吊杆的索力张拉值时,需要进行索力计算。
索力计算是根据吊杆所受的荷载、截面尺寸和材料性能来确定吊杆的索力情况。
一般情况下,可以通过弯矩法或者张拉法来进行吊杆索力的计算。
弯矩法是基于力学平衡原理,根据吊杆所受弯矩、截面惯性矩和材料性能来计算索力值。
张拉法则是通过施加力来对吊杆进行张拉,根据实际加载情况来确定索力值。
需要注意的是,吊杆的索力张拉值应根据桥梁设计要求来确定,并考虑较大的安全系数。
此外,吊杆索力的确定还需要考虑索力的分布情况,如索力在吊杆上的分配方式等因素。
总之,确定系杆拱桥吊杆索力张拉值的方法包括确定吊杆的安装位置和数量,计算吊杆所受荷载,选取合适的截面尺寸,进行索力计算等步骤。
通过科学的设计和计算,可以确保系杆拱桥的吊杆能够承受荷载并保证桥梁的安全运行。