浙教版数学七年级下册2.1 二元一次方程 同步练习
- 格式:docx
- 大小:38.85 KB
- 文档页数:4
2.1 二元一次方程同步练习基础训练1.下列方程中,属于二元一次方程的是()A.-2a=3a+1 B.13-x=1y+2 C.m-n=3a D.2x-1=y2.下列各对数值时,是二元一次方程-x-2y=5的解是()A.1,2,xy=⎧⎨=⎩B.1,3xy=⎧⎨=-⎩C.1,2,xy=-⎧⎨=⎩D.1,3xy=-⎧⎨=-⎩3.根据题意列出方程.(1)x的2倍与y的14的差是5;(2)长方形的长是5cm,宽是2bcm,周长为acm.4.已知方程13x-15y=7,用含x的代数式表示y.5.写出方程2x-5y=20的两个解:__________.6.对方程x+y=5,若x=3,则y=______;若x=7,则y=________;若x=913,则y=________.7.已知1,34xy=⎧⎪⎨=-⎪⎩是关于x、y的方程-3x+4y=2a的一个解,则a=________.8.方程x+3y=6中,x,y互为相反数,则x=_______,y=_______.提高训练9.试判断3,4xy=⎧⎨=-⎩是否为方程-2x-3y=6的解?你能写出方程-2x-3y=6的三个解吗?可以写多少个?10.已知二元一次方程34x-12y=4,用含x的代数式表示y得到y=8+38x对吗?如错误,请写出正确答案.11.有一组数2,1xy=⎧⎨=-⎩,请写出一个方程,使这一组数是这个方程的一个解:________.12.方程2m+5n=17的正整数解是__________.13.请写出x+y=5的一个解:__________.再根据你写的这个解,写出另一个二元一次方程,使这个解也满足你写的这个二元一次方程:__________.应用拓展14.某种商品的市场需求量E(千件)和单价F(元/件)服从需求关系13E+F-173=0,•则当单价为4元时,市场需求量为________;若出售一件商品要在原单价4元的基础上征收税金1元,市场需求变化情况是_________.15.如果a、b为定值,关于x的方程23kx a+=2+6x bk-,无论k为何值,它的根总是1,求a,b的值.参考答案1.D 2.B3.(1)2x-14y=5 (2)10+4b=a4.y=53x-355.略6.2 -2 -41 37.•-3 8.-3 3 9.略10.错误,y=-8+32x11.略12.6,1mn=⎧⎨=⎩1,3mn=⎧⎨=⎩13.略14.5千件,减少3•千件15.将x=1代入原方程,整理得(4+b)k=13-2a,因此式对任意k均成立,故4+b=0,且13-2a=0,解得a=132,b=-4.初中数学试卷。
第2章二元一次方程组2.1二元一次方程基础过关全练知识点1二元一次方程的定义1.(2022浙江杭州十三中期中)下列方程中,属于二元一次方程的是() A.3x-2y=4z B.1x+4y=6C.4x+y=2D.6xy+9=02.(2022浙江金华兰溪月考)方程■x-2y=2x+5是二元一次方程,■是被污染的x的系数,则■的值() A.不可能是-1 B.不可能是-2C.不可能是1D.不可能是23.【新独家原创】已知方程x c−3+4y a+b+3=2 023是关于x,y的二元一次方程,则(a+b)c的值为.4.(2022浙江宁波江北月考)某果园计划种植梨树和苹果树共1 000株,实际上梨树种植量比计划增加10%,而苹果树种植量比计划减少5%.若设实际种植梨树x株,苹果树y株,则列二元一次方程为.知识点2二元一次方程的解5.【教材变式·P34T3变式】下列各组解是二元一次方程x-2y=3的解的是()A.{x=1y=1 B.{x=−1y=1 C.{x=1y=−1 D.{x=−1y=−16.(2021浙江金华中考)已知{x =2,y =m 是方程3x+2y=10的一组解,则m 的值是 .7.若{x =−1,y =2是关于x,y 的二元一次方程ax+y=4的解,则a 的值为 .8.(2021浙江嘉兴中考)已知二元一次方程x+3y=14,请写出该方程的一组整数解: . 能力提升全练9.方程2x-3=y,xy=2,x-2y =1,x+y-z=1,x 2+y=3中是二元一次方程的有( )A.1个B.2个C.3个D.4个10.【易错题】方程(m-1 009)x |m|-1 008+(n+3)·y |n|-2=2 023是关于x 、y 的二元一次方程,则( )A.m=±1 009,n=±3B.m=1 009,n=3C.m=-1 009,n=-3D.m=-1 009,n=3 11.(2020黑龙江龙东地区中考,9,)在抗击疫情网络知识竞赛中,为奖励成绩优异的学生,学校计划用200元购买A 、B 、C 三种奖品,A 种每个10元,B 种每个20元,C 种每个30元,在购买C 种奖品的数量不超过两个且钱全部用完的情况下,购买方案有( )A.12种B.15种C.16种D.14种 12.(2022浙江丽水庆元二中月考,7,)对于方程3x+2y=4,下列说法正确的是( )A.无正数解B.只有一组正数解C.无正整数解D.只有一组正整数解13.(2022浙江杭州临平月考,6,)若{x =a,y =b 是二元一次方程2x+y=0的解,且a≠0,则结论错误的是 ( )A.a,b 异号B.ab =-2C.2-6a-3b=2D.方程2x+y=0有无数组解 14.(2022浙江金华义乌期中,12,)二元一次方程3x+2y=15的正整数解为 . 15.(2022四川雅安中考,16,)已知{x =1,y =2是方程ax+by=3的解,则代数式2a+4b-5的值为 . 16.(2020四川南充中考,14,)笔记本5元/本,钢笔7元/支,某同学购买笔记本和钢笔(两者都买)恰好用去100元,那么最多购买钢笔 支.17.下表中的每一对x,y 的值都是方程x+y=3的解.①当x<0时,y 的值大于3;②当y<2时,x 的值小于1;③y 的值随着x 值的增大而减小.上述结论中,所有正确结论的序号是 .素养探究全练18.【模型观念】某电视台在黄金时段的2分钟广告时间内,计划插播时间为15秒和20秒的两种广告.15秒的广告每播1次收费0.6万元,20秒的广告每播1次收费0.8万元.若要求每种广告播放都不少于1次,且2分钟的广告时间恰好全部用完,则两种广告的播放次数有几种安排方式?每种安排方式的收益为多少万元?19.【应用意识】阅读材料,解答下面的问题.我们知道方程2x+3y=12有无数个解,但在实际生活中我们往往只需求出其正整数解. 例:由2x+3y=12,得y=12−2x 3=4-23x.要使y=4-23x 为正整数,且x 为正整数,则23x 为小于4的正整数,由2,3互质可知,x 为3的整数倍,从而x=3,将x=3代入y=4-23x,得y=2.所以2x+3y=12的正整数解为{x =3,y =2.问题:(1)请你直接写出方程3x-2y=6的一个正整数解: ;(2)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有几种购买方案,写出购买方案.答案全解全析基础过关全练1.C A.3x-2y=4z 中,含有三个未知数,不是二元一次方程;B.1x +4y=6中,1x的分母含有未知数,不是二元一次方程;C.4x+y=2符合二元一次方程的定义,是二元一次方程;D.6xy+9=0中,含未知数的项的次数是2,不是二元一次方程.故选C.2.D 方程可化为(■-2)x-2y=5,根据题意,得■-2≠0,则■的值不可能是2.故选D.3.答案 16解析 根据二元一次方程的定义,得a+b+3=1,c-3=1,解得a+b=-2,c=4,∴(a+b)c =(-2)4=16. 4.答案x1+10%+y1−5%=1 000解析 由题可知,原计划种植梨树x 1+10%株,原计划种植苹果树y1−5%株,根据计划种植梨树数量+计划种植苹果树数量=1 000,列二元一次方程为x1+10%+y1−5%=1 000.5.C 把{x =1,y =−1代入x-2y=3,左边=1-2×(-1)=3,右边=3,左边=右边,故{x =1,y =−1是方程x-2y=3的解,故选C. 6.答案 2解析 把{x =2,y =m 代入方程3x+2y=10,得3×2+2m=10,解得m=2.7.答案 -2解析 将{x =−1,y =2代入方程ax+y=4得-a+2=4,解得a=-2.8.答案 {x =11y =1(答案不唯一)解析 ∵x+3y=14,∴x=14-3y,当y=1时,x=11,则方程的一组整数解为{x =11,y =1.(答案不唯一) 能力提升全练9.A 2x-3=y 符合二元一次方程的定义,是二元一次方程;xy=2中,等号左边是二次单项式,不是二元一次方程;x-2y=1中,2y的分母含有未知数,不是二元一次方程;x+y-z=1中,含有3个未知数,不是二元一次方程;x 2+y=3中,方程左边是二次多项式,不是二元一次方程.所以是二元一次方程的有1个,故选A.10.D ∵(m-1 009)x |m|-1 008+(n+3)y |n|-2=2 023是关于x 、y 的二元一次方程,∴m-1 009≠0,n+3≠0,|m|-1 008=1,|n|-2=1,解得m=-1 009,n=3.故选D. 11.D 设购买A 种奖品m 个,购买B 种奖品n 个,当购买C 种奖品1个时,根据题意得,10m+20n+30=200,整理得m+2n=17,∵m,n 都是正整数,∴0<2n<17,∴n 的值可以为1,2,3,4,5,6,7,8, 此时有8种购买方案;当购买C 种奖品2个时,根据题意得,10m+20n+60=200,整理得m+2n=14,∵m,n 都是正整数,∴0<2n<14,∴n 的值可以为1,2,3,4,5,6,此时有6种购买方案. 综上,购买方案有6+8=14种. 12.C ∵3x+2y=4,∴y=4−3x 2=2-32x,当x=23时,y=1;当x=1时,y=12;当x=2时,y=-1,∴原方程无正整数解.故选C.13.B 把{x =a,y =b 代入二元一次方程2x+y=0,得2a+b=0, ∴2a=-b,∵a≠0,∴a,b 异号,A 选项中结论正确;∵a≠0,2a=-b,∴b≠0,由2a=-b 可得,ab=-12,B 选项中结论错误;由2a+b=0可得,-6a-3b=0,两边都加2得,2-6a-3b=2,C 选项中结论正确; ∵一个二元一次方程有无数组解,∴方程2x+y=0有无数组解,D 选项中结论正确.故选B. 14.答案 {x =1,y =6或{x =3,y =3解析 方程3x+2y=15变形,得y=15−3x 2,当x=1时,y=6;当x=3时,y=3.∴方程3x+2y=15的正整数解为{x =1,y =6或{x =3,y =3.15.答案 1解析 把{x =1,y =2代入ax+by=3得a+2b=3,∴2a+4b=6,∴原式=6-5=1.16.答案 10解析 设该同学买了x 支钢笔,买了y 本笔记本, 由题意得7x+5y=100, ∴y=100−7x5=20-75x,∵x 、y 都是正整数,∴{x =5,y =13,{x =10,y =6,∴x 的最大值为10. 故最多购买钢笔10支. 17.答案 ①③解析 观察题表知,当x<0时,y 的值大于3,故①正确;当y<2时,x 的值大于1,故②错误;当x 的值增大时,y 的值减小,故③正确.故正确结论的序号是①③. 素养探究全练18.解析 设播放15秒的广告x 次,播放20秒的广告y 次, 根据题意得15x+20y=120,整理得y=6-3x4,∵x,y 均为不小于1的正整数,∴x=4,y=3,∴只有1种安排方式,即播放15秒的广告4次,播放20秒的广告3次.当x=4,y=3时,收益为0.6×4+0.8×3=4.8(万元), ∴这种安排方式的收益为4.8万元. 19.解析 (1)答案不唯一,如{x =4,y =3.(2)设购买了x 本笔记本,y 支钢笔,根据题意得3x+5y=48,且x,y 均为正整数, 解得{x =1,y =9或{x =6,y =6或{x =11,y =3.故共有3种购买方案.方案一:购买1本笔记本,9支钢笔; 方案二:购买6本笔记本,6支钢笔; 方案三:购买11本笔记本,3支钢笔.。
浙教版七下第二章 一元二次方程测试卷(含解析)一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x -=+是二元一次方程,a 必须满足( ) A .0a ≠B .3a ≠-C .3a ≠D .2a ≠2.(3分)关于二元一次方程48x y +=的解,下列说法正确的是( ) A .任意一对有理数都是它的解 B .有无数个解 C .只有一个解D .只有两个解3.(3分)下列方程组中属于二元一次方程组的有( )(1)211x y y z -=⎧⎨=+⎩(2)03x y =⎧⎨=⎩(3)0235x y x y -=⎧⎨+=⎩(4)212 1.x y x y ⎧+=⎨+=-⎩.A .1个B .2个C .3个D .4个4.(3分)解方程组①216511y x x y =+⎧⎨+=-⎩;②2310236x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-6.(3分)由方程组43x m y m +=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .108.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x ,y ,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是.12.(3分)试写出一个关于x、y的的二元一次方程,使它的一个解为12xy=⎧⎨=⎩,这个方程为.13.(3分)已知x、y满足方程组52723x yx y+=⎧⎨-=⎩,则x y+的值为.14.(3分)若22(24)()|4|0x x y z y-+++-=,则x y z++等于.15.(3分)若21xy=⎧⎨=⎩是方程组75ax bybx cy+=⎧⎨+=⎩的解,则a与c的关系是.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有两.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A、B、C三种套餐的促销活动.已知A种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A种套餐需35元,那么小明同学要买2个A种套餐、1个B种套餐和2个C种套餐共需费用元.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表:收费标准:目的地起步价(元)超过1千克的部分(元/千克)上海7b北京104b+目的地质量(千克)费用(元)上海26a-北京37a+23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?浙教版七下第二章一元二次方程测试卷(含解析)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x-=+是二元一次方程,a必须满足() A.0a≠B.3a≠-C.3a≠D.2a≠【解答】解:方程236ax y x-=+变形为(3)260a x y---=,根据二元一次方程的定义,得30a-≠,解得3a≠.故选:C.2.(3分)关于二元一次方程48x y+=的解,下列说法正确的是() A.任意一对有理数都是它的解B.有无数个解C.只有一个解D.只有两个解【解答】解:对于二元一次方程48x y+=,有无数个解,故选:B.3.(3分)下列方程组中属于二元一次方程组的有()(1)211x yy z-=⎧⎨=+⎩(2)3xy=⎧⎨=⎩(3)235x yx y-=⎧⎨+=⎩(4)212 1.x yx y⎧+=⎨+=-⎩.A.1个B.2个C.3个D.4个【解答】解:(1)本方程组中含有3个未知数;故本选项错误;(2)有两个未知数,方程的次数是1次,所以是二元一次方程组;(3)有两个未知数,方程的次数是1次,所以是二元一次方程组;(4)第一个方程未知项2x的次数为2,故不是二元一次方程组.共2个属于二元一次方程组.故选:B.4.(3分)解方程组①216511y xx y=+⎧⎨+=-⎩;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法是()A.均用代入法B.均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法【解答】解:解方程组①216511y xx y=+⎧⎨+=-⎩比较简便的方法为代入法;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法加减法,故选:C.5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-【解答】解:2x y m =-⎧⎨=⎩是方程64nx y +=的一个解, ∴代入得:264n m -+=,32m n ∴-=, 31213m n ∴-+=+=,故选:A .6.(3分)由方程组43x m y m+=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-【解答】解:原方程可化为43x m y m +=⎧⎨-=⎩①②,①+②得,7x y +=. 故选:C .7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .10【解答】解:根据题意得:322222a b a b -=⎧⎨-+=⎩,解得:45a b =⎧⎨=⎩,将3x =,2y =-代入得:3148c +=, 解得:2c =-,则4527a b c ++=+-=. 故选:A .8.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-【解答】解:36x m y m +=⎧⎨-=⎩①②,把②代入①得,63x y +-=,整理得,9x y+=,故选:C.9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩【解答】解:设甲需持钱x,乙持钱y,根据题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:B.10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天【解答】解:设每支牙刷x元,每盒牙膏y元.第1天:137132x y+=;第2天:2614264x y+=;第3天:3921393x y+=;第4天:5228528x y+=.假设第1天的记录正确,则第2天、第4天的记录也正确;假设第1天的记录错误,则第2天、第4天的记录也错误.故选:C.二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是3.5y =⎩移项得:5318a -=-, 合并得:515a -=-, 解得:3a =. 故答案为:3.12.(3分)试写出一个关于x 、y 的的二元一次方程,使它的一个解为12x y =⎧⎨=⎩,这个方程为3x y +=(答案不唯一) .【解答】解:根据题意:3x y +=(答案不唯一), 故答案为:3x y +=(答案不唯一)13.(3分)已知x 、y 满足方程组52723x y x y +=⎧⎨-=⎩,则x y +的值为 1 .【解答】解:527(1)23(2)x y x y +=⎧⎨-=⎩,(1)-(2)得:444x y +=, 1x y ∴+=,故答案为:1.14.(3分)若22(24)()|4|0x x y z y -+++-=,则x y z ++等于 12- .【解答】解:22(24)()|4|0x x y z y -+++-=, ∴240040x x y z y -=⎧⎪+=⎨⎪-=⎩, 解得:2212x y z ⎧⎪=⎪=-⎨⎪⎪=-⎩,则112222x y z ++=--=-. 故答案为:12-.15.(3分)若21x y =⎧⎨=⎩是方程组75ax by bx cy +=⎧⎨+=⎩的解,则a 与c 的关系是 49a c -= .1y =⎩5bx cy +=⎩得2725a b b c +=⎧⎨+=⎩①②,①2⨯-②,得49a c -=. 故答案为:49a c -=.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为 355(1)x y x y =+⎧⎨=-⎩.【解答】解:设诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为: 355(1)x y x y =+⎧⎨=-⎩. 故答案为:355(1)x y x y =+⎧⎨=-⎩.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有 46 两. 【解答】解:设有x 人,银子y 两, 由题意得:7498y x y x =+⎧⎨=-⎩,解得646x y =⎧⎨=⎩,故答案为46.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A 、B 、C 三种套餐的促销活动.已知A 种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B 种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C 种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A 种套餐需35元,那么小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用 210 元.【解答】解:设1盒原味的价格为x 元,1盒果粒味的价格为y 元,1盒大红枣味的结果为z 元, 由题意得:34535x y z ++=,则小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用为: 2352882(546)x y z x y z ⨯++++++ 70121620x y z =+++ 704(345)x y z =+++ 70435=+⨯210=(元),故答案为:210.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.【解答】解:经验算41xy=⎧⎨=⎩是方程1352x y+=的解,再写一个方程,如3x y-=.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩【解答】解:(1)在1(1)24(2)x yx y+=⎧⎨-=-⎩中,(1)+(2)得:33x=-,解得:1x=-,把1x=-代入(1)得:2y=.∴方程组的解为12xy=-⎧⎨=⎩.(2)在1(1)234()5()38(2)x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩中,由(1)得:56x y+=(3),由(2)得:938x y-+=-,938x y∴=+,将938x y=+代入(3)得:46184y=-, 4y∴=-.把4y=-代入938x y=+,得2x=.∴方程组的解为24xy=⎧⎨=-⎩.21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.【解答】解:方程组27431x y x y +=⎧⎨-=-⎩①②, ①3⨯+②得:1020x =,即2x =,把2x =代入①得:3y =,把2x =,3y =代入方程得:63a =+,即3a =,则原式21791715a =-+=-+=.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表: 收费标准: 目的地起步价(元) 超过1千克的部分(元/千克) 上海7 b 北京10 4b + 目的地质量(千克) 费用(元) 上海2 6a - 北京3 7a +【解答】解:依题意得:7(21)610(31)(4)7b a b a +-=-⎧⎨+-+=+⎩, 解得:152a b =⎧⎨=⎩. 答:a 的值为15,b 的值为2.23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?【解答】解:(1)设甲种口罩购进了x 盒,乙种口罩购进了y 盒,依题意得:900202519000x y x y +=⎧⎨+=⎩, 解得:700200x y =⎧⎨=⎩,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)207002520014000500019000⨯+⨯=+=(个),29001018000⨯⨯=(个), 1900018000>,∴购买的口罩数量能满足市教育局的要求.24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?【解答】解:(1)设该市一级水费的单价为x元,二级水费的单价为y元,依题意得:103212(1412)51.4xx y=⎧⎨+-=⎩,解得:3.26.5xy=⎧⎨=⎩.答:该市一级水费的单价为3.2元,二级水费的单价为6.5元.(2) 3.21238.4⨯=(元),38.464.4<,∴用水量超过312m.设用水量为a3m,依题意得:38.4 6.5(12)64.4a+-=,解得:16a=.答:当缴纳水费为64.4元时,用水量为316m.。
浙教版七年级下册数学第二章二元一次方程组含答案一、单选题(共15题,共计45分)1、在学校组织的游艺晚会上,掷飞标游艺区游戏区规则如下,如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况,如图所示,依此方法计算小芳的得分为()A.76B.74C.72D.702、如表,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.则每一行的和是()3 4 x﹣2 y a2y﹣x c bC.5D.43、已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为()A. B. C. D.4、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A. B. C.﹣ D.﹣5、甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A. B. C.D.6、如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35B.45C.55D.657、方程组的解是( )A. B. C. D.8、若方程组中x与y的值相等,则k等于()A.1或-1B.1C.5D.-59、我国古代数学名著《孙子算经》中记载了一道数学趣题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B. C. D.10、下列方程中是二元一次方程的是()A. B. C. D.11、某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y分,则根据题意可列方程组()A. B. C. D.12、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚()A.22B.16C.14D.1213、一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x只,兔有y只,则可列二元一次方程组()A. B. C. D.14、有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是.其中正确的说法是()A.①④B.①③④C.②③D.①②15、扬州某中学七年级一班40名同学第二次为四川灾区捐款,共捐款2000元,捐款情况如下表:捐款(元) 20 40 50 100人数 10 8表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组()A. B. C.D.二、填空题(共10题,共计30分)16、如果,则=________.17、已知已知是方程组的解,则(m﹣n)2=________.18、已知关于x,y的方程组的解满足x+y>0,则a的取值范围是________19、二元一次方程组的解为________。
2021-2022学年浙教版七年级数学下册《第2章二元一次方程组》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.方程x+y=6的正整数解有()A.5个B.6个C.7个D.无数个2.下列方程组中,属于二元一次方程组的是()A.B.C.D.3.一个长方形的周长为28厘米,长比宽的3倍少6厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米4.已知x,y满足,则x﹣y的值为()A.3B.﹣3C.5D.05.关于x、y的二元一次方程组的解满足x﹣3y=10+k,则k的值是()A.2B.﹣2C.﹣3D.36.由方程组可以得出关于x和y的关系式是()A.x+y=5B.2x+y=5C.3x+y=5D.3x+y=07.某车间有2个小组,甲组是乙组人数的2倍,若从甲组调8人到乙组,那么甲组人数比乙组人数的一半还多6人,则原来乙组的人数为()A.6B.8C.10D.128.如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是()A.60厘米B.80厘米C.100厘米D.120厘米二.填空题(共8小题,满分40分)9.已知二元一次方程3x+2y=7,用含x的式子表示y,则y=;若y的值为2,则x 的值为.10.在解方程组时,由于粗心,甲看错了方程组中的a,得到的解为乙看错了方程组中的b,得到的解为则原方程组的解.11.已知方程组和方程组的解相同,则(2a+b)2021=.12.关于x、y的方程组的解也是方程x+y=5的解,则m的值为.13.方程无解,则实数k的值为.14.同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地km.15.如果实数x,y满足方程组,那么(2x﹣y)2022=.16.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?由此可求出甲的钱数为钱.三.解答题(共5小题,满分40分)17.解方程组:(1);(2).18.已知关于x,y的方程组的解满足x+2y=3,求k的值.19.阅读下列解方程组的方法,然后回答问题.解方程组.解:由①﹣②,得2x+2y=2,即x+y=1③,③×16,得16x+16y=16④,②﹣④得x=﹣1,从而可得y=2,∴原方程组的解是.(1)请你仿照上面的解题方法解方程组:;(2)请大胆猜测关于x,y的方程组(a≠b)的解是什么?(不用写解答过程)20.千佛山、趵突泉、大明湖并称济南三大风景名胜区.为了激发学生个人潜能和团队精神,历下区某学校组织学生去千佛山开展为期一天的素质拓展活动.已知千佛山景区成人票每张30元,学生票按成人票五折优惠.某班教师加学生一共去了50人,门票共需810元.(1)这个班参与活动的教师和学生各多少人?(应用二元一次方程组解决)(2)某旅行网上成人票价格为28元,学生票价格为14元,若该班级全部网上购票,能省多少钱?21.我市对居民生活用水实行“阶梯水价”.小李和小王查询后得知:每户居民年用水量180吨以内部分,按第一阶梯到户价收费;超过180吨且不超过300吨部分,按第二阶梯到户价收费;超过300吨部分,按第三阶梯到户价收费.小李家去年1﹣9月用水量共为175吨,10月、11月用水量分别为25吨、22吨,对应的水费分别为118.5元、109.12元.(1)求第一阶梯到户价及第二阶梯到户价(单位:元/吨);(2)若小王家去年的水费不超过856元,试求小王家去年年用水量的范围(单位:吨,结果保留到个位).参考答案一.选择题(共8小题,满分40分)1.解:方程的正整数解有,,,,共5个,故选:A.2.解:A选项中xy的次数是2次,不符合题意.B选项中是分式方程,不符合题意.C选项3x=5y2是二元二次方程,不符合题意.D选项两个方程均含有2个未知数,且未知数次数为1,符合题意.故选:D.3.解:设这个长方形的长为x厘米,宽为y厘米,由题意得:,解得:,则这个长方形的面积为9×5=45(平方厘米),故选:A.4.解:第二个方程减第一个方程得:x﹣y=3,故选:A.5.解:原方程组中两个方程作差可得,(3x﹣4y)﹣(2x﹣y)=(5﹣k)﹣(2k+3),整理得,x﹣3y=2﹣3k,由题意得方程,2﹣3k=10+k,解得,k=﹣2,故选:B.6.解:,①+②得,3x+y=5,故选:C.7.解:设原来乙组有x人,甲组有y人,依题意,得:,解得:,即原来乙组有12人,故选:D.8.解:设小长方形地砖的长为x厘米,宽为y厘米,根据题意得:,解得:,则每个小长方形的周长=2(x+y)=120(厘米),故选:D.二.填空题(共8小题,满分40分)9.解:方程3x+2y=7,解得:y=;把y=2代入得:,去分母得:4=7﹣3x,解得:x=1,故答案为:;1.10.解:将代入方程4x﹣by=﹣4,代入方程ax+5y=10,可得,,解得,∴原方程组为,解得,故答案为:.11.解:由于两个方程组的解相同,所以解方程组,解得,把代入方程:ax﹣by=﹣4与bx+ay=﹣8中得:,解得:,则(2a+b)2021=(2﹣1)2021=1.故答案为:1.12.解:,①+②得,3x+3y=3m,∴x+y=m,∵关于x、y的方程组的解也是方程x+y=5的解,∴m=5.故答案为:5.13.解:,将①代入②得,2x+k=(k2﹣7)x+3,∴(k2﹣9)x=k﹣3,∵方程无解,∴k2﹣9=0,∴k=±3,当k=3时,k﹣3=0,x取任意数,∴k=﹣3时,方程无解,故答案为:﹣3.14.解:设甲车行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AC=xkm,AB=ykm,依题意得:,解得:,∴乙在C地时加注行驶210﹣2×70=70(km)的燃料,AB的最大长度为140km.故答案为:140.15.解:,①+②,得:2x﹣y=1,则(2x﹣y)2022=12022=1.故答案为:1.16.解:设甲的钱数为x钱,乙的钱数为y钱,根据题意,得:,解得:,即甲的钱数为钱,乙的钱数为25钱,故答案为:.三.解答题(共5小题,满分40分)17.解:(1),将②代入①,得x+4x=10,解得x=2,将x=2代入②得,y=4,∴方程组的解为;(2),化简方程组得,,①+②,得8x=24,解得x=3,将x=3代入①得,y=﹣5,∴方程组的解为.18.解:,①+②得:5x+10y=k+5,∴x+2y=+1,∵x+2y=3,∴+1=3,∴k=10.19.解:(1),①﹣②,得2x+2y=2,即x+y=1③,③×2020得,2020x+2020y=2020④,④﹣②得,y=2,将y=2代入③得,x=﹣1,∴原方程组的解是;(2),①﹣②,得(a﹣b)x+(a﹣b)y=a﹣b,即x+y=1③,③×(a+2)得,(a+2)x+(a+2)y=a+2④,④﹣①得,y=2,将y=2代入③得,x=﹣1,∴原方程组的解为.20.解:(1)设参与活动的教师有x人,学生有y人,由题意得:,解得:,答:参与活动的教师有4人,学生有46人;(2)(30﹣28)×4+(15﹣14)×46=54(元),答:能省54元.21.解:设第一阶梯到户价为x元,第二阶梯到户价y元,由题意得:,解得:,答:第一阶梯到户价为3.86元,第二阶梯到户价为4.96元;(2)设小王家去年最多可用水为m(m>180)吨,由题意得:3.86×180+4.96(m﹣180)≤856,解得:m≤212.5,即最多可用水212.5吨≈212吨,∴小王家去年年用水量的范围为大于0吨小于212吨.。
A .3x -6=xB .3x =2yC .x -=0D .2x -3y =xyy 2.二元一次方程x -2y =1有无数个解,下列四组值中不是该方程的解的是( )A.B. C. D.{x =0,y =-12){x =1,y =1){x =1,y =0){x =-1,y =-1)3.下列说法中正确的是( )A .二元一次方程只有一个解B .二元一次方程组有无数个解C .二元一次方程组的解必是它所含的二元一次方程的解D .三元一次方程组一定由三个三元一次方程组成{x =1,)A .40,200B .80,160C .160,80D .200,4010.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面13的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为17则可列方程组为( )A.B.{x +y =3.2,(1+17)x =(1+13)y ){x +y =3.2,(1-17)x =(1-13)y )C.D.{x +y =3.2,13x =17y ){x +y =3.2,(1-13)x =(1-17)y )请将选择题答案填入下表:图2-Z -116.当a =_____________________时,方程组有正整数解.{2x +ay =16,x -2y =0)三、解答题(本题有8小题,共66分)17.(6分)解下列二元一次方程组:(1) (2){x =3y -5,3y =8-2x ;){x -2=2(y -1),2(x -1)+(y -1)=5.)18.(6分)已知2a m +1b -2n 与-3a 2-n b 4是同类项,求m ,n 的值.19.(6分)已知方程组的解也满足方程x +y =1,求m 的值.{2x +y =3,3x -2y =m )20.(8分)某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,则甲、乙两个旅游团各有多少人?图2-Z-2(1)请问采摘的黄瓜和茄子各多少千克;(2)这些采摘的黄瓜和茄子可赚多少元?23.(10分)为了拉动内需,全国各地汽车购置税补贴活动正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月销售的手动型和自动型汽车分别为多少台?每套服装的价格60元50元40元已知两所学校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两所学校分别有多少名学生准备参加演出?(3)如果甲校有10名学生抽调去参加书法绘画比赛而不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.14. 15.675 cm 316.-3或-2或0或4或1217.解:(1){x =3y -5,①3y =8-2x ,②)把①代入②,得3y =8-2(3y -5),解得y =2.把y =2代入①,可得x =3×2-5,即x =1.∴原方程组的解为{x =1,y =2.)(2)方程组化简得:{x -2y =0,①2x +y =8,②)②-①×2,得5y =8,解得y =.85∴ 解得∴m =8.{2x +y =3,3x -2y =m ,x +y =1,){x =2,y =-1,m =8,)20.解:设甲旅游团有x 人,乙旅游团有y 人.根据题意,得解得{x +y =55,x =2y -5,){x =35,y =20.)答:甲、乙两个旅游团分别有35人、20人.21.解:(1)设采摘黄瓜x 千克,茄子y 千克.根据题意,得解得{x +y =40,x +1.2y =42,){x =30,y =10.)答:采摘的黄瓜和茄子分别有30千克、10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.22.解:(1)第二天的账目有误,理由如下:设甲、乙两种商品的单价分别为x 元,y 元,根据题意可得:第一天:39x +21y =321①;第二天:26x +14y =204②;第三天:39x +25y =345③.由①÷3,得13x +7y =107,由②÷2,得13x +7y =102,∵第一天的账目正确,∴第二天的账目有误.(2)由(1)得第二天的账目有误,∴{39x +21y =321,①39x +25y =345,③)③-①,得y =6.把y =6代入①,得x =5,所以方程组的解为{x =5,y =6.)答:甲、乙两种商品的单价分别为5元,6元.23.解:(1)方法1:设政策出台前一个月销售的手动型汽车为x 辆,则自动型汽车为(960-x)辆.由题意,得(1+30%)x +(1+25%)(960-x)=1228.解得x =560,所以960-x =960-560=400.答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.方法2:设政策出台前一个月销售的手动型汽车为x 辆,自动型汽车为y 辆.由题意,得{x +y =960,(1+30%)x +(1+25%)y =1228,)解得{x =560,y =400.)答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.(2)手动型汽车的补贴额为560×(1+30%)×8×5%=291.2(万元),自动型汽车的补贴额为400×(1+25%)×9×5%=225(万元).291.2+225=516.2(万元).答:政策出台后的第一个月,政府对这1228台汽车用户共补贴了516.2万元.24.解:(1)由题意,得5000-92×40=5000-3680=1320(元).答:两校联合起来购买服装比各自购买服装可节省1320元.(2)设甲、乙两所学校分别有x 名、y 名学生准备参加演出.由题意,得解得{x +y =92,50x +60y =5000,){x =52,y =40.)答:甲、乙两所学校分别有52名、40名学生准备参加演出.(3)因为甲校有10人不能参加演出,所以甲校有52-10=42(人)参加演出.若两校联合购买服装,则需要50×(42+40)=4100(元),此时比各自购买服装节约(42+40)×60-4100=820(元).但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买每套50元的服装节约4100-3640=460(元),因此,最省钱的购买服装方案是两校联合购买91套服装(即比实际人数多购买9套).。
一、单选题浙教版七年级下第二章二元一次方程组 单元检测姓名:________班级:________成绩:________1 . 如果直线与直线的交点在 轴的右侧,则 的取值范围是( )A.—2< <2B.—2< <0C. >02 . 若方程 2xa-1+y=1 是关于 x、y 的二元一次方程,则 a 的值是( )D. <2A.B.0C.1D.23 . 若二元一次方程 x+y=0,x-y=-2,y=kx-9 有公共解,则 k 的值为( )A.8B.-8C.10D.-104 . 小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我 2 元,我的钱数将是你的 n 倍”;小玲对小倩说:“你若给我 n 元,我的钱数将是你的 2 倍”,其中 n 为正整数,则 n 的可能值的个数是( ).A.1B.2C.3D.45 . 《九章算术》中记载:“今有共买羊,人出五,不足四十五人出七,不足三,问人数、羊价各几何?”其 大意是:今有人合伙买羊,若每人出 钱,还差 钱;若每人出 钱,还差 钱,问合伙人数、羊价各是多少?设合伙人数为 人,羊价为 钱,根据题意,可列方程组为( ).A.B.C.D.6 . 已知式子与是同类项,则 m、n 的值分别是( )A.B.C.D.7 . 若分式的值为 0,则 x 的值是( )第1页共6页A.2B.08 . 下列是二元一次方程的是( )A.C.﹣2 B.D.任意实数C.D.9 . 有大小两种船,1 艘大船与 4 艘小船一次可以载乘客 46 名,2 艘大船与 3 艘小船一次可以载乘客 57 人.绵 阳市仙海湖某船家有 3 艘大船与 6 艘小船,一次可以载游客的人数为( ).A.129B.120C.108D.9610 . 小亮解方程组的解为则两个数 和 的值为( ),由于不小心,滴上了两滴墨水,刚好遮住了两个数 和 ,A.B.C.D.二、填空题11 . 二元一次方程 2x+3y=25 的正整数解有_____组.12 . 方程组的解是.13 . 已知方程组的解为则 a=______,b=______,c=______.14 . 已知是方程的一个解,则 的值是________.15 . 甲乙两人在 400 米的环形跑道上跑步,若同向跑步每隔 3 分钟相遇一次,若反向跑步,每隔 40 秒相遇一 次,则甲乙的速度各是___________(甲比乙快)16 . 二元一次方程组的解为_____.第2页共6页三、解答题17 . 某中学为了丰富学生的课余生活,准备从体育用品商店一次性购买若干个排球和篮球,若购买 2 个排球 和 1 个篮球共需 190 元.购买 3 个排球和 2 个篮球共需 330 元.(1)购买一个排球、一个篮球各需多少元? (2)根据该校的实际情况,需从体育用品商店一次性购买排球和篮球共 100 个,要求购买排球和篮球的总费 用不超过 6500 元,这所中学最多可以购买多少个篮球? 18 . (列二元一次方程组求解)一、二两班共有 100 名学生,他们的体育达标率(达到标准的百分率)为 81%.如 果一班学生的的体育达标率为 87.5%,二班学生的体育达标率为 75%,那么一、二两班各有多少名学生?19 . 已知方程组和20 . 计算: (1)有相同的解,求 a 与 b 的值. ;(2)解方程组21 . “大润发”、“世纪联华”两家超市出售同样的洗衣液和香皂,洗衣液和香皂在两家超市的售价分别一 样.已知买 1 袋洗衣液和 2 块香皂要花费 48 元,买 3 袋洗衣液和 4 块香皂要花费 134 元.(1)一袋洗衣液与一块香皂售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“大润发”超市规定:这两种商品都打八五折; “世纪联华”超市规定:买一袋洗衣液赠送一块香皂.若妈妈想要买 4 袋洗衣液和 10 块香皂,又只能在一家超市 购买,你觉得选择哪家超市购买更合算?请说明理由.22 . 已知关于 x,y 的方程组 (1)求 m 得取值范围的解 x,y 均为负数.(2)化简: 23 . 小红用 110 根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条第3页共6页公共边.(1)小红首先用 根小木棍摆出了 个小正方形,请你用等式表示 之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多 4 个,请你求出摆 放的正方形和六边形各多少个?(3)小红重新用 50 根小木棍,摆出了 排,共 个小正方形.其中每排至少含有 1 个小正方形,每排含有的小正方 形的个数可以不同.请你用等式表示 之间的关系,并写出所有 可能的取值.第4页共6页一、单选题1、 2、 3、 4、 5、 6、 7、 8、 9、 10、二、填空题1、 2、 3、 4、5、参考答案第5页共6页6、三、解答题1、 2、 3、 4、 5、 6、 7、第6页共6页。
2浙教版七年级数学下册《第2章二元一次方程组》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.方程2x﹣3y=7,用含y的代数式表示x为()A.y=(7﹣2x)B.y=(2x﹣7)C.x=(7﹣3y)D.x=(7+3y)2.方程2x+3y=17的正整数解的对数是()A.1对B.2对C.3对D.4对3.已知是二元一次方程组的解,则m﹣n的值是()A.﹣2B.﹣3C.1D.﹣44.关于x、y的二元一次方程组,用代入法消去y后所得到的方程,正确的是()A.3x﹣x﹣5=83B.3x+x﹣5=8C.3x+x+5=8D.3x﹣x+5=8 5.若关于x,y的方程组的解x,y满足x﹣y=1,则k的值为()A.1B.2C.3D.46.若(x﹣y)2+|5x﹣7y﹣2|=0,则x+y的值为()A.﹣2B.0C.﹣1D.17.《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为()A.B.C.D.8.从茂名电白到湛江赤坎全长约为105km,一辆小汽车、一辆货车同时从茂名电白、湛江赤坎两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.B.C.D.二.填空题(共8小题,满分40分)9.已知关于x,y的方程组,则x﹣y=.10.若是二元一次方程2x+y=4的一个解,则m的值为.11.已知,则x+y+z的值.12.若方程组,则3(x+y)﹣3x+5y的值是.13.已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为.14.已知关于x、y的二元一次方程组的解是,则关于x,y的方程组的解是.15.若关于x,y的方程组和同解,则a=.16.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个.其中A盒中有2个耳机,3个优盘,1个音箱;B盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C盒中有1个耳机,3个优盘,2个音箱.经核算,A盒的价值为145元,B盒的价值为245元,则C盒的价值为元.三.解答题(共6小题,满分40分)17.(1)解方程组:;(2)解方程组:.18.甲、乙两位同学一起解方程组由于甲看错了方程①中的a,得到的解为,乙看错了方程②中的b,得到的解为,试根据上述条件,求解下列问题:(1)求a、b的值;(2)计算.19.对于任意的有理数a、b、c、d,我们规定,如.若x、y同时满足.求x,y的值.20.阅读下列解方程组的方法,然后回答问题.解方程组:.解:①﹣②,得2x+2y=2,即x+y=1.③③×16,得16x+16y=16.④②﹣④,得x=﹣1,从而可得y=2.∴原方程组的解是.(1)请你仿照上面的解法解方程组:;(2)请大胆猜测关于x,y的方程组(a≠b)的解是什么?并利用方程组的解加以验证.21.疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?22.为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若a=70,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.参考答案一.选择题(共8小题,满分40分)1.解:∵2x﹣3y=7,∴2x=7+3y.∴x=.∴用含y的代数式表示x为x=.故选:D.2.解:方程2x+3y=17,解得:y=,当x=1时,y=5;x=4时,y=3;x=7时,y=1,则正整数解的个数是3个,故选:C.3.解:把方程组的解代入方程组得,解得,∴m﹣n=﹣4+1=﹣3,故选:B.4.解:,把①代入②,得3x﹣(x﹣5)=8,3x﹣x+5=8,故选:D.5.解:,②×2得:8x﹣2y=10k③,①+③得:9x=12k,解得:x=k,把x=k代入①得:k+2y=2k,解得:y=k,∴原方程组的解为:,把代入x﹣y=1中可得:k﹣k=1,解得:k=1,故选:A.6.解:由题意得方程组,,解得,,∴x+y=﹣1﹣1=﹣2,故选:A.7.解:依题意,得.故选:A.8.解:由题意可得,,即,故选:D.二.填空题(共8小题,满分40分)9.解:,①×5+②得,16x=28,x=,把x=,代入①得y=﹣,∴x﹣y=﹣(﹣)=2,故答案为:2.10.解:把代入二元一次方程2x+y=4,得2+m=4,解得m=2.故答案为:2.11.解:,①+②+③得:3x+3y+3z=6063,则x+y+z=2021.故答案为:2021.12.解:由3x﹣5y=﹣3可得﹣3x+5y=3,∴3(x+y)﹣3x+5y=3×7+3=21+3=24.故答案为:24.13.解:由题意得:x+y=0,∴y=﹣x,把y=﹣x代入原方程组可得:,①+②可得:3a+9=0,解得a=﹣3,故答案为:﹣3.14.解:方程组可变形为:,∵关于x、y的二元一次方程组的解是,∴,解得:,故答案为:.15.解:原方程组可化为:,①+②得7x=14,x=2,把x=2代入②2×2﹣y=3,解得y=1,把x=2,y=1代入ax﹣3y=9,2a﹣3×1=9,解得a=6,故答案为:6.16.解:设1个耳机的价值为x元,1个优盘的价值为y元,1个音箱的价值为z元,B盒中耳机的数量为3n(n为正整数)个,则音箱的数量为2n个,优盘的数量为5n个,依题意得:.若n=2,则B盒的价值至少是A盒价值的3倍,∴n=2不合适,∴n只能为1,∴方程②为3x+5y+2z=245③.3×③﹣4×②得:x+3y+2z=155,即C盒的价值为155元.故答案为:155.三.解答题(共6小题,满分40分)17.解:(1),由②,得x=﹣1+2y③,把③代入①,得2(﹣1+2y)+y=3,解得:y=1,把y=1代入③,得x=﹣1+2×1=1,所以原方程组的解是;(2),②×3,得6x+45y=9③,①×2,得6x﹣4y=﹣40④,③﹣④,得﹣49y=﹣49,解得:y=1,把y=1代入①,得3x﹣2+20=0,解得:x=﹣6,所以原方程组的解是.18.解:(1)将代入方程②得﹣12=﹣b﹣2,解得b=10,将代入方程①得5a+20=15,解得a=﹣1;(2)当a=﹣1,b=10时,原式===3﹣2﹣0.4=0.6.19.解:∵,∴3y﹣2x=﹣2①,2x﹣(﹣y)=8②.∴①+②,得4y=6.∴y=.把y=代入②,得x=.∴x=,y=.20.解:(1)①﹣②,得2x+2y=2,即x+y=1③,①﹣③×2 020,得x=﹣1.把x=﹣1代入③,得﹣1+y=1,解得y=2.所以原方程组的解为;(2)猜想:方程组(a≠b)的解为:;检验:把x=﹣1,y=2代入(a+2)x+(a+1)y=a,得左边=a,左边=右边;把x=﹣1,y=2代入(b+2)x+(b+1)y=b,得左边=b,左边=右边.∴是方程组的解.21.解:(1)设甲种口罩购进了x盒,乙种口罩购进了y盒,依题意得:,解得:,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)20×700+25×200=14000+5000=19000(个),2×900×10=18000(个),∵19000>18000,∴购买的口罩数量能满足市教育局的要求.22.解:(1)设每个足球的价格是x元,每套队服的价格为y元,由题意得:,解得:,答:每套队服的价格各是160元,每个足球的价格是100元.(2)到甲商场购买装备所花的费用为:100×160+100(a﹣10)=(100a+15000)(元),到乙商场购买装备所花的费用为:100×160+100×0.8a=(80a+16000)(元);(3)到乙商场购买比较合算,理由如下:当a=70时,到甲商场购买装备所花的费用是:100a+15000=100×70+15000=22000(元),到乙商场购买装备所花的费用是:80a+16000=80×70+16000=21600(元),∵22000>21600,∴到乙商场购买比较合算.。
七年级数学下册2.1二元一次方程练习题(浙教版有答案)二元一次方程班级:___________姓名:___________得分:__________一、选择题(每小题5分,共20分) 1.下面为二元一次方程的是()A.x+3y B.x+y2=0 C.x+y=2x D.x+x2=6 2.下面说法正确的是()A.二元一次方程的解是唯一的. B.二元一次方程有无数个解. C.二元一次方程中有一个未知数. D.二元一次方程中的二元是指未知数的项的次数为二次. 3.下列哪组是二元一次方程2a+3b=8的一个解( ) A.a=1,b=2 B.a=1,b= 1 C.a=2 ,b=1 D.a=2,b=2 4.小红用20元买了3只铅笔和1和文具盒,求铅笔和文具盒的单价.设铅笔的单价为x元,文具盒的单价为y元,则可列出什么方程()A. y-3x=20 B.3x+y=20 C.3y+x=20 D.3x-y=20 二、填空题(每空4分,共20分) 5.已知二元一次方程3x+y=0,当x=1时,y=___. 6.已知对于x、y的二元一次方程mx+nyn +(m-1)z=0,则m= ,n= . 7.写出二元一次方程2a+3b=6的一个解: a= ,b= .(只需填写一组你认为合适的数字即可).三、简答题(每题20分,共60分) 8. 根据题意列出方程:(1)买5�K苹果和3�K香蕉共需30元,分别求出苹果和香蕉的单价.设苹果的单价为每千克x元,香蕉的单价为每千克y元.(2)七年级二班男生人数的2倍比女生人数的3倍少10人,求男、女生的人数.设男生人数为x,女生人数为y.9. 已知二元一次方程3a+6b=12.(1)用含有a的式子表示b;(2)计算当a=0,2,4时对应的b值.10. 已知二元一次方程6x+6=3y. (1)根据给出的x值,求出对应的y值,填入表内: x -2 -1 0 1 2 3 y (2)写出6x+6=3y的6个解.参考答案一、选择题 1. C 【解析】二元一次方程是指有两个未知数,并且未知数的项的次数为一次的方程,A选项没有“=”号,不是;B选项y的次数为2不是1,不是;C选项有x和y两个未知数其次数都是1,是;D选项只有一个未知数,不是. 2. B 【解析】对于二元一次方程,当有一个未知数x值确定具有另一个未知数y的值与之对应,一个x值和一个对应的y组成二元一次方程的一个解。
浙江七年级数学下册第二章《二元一次方程组》常考题(考试时间:90分钟 试卷满分:100分)一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2021·浙江·浦江县教育研究和教师培训中心七年级期末)已知二元一次方程473x y -=.用x 的代数式表示y ,正确的是( ) A .374y- B .374y+ C .437x - D .437x + 【答案】C 【解析】 【分析】将x 看作已知数,y 看作未知数,求出y 即可. 【详解】 ∵4x -7y =3, ∵7y =4x -3, ∵437x y -=. 故选:C . 【点睛】本题考查解二元一次方程,解题的关键是将x 看作已知数,y 看作未知数,解方程即可.2.(本题3分)(2021·浙江·七年级专题练习)若一个方程组的一个解为21x y =⎧⎨=⎩,则这个方程组不可能是( )A .31x y x y +=⎧⎨-=⎩B .2231y xx y =⎧⎨-=⎩C .2420x y x y +=⎧⎨-=⎩D .45133424x y x y +=⎧⎨-+=⎩【答案】C 【解析】 【分析】把解代入各个方程组,根据二元一次方程解的定义判断即可 【详解】解:A 、x =2,y =1适合方程组31x y x y +=⎧⎨-=⎩中的每一个方程,故本选项不符合题意;B 、x =2,y =1适合方程组2231y xx y =⎧⎨-=⎩中的每一个方程,故本选项不符合题意;C 、x =2,y =1不是方程20x y -=的解,故该选项符合题意.D 、x =2,y =1适合方程组45133424x y x y +=⎧⎨-+=⎩中的每一个方程,故本选项不符合题意;故选C . 【点睛】本题考查了方程组的解.解决本题可根据方程组解的定义代入验证,也可以通过解方程组确定.3.(本题3分)(2021·浙江诸暨·七年级期末)若方程组327213x y x y -=⎧⎨+=⎩的解也是方程218kx y +=的解,则k 的值为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】先求出方程组的解,然后代入方程218kx y +=,即可解答. 【详解】解:327213①②-=⎧⎨+=⎩x y x y ∵+∵,得:420x = ,解得:5x = ,把5x =代入∵,得:5213y +=,解得: 4y = ,所以方程组的解为54x y =⎧⎨=⎩ , 把x ,y 代入方程218kx y +=,得:52418k +⨯= ,解得:2k = .故选:B 【点睛】本题主要考查了解二元一次方程组和二元一次方程的解,解题的关键是熟练掌握解二元一次方程组的步骤,以及方程的解就是把这个数代入方程使方程成立的值. 4.(本题3分)(2021·浙江萧山·七年级期中)某地响应国家号召,实施退耕还林政策.退耕还林之前,该地的林地面积和耕地面积共有180km 2.退耕还林之后,该地的耕地面积是林地面积的30%.设退耕还林之后该地的耕地面积为x km2,林地面积为y km2,则可列方程组()A.18030%x yy x+=⎧⎨=⎩B.18030%x yx y+=⎧⎨=⎩C.18030%x yx y+=⎧⎨-=⎩D.18030%x yy x+=⎧⎨-=⎩【答案】B【解析】【分析】设耕地面积x平方千米,林地面积为y平方千米,根据该地的林地面积和耕地面积共有180km2,退耕还林之后,该地的耕地面积是林地面积的30%列出方程即可.【详解】解:设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18030%x yx y+=⎧⎨=⎩.故选B.【点睛】本题主要考查了根据实际问题列二元一次方程组,解题的关键在于能够准确根据题意找到等量关系.5.(本题3分)(2021·浙江杭州·七年级期末)方程组2,3x yx y⎧+=⎪⎨+=⎪⎩的解为2,.xy=⎧⎪⎨=⎪⎩则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【答案】B【解析】【分析】把x=2代入方程组第二个方程求出y的值,再将x与y的值代入第一个方程左边求出所求即可.【详解】解:把x=2代入x+y=3得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮盖的两个数分别为5,1,此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.(本题3分)(2021·浙江·杭州市公益中学七年级开学考试)已知(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,则x ,y 的值为( ) A .x =﹣1,y =1 B .x =1,y =﹣1 C .x =﹣1,y =﹣1 D .x =1,y =1【答案】D 【解析】 【分析】根据非负数的性质,建立二元一次方程组,加减法解二元一次方程组即可求得x ,y 的值为 【详解】(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,∴(2x ﹣3y +1)2+|4x ﹣3y ﹣1|=023104310x y x y -+=⎧∴⎨--=⎩ 解得11x y =⎧⎨=⎩ 故选D 【点睛】本题考查了相反数的应用,非负数的性质,解二元一次方程组,建立二元一次方程组是解题的关键.7.(本题3分)(2020·浙江·群星外国语学校七年级阶段练习)设1a ,2a ,…,2016a 是从1,0,-1这三个数中取值的一列数,若12202069a a a ++⋯+=,()()()2221220201114007a a a ++++⋅⋅⋅++=,则1a ,2a ,…,2020a 中有( )个0.A .163 B .164 C .170 D .171【答案】D 【解析】 【分析】由(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007得a 12+a 22+…+a 20202=1849,设数列中1有x 个、0有y 个,-1有z 个,根据题意得出1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1853,解:(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007, a 12+2a 1+1+a 22+2a 2+1+…+a 20202+2a 2020+1=4007, (a 12+a 22+…+a 20202)+2(a 1+a 2+…+a 2020)+2020=4007, ∵a 1+a 2+…+a 2020=69, ∵a 12+a 22+…+a 20202=1849,设a 1,a 2,…,a 2020中1有x 个、0有y 个,-1有z 个,根据题意可得:1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1849,即691849x z x z -=⎧⎨+=⎩,解得:959890x z =⎧⎨=⎩, 则y =2020-959-890=171,即0有171个, 故选:D . 【点睛】本题主要考查三元一次方程组的应用和完全平方公式,根据题意列出关于x 、y 、z 的方程组是解题的关键.8.(本题3分)(2021·浙江·杭州市采荷中学七年级期中)若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】A 【解析】 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案. 【详解】解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=,∴113b =,3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩.故选:A . 【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.9.(本题3分)(2021·浙江浙江·七年级期末)已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个 ∵当5a =时,方程组的解是1020x y =⎧⎨=⎩;∵当x ,y 的值互为相反数时,20a = ∵不存在一个实数a 使得x y =; ∵若23722a y -=,则2a =.A .1 B .2C .3D .4【答案】B 【解析】 【分析】∵把a =5代入方程组求出解,即可作出判断;∵由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ∵若x =y ,代入方程组,变形得关于a 的方程,即可作出判断;∵根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:∵把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故∵错误; ∵当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩, 整理,得82(3)35(4)x a x a =⎧⎨=-⎩, 由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故∵正确;∵若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∵不存在一个实数a 使得x =y ,故∵正确;∵352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∵原方程组的解为2515x ay a=-⎧⎨=-⎩,∵23722a y -=, ∵2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故∵错误; ∵正确的选项有∵∵两个. 故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.10.(本题3分)(2021·浙江·杭州市公益中学七年级期中)用如图∵中的长方形和正方形纸板作侧面和底面,做成如图∵的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .203【答案】A 【解析】 【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答. 【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得: 43{2x y n x y m+=+=, 则两式相加得 5()m n x y +=+,∵x 、y 都是正整数 ∵m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数, ∵m n +的值可能是200. 故选A. 【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2021·浙江浙江·七年级期末)若x ay b =⎧⎨=⎩是方程21x y -=的解,则362a b -+=________.【答案】5 【解析】 【分析】把x 与y 的值代入方程求出a 与b 的关系,代入原式计算即可得到结果. 【详解】解:把x ay b =⎧⎨=⎩代入方程x -2y =1,可得:a -2b =1,所以3a -6b +2=3(a -2b )+2=5. 故答案为:5. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未知数的值. 12.(本题3分)(2021·浙江慈溪·七年级期末)已知235x y -=,若用含x 的代数式表示y ,则y =______.【答案】253x - 【解析】 【分析】把方程化为:325,y x =-再两边都除以3, 即可得到答案. 【详解】解: 235x y -=, 325,y x ∴=-25.3x y -∴=故答案为:25.3x - 【点睛】本题考查的是二元一次方程的变形,掌握利用含一个未知数的代数式表示另外一个未知数是解题的关键.13.(本题3分)(2020·浙江泰顺·七年级开学考试)每年五月的第二个礼拜日是母亲节,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组为__________.【答案】2552390x y x y +=⎧⎨+=⎩ 【解析】 【分析】设鲜花x 元/束,礼盒y 元/盒,根据“一束花+二盒花=55元,二束花+三盒花=90元”,列出二元一次方程组,即可. 【详解】设鲜花x 元/束,礼盒y 元/盒,由题意得:2552390x y x y +=⎧⎨+=⎩.故答案是:2552390x y x y +=⎧⎨+=⎩.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出方程组,是解题的关键. 14.(本题3分)(2021·浙江浙江·七年级期中)已知关于x y 、的方程组342321x y mx y m +=⎧⎨+=-⎩的解满2x y +=,则m =________. 【答案】-1 【解析】 【分析】两式相减得,即可利用m 表示出x +y 的值,从而得到一个关于m 的方程,解方程从而求得m 的值. 【详解】解:两式相减得:x +y =1-m , ∵x +y =2.即1-m =2,解得:m =-1. 故答案是:-1.【点睛】本题考查了二元一次方程组的解,理解两个方程的系数之间的特点是关键.15.(本题3分)(2021·浙江浙江·七年级期末)把某个式子看成一个整体,用一个量代替它,从而使问题得到简化,这叫整体代换成换元思想,请根据上面的思想解决下面问题:若关于,m n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩,则关于,x y 的方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解是_______. 【答案】82x y =⎧⎨=⎩ 【解析】【分析】仿照已知方程组的解法求出所求方程组的解即可.【详解】解:∵关于m ,n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩, ∵方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解为106x y x y +=⎧⎨-=⎩, 解得:82x y =⎧⎨=⎩, 故答案为:82x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.16.(本题3分)(2021·浙江临海·七年级期中)在矩形ABCD 中,放入六个形状、大小相同的长方形,尺寸如图所示,则阴影部分的面积是___cm 2.【答案】44【解析】【分析】设这六个形状、大小相同的长方形的长为x cm,宽为y cm,然后根据图形可得26314y x y x y +=+⎧⎨+=⎩,然后求出x 、y 的值,进而问题可求解. 【详解】解:设这六个形状、大小相同的长方形的长为x cm,宽为y cm,由图形得:26314y x y x y +=+⎧⎨+=⎩,解得:82x y =⎧⎨=⎩, ∵AB =10cm,∵阴影部分的面积为14×10-8×2×6=44cm 2;故答案为44.【点睛】本题主要考查二元一次方程组与几何的应用,熟练掌握二元一次方程组的解法由图形得到基本关系量是解题的关键.17.(本题3分)(2021·浙江浙江·七年级期中)已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.【答案】11x y =-⎧⎨=⎩ 【解析】【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0,因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11x y =-⎧⎨=⎩.故答案为:11x y =-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2019·浙江东阳·七年级期末)解下列方程(组)(1)3263x y x y +=⎧⎨-=⎩(2)1122x xx x +=+--【答案】(1)12535x y ⎧=⎪⎪⎨⎪=-⎪⎩ ;(2)3x =-,经检验,3x =-是原方程的根.【解析】【分析】(1)根据加减消元法即可求解;(2)先将分母进行变形,再去分母即可求解.【详解】(1)3263x y x y +=⎧⎨-=⎩①②令∵+2∵得5x=12,解得x=125把x=125代入∵得y=35∵原方程组的解为12535x y ⎧=⎪⎪⎨⎪=-⎪⎩(2)1122x x x x+=+-- 1122x x x x +=-+-- x+1=-x+x-2解得x=-3,把x=-3代入原方程,符合题意,故x=-3是原方程的解.【点睛】此题主要考查方程的求解,解题的关键是熟知加减消元法及分式方程的求解.19.(本题8分)(2019·浙江·绍兴市柯桥区杨汛桥镇中学七年级期中)已知方程组44(1)214(2)ax y x by -=⎧⎨+=⎩,,由于甲看错了方程∵中的a 得到方程组的解为26x y ,,=-⎧⎨=⎩ 乙看错了方程∵中的b 得到方程组的解为44.x y =-⎧⎨=-⎩, 若按正确的a 、b 计算,求原方程组的解. 【答案】42x y =⎧⎨=⎩【解析】【分析】将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a 的值,确定出正确的方程组,求出方程组的解得到正确的x 与y 的值.【详解】解:将x=-2,y=6代入方程组中的第二个方程得:-4+6b=14,解得:b=3,将x=-4,y=-4代入方程组中的第一个方程得:-4a+16=4,解得:a=3,则方程组为()()344123142x y x y ⎧-=⎪⎨+=⎪⎩,,, (2)×3-(1)×2得:17y=34,解得:y=2,把y=2代入(1)得:x=4,即方程组的正确解为42 xy=⎧⎨=⎩.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入正确的a,b的值即可得出答案.20.(本题8分)(2021·浙江浙江·七年级期末)为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A B、两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?【答案】(1)a=120,b=100;(2)1120万元【解析】【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10-x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【详解】解:(1)根据题意得:20 3260a bb a-=⎧⎨-=⎩,解得:120100ab=⎧⎨=⎩.(2)设A型车购买x台,则B型车购买(10-x)台,根据题意得:2.4x +2(10-x )=22.4,解得:x =6,∵10-x =4,∵120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A 、B 型车价格间的关系列出关于a 、b 的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B 型车购买的数量列出关于x 的一元一次方程.21.(本题8分)(2021·浙江·杭州市公益中学七年级期中)已知关于x ,y 的方程组212398x y a x y a -=+⎧⎨+=-⎩,其中a 是实数. (1)若x y =,求a 的值;(2)若方程组的解也是方程53x y -=的一个解,求()20194a -的值;(3)求k 为何值时,代数式229x kxy y -+的值与a 的取值无关,始终是一个定值,求出这个定值.【答案】(1)12-;(2)-1;(3)k =6;定值为25. 【解析】【分析】(1)把a 看做已知数,利用加减消元法求出解即可;(2)把方程组的解代入方程计算求出a 的值,代入原式计算即可求出值;(3)将代数式x 2-kxy +9y 2的配方=(x -3y )2+6xy -kxy =25+(6-k )xy ,即可求解.【详解】解:(1)方程组212398x y a x y a -=+⎧⎨+=-⎩①②, ∵3⨯+∵得:5155x a =-,解得:31x a =-,把31x a =-代入∵得:2y a =-,则方程组的解为312x a y a =-⎧⎨=-⎩, 令312a a -=-,解得12a =-; (2)把方程组312x a y a =-⎧⎨=-⎩代入方程得:315103a a --+=, 解得:3a =,则20192019(4)(1)1a -=-=-;(3) 312x a y a =-⎧⎨=-⎩()3165,x y ∴-=---=229x kxy y -+2(3)6x y xy kxy =-+-25(6)k xy =+-,且代数式229x kxy y -+的值与a 的取值无关,∴当6k =时,代数式229x kxy y -+的值与a 的取值无关,定值为25.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程,熟练掌握运算法则是解本题的关键.22.(本题9分)(2019·浙江长兴·七年级期末)阅读材料:小丁同学在解方程组435235x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩时,他发现:如果直接用代入消元法或加减消元法求解运算量比较大,也容易出错.如果把方程组中的(x+y)看作一个整体,把(x-y)看作一个整体,通过换元,可以解决问题.以下是他的解题过程:设m=x+y,n=x-y,这时原方程组化为435235m n m n ⎧+=⎪⎪⎨⎪-=-⎪⎩ 解得315m n =⎧⎨=⎩,即315x y x y +=⎧⎨-=⎩,解得96x y =⎧⎨=-⎩ 请你参考小丁同学的做法,解方程组:23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩ 【答案】914x y =⎧⎨=⎩【解析】【分析】设m=2x+3y,n=2x-3y,根据所给整体代换思路,按照所给方法求出方程的解即可.【详解】设m=2x+3y,n=2x-3y, 原方程可组化为743832m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6024m n =⎧⎨=-⎩. ∵23602324x y x y +=⎧⎨-=-⎩, 解得:914x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,认真理解整体代换思路是解题关键.23.(本题10分)(2021·浙江浙江·七年级期末)用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( )A .2019B .2020C .2021D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒【答案】(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【解析】【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176 x yx y+=⎧⎨+=⎩,解得:100538 xy=⎧⎨=⎩,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:432c d a c d b+=⎧⎨+=⎩,∵5c+5d=5(c+d)=a+b,∵a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:35 324 m nm n+=⎧⎨=⨯⎩,解得:525116911mn⎧=⎪⎪⎨⎪=⎪⎩,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∵共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∵可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).。
浙教新版七年级下学期《2.1 二元一次方程》同步练习卷一.填空题(共25小题)1.已知2x2m+5n+8+3y m﹣n﹣3=6是关于x、y的二元一次方程,则m+n=.2.若是二元一次不定方程ax+by=c(其中(a、b)=1)的一组整数解,则ax+by=c的所有整数解为.3.如图,长方形ABCD恰好可分成7个形状大小相同的小长方形,如果小长方形的面积是3,则长方形ABCD的周长是.4.已知m,n均为正整数,且满足,则当m=时,n取得最小值.5.方程6x+22y=90的非负整数解为.6.关于x,y的方程组的解x,y的和等于1.则m的值是.7.若a、b都是正整数,且143a+500b=2001,则a+b的值是.8.已知5x+3y+5=0,3x+5y﹣5=0,则xy=.9.若x,y只能取0,1,2,3,4,5,6,7,8,9中的数,且3x﹣2y=1,则代数式10x+y可以取到个不同的值,其值为.10.已知(n﹣1)x|n|﹣2y m﹣2014=0是关于x,y的二元一次方程,则n m=.11.已知是方程3x+ay=5的解,则a=.12.已知是关于x,y的二元一次方程的解,则(a+1)(a﹣1)=.13.已知方程2x+y﹣5=0用含y的代数式表示x为:x=.14.方程x+5y+4=0,若用含有x的代数式表示y为;若用含有y的代数式表示x为.15.在方程3x﹣y=5中,用含x的代数式表示y为:y=,当x=3时,y=.16.规定:用{m}表示大于m的最小整数,例如{}=3,{5}=6,{﹣1.3}=﹣1;用[m]表示不大于m的最大整数,例如[]=3,[4]=4,[﹣1.5]=﹣2.若整数x满足关系式2{x+1}+3[x+1]=12,则x=.17.已知方程x2m﹣n﹣2+4y m+n+1=6是关于x,y的二元一次方程,则m=,n=.18.如果5x3m﹣2n﹣2y n﹣m+1=0是二元一次方程,则m、n的值分别为.19.已知关于x、y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a每取一个值时就得到一个方程,而这些方程有一个公共解,这个公共解是.20.若是方程mx+y=﹣3的一个解,则m的值是.21.按如图的运算程序,能使输出结果为3的x,y的值是(写一值即可).22.已知4x+5y﹣20=0,用含x的代数式表示y,得.23.若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k=.24.无论a取何值,关于x、y的二元一次方程(2a﹣1)x+(a+2)y+5﹣2a=0总有一个公共解,这个公共解是.25.已知二元一次方程﹣=1,用含x的代数式表示y为.二.解答题(共25小题)26.已知关于x,y的二元一次方程(a﹣3)x+(2a﹣5)y+6﹣a=0,当a每取一个值时就有一个方程,这些方程有一个公共解.(1)求出这个公共解;(2)请说明,无论a取何值,这个公共解都是二元一次方程(a﹣3)x+(2a﹣5)y+6﹣a=0的解.27.求方程37x+107y=25的整数解.28.求证:如果a,b是互质的正整数,c是整数,且方程ax+by=c①,有一组整数解x0,y0,则此方程的一切整数解可以表示为,其中t=0,±1,±2,±3,….29.求下列不定方程的整数解:(1)72x+157y=1;(2)9x+21y=144;(3)103x﹣91y=5.30.求不定方程x﹣y=2的正整数解.31.求方程7x+19y=213的所有正整数解.32.若自然数x,y满足x>y,x+y=2A,xy=G2,若A,G都是两位数,且互为反序数,求x,y.(注:数字排列顺序相反的两个数互为反序数,如12和21)33.求下列不定方程的正整数解:(1)3x﹣5y=19;(2)12x+5y=125.34.若一个三位数,其个位数加上十位数等于百位数,可表示为t=100(x+y)+10y+x,则称实数t为“加成数”,将t的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h.规定q=t﹣h,f(m)=,例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h=213,∴q=321﹣213=108,f(m)==12.(1)当f(m)最小时,求此时对应的“加成数”的值;(2)若f(m)是24的倍数,则称f(m)是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.35.(1)填表,使上下每对x,y的值是方程3x+y=5的解(2)写出二元一次方程3x+y=5的正整数解:.36.已知和是关于x,y的二元一次方程y=kx+b的解,求k,b的值.37.对于两个两位数p和q,将其中任意一个两位数的十位上的数字和个位上的数字分别放置于另一个两位数十位上数字与个位上的数字之间和个位上的数字的右边,就可以得到两个新四位数,把这两个新四位数的和与11的商记为F(p,q).例如:当p=23,q=15时,将p十位上的2放置于q中1与5之间,将p个位上的3位置于q中5的右边,得到1253.将q十位上的1放置于p中2和3之间,将q个位上的5放置于p中3的右边,得到2135.这两个新四位数的和为1253+2135=3388,3388÷11=308,所以F(23,15)=308.(1)计算:F(13,26);(2)若a=10+m,b=10n+5,(0≤m≤9,1≤n≤9,m,n均为自然数).当150F (a,18)+F(b,26)=32761时,求m+n的值.38.已知和是二元一次方程mx﹣3ny=5的两个解.(1)求m、n的值;(2)若x<﹣2,求y的取值范围.39.已知和是关于x,y的二元一次方程:ax+by=1的两个解,求﹣的值.40.已知与都是方程kx+b=y的解,求k和b的值.41.已知3x﹣y=6.(1)用含x的代数式表示y的形式为;(2)若﹣1<y≤3,求x的取值范围.42.(开放题)是否存在整数m,使关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?43.已知3x﹣2y=6.(1)把方程写成用含x的代数式表示y的形式;(2)若﹣1<y≤3,求x的取值范围.(3)若﹣1<x≤3,求y的最大值.44.求方程5x+2y=20的自然数解.45.已知x,y满足方程组(1)甲看了看说:这是二元一次方程组;乙想了想说:这不是二元一次方程组,甲、乙两人的说法正确的是.(2)求x2+4y2的值;(3)若已知:+=和(2y+x)2=x2+4y2+4xy;则+=(直接求出答案,不用写过程)46.已知:都是关于x、y方程y+mx=1的解,(1)若a=b=3,求m的值并直接写出c和d的关系式;(2)a+c=12,b+d=4m+4,比较b和d的大小.47.已知关于x,y的方程x+2y=2,2x+y=7,x﹣y=2k﹣1有公共解,求k的值.48.已知:.(1)用x的代数式表示y;(2)如果x、y为自然数,那么x、y的值分别为多少?(3)如果x、y为整数,求(﹣2)x•4y的值.49.阅读下列材料,然后解答后面的问题.我们知道方程2x﹣3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得y==4﹣x,(x、y为正整数)∴则有0<x<6.又y=4﹣x为正整数,则x为整数.由2与3互质,可知:x为3的倍数,从而x=3,代入y=4﹣x=2.∴2x+3y=12的正整数解为问题:(1)若为自然数,则满足条件的x值有个(2)请你写出方程2x+y=5的所有正整数解:(3)若(x+3)y=8,请用含x的式子表示y,并求出它的所有整数解.50.已知二元一次方程x+2y﹣5=0.(1)若x、y都是正整数,且x<y,求y x的值;(2)求4x•16y的值;(3)求(x+y)2+2y(x+y)+y2﹣10的值.浙教新版七年级下学期《2.1 二元一次方程》同步练习卷参考答案与试题解析一.填空题(共25小题)1.已知2x2m+5n+8+3y m﹣n﹣3=6是关于x、y的二元一次方程,则m+n=.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求常数m、n的值.【解答】解:根据二元一次方程的定义,得,解得:,∴m+n=﹣.故答案为:﹣.【点评】本题考查了二元一次方程的定义,注意二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2.若是二元一次不定方程ax+by=c(其中(a、b)=1)的一组整数解,则ax+by=c的所有整数解为t=0,±1,±2,….【分析】由已知可知二元一次不定方程ax+by=c的一组整数解,即一个特解,又由于x=bt,y=at为方程ax+by=0的通解,即可得ax+by=c的所有整数解.【解答】解:∵是二元一次不定方程ax+by=c(其中(a、b)=1)的一组整数解,∴x=x0,y=y0为方程ax+by=c的一个特解,又∵x=bt,y=﹣at为方程ax+by=0的通解,则ax+by=c的所有整数解为t=0,±1,±2,…,故答案为:t=0,±1,±2,….【点评】本题主要考查二元一次方程的解的问题,利用特解求通解,要认真掌握.3.如图,长方形ABCD恰好可分成7个形状大小相同的小长方形,如果小长方形的面积是3,则长方形ABCD的周长是19.【分析】首先设小长方形的长为x,宽为y,根据图示可以得到:长×3=宽×4,再根据小长方形的面积是3也可得到小长方形长和宽的一个方程式,解方程组即可得到小长形的长和宽,再可得到长方形的周长.【解答】解:设小长方形的长为x,宽为y,根据题意得:,解得:,∴AB=2+=3,AD=4×=6,∴长方形ABCD的周长=2×(6+3)=19.故答案为:19.【点评】本题主要考查了二元一次方程组的应用,解题关键是弄清题意及图意,找到合适的等量关系,列出方程组.4.已知m,n均为正整数,且满足,则当m=72时,n取得最小值5.【分析】先移项,用m表示出n,再根据n最小可得出关于m的不等式,求出m 的取值范围,再由m,n均为正整数即可得出符合条件的m、n的值.【解答】解:移项得,n=﹣﹣75=﹣75,∵m、n为正整数,∴﹣75≥0,∴m≥67.5,若n取得最小值,则与75无限接近且m为正整数,∴当m=72时,n=5.最小【点评】本题考查的是解二元一次方程,解答此类题目时要注意此类方程属不定方程,由无数组解,要根据题意找出符合条件的未知数的对应值.5.方程6x+22y=90的非负整数解为,.【分析】首先用其中的一个未知数表示另一个未知数,然后根据x,y都是非负整数进行分析求解.【解答】解:6x+22y=90,移项化简得:x=,根据题意,y只可取0,3,此时对应的x为15,4.故非负整数解为:,.故答案为:,.【点评】本题考查了解二元一次方程,难度不大,关键是先将方程做适当变形,确定其中一个未知数的适合条件的所有非负整数值,再求出另一个未知数的值.6.关于x,y的方程组的解x,y的和等于1.则m的值是1.【分析】先解二元一次方程组,把x、y的值代入2mx+3y=2,即可求出m的值.【解答】解:解方程组,得.把x=1,y=0代入2mx+3y=2,得2m+0=2,∴m=1.故答案为1.【点评】本题考查了一次方程组的解法.先求解二元一次方程组,可使问题比较简便.本题还可以将x+y=1加入已知方程组中,解二元一次方程组.7.若a、b都是正整数,且143a+500b=2001,则a+b的值是9.【分析】首先由143a+500b=2001,求得a的值,然后由a、b都是正整数,即可得b可能为1,2,3,然后分别分析,求得a的值,即可求得a+b的值.【解答】解:∵a、b都是正整数,且143a+500b=2001,∴a=≥1,∴b≤3.716,∴若b=1,则a=(舍去),若b=2,则a=7,则a+b=9,若b=3,则a=(舍去),∴a+b的值是9.故答案为:9.【点评】此题考查了二元一次方程的求解方法.此题难度适中,解题的关键是由143a+500b=2001,表示出a的值,然后分析求得b可能为1,2,3,注意分类讨论思想的应用.8.已知5x+3y+5=0,3x+5y﹣5=0,则xy=﹣.【分析】根据关于x、y的方程式即可求得x、y的值,根据x、y的值即可计算xy.【解答】解:5x+3y+5=0 ①,3x+5y﹣5=0 ②,①+②得,x+y=0,∴x=﹣y③,将③代入①得:5x﹣3x+5=0,即x=﹣,y=,∴xy=﹣,故答案为﹣.【点评】本题考查了二元一次方程组的求解,正确的求解方程组是解题的关键.9.若x,y只能取0,1,2,3,4,5,6,7,8,9中的数,且3x﹣2y=1,则代数式10x+y可以取到3个不同的值,其值为11,34,57.【分析】由原方程可以得到用y表示x的一个方程:x=,根据x,y只能取0,1,2,3,4,5,6,7,8,9中的数分别代入求原方程的解即可,然后代入10x+y中即可得解.【解答】解:由题意可知:x=,∵x,y只能取0,1,2,3,4,5,6,7,8,9中的数,∴当x=1时,y=1;当x=3时,y=4;当x=5,y=7,原方程共三组解.∴10x+y可以取到3个不同的值.依次为:11,34,57.故答案分别填:3、11,34,57.【点评】本题考查了解二元一次方程及代数式求值.解题关键是把方程3x﹣2y =1的符合条件的x和y的值求出,再分别计算代入10x+y后的值.10.已知(n﹣1)x|n|﹣2y m﹣2014=0是关于x,y的二元一次方程,则n m=﹣1.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面先求常数m、n的值,再求n m的值【解答】解:根据题意,得m﹣2014=1,n﹣1≠0,|n|=1解得m=2015,n=﹣1,n m=﹣1,故答案为:﹣1【点评】考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:只含有2个未知数,未知数的项的次数是1的整式方程.11.已知是方程3x+ay=5的解,则a=﹣1.【分析】根据方程的解的概念,可将x、y的值代入方程,得到一个含有未知数a的一元一次方程,从而可以求出a的值.【解答】解:把代入方程3x+ay=5,得:6+a=5,解得:a=﹣1,故答案为:﹣1.【点评】此题考查二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程,一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.已知是关于x,y的二元一次方程的解,则(a+1)(a﹣1)=2.【分析】把代入二元一次方程,得到一个含有未知数a的一元一次方程,求出a的值,从而求出关于a的代数式的值.【解答】解:把代入二元一次方程,得2=+a,解得a=,则(a+1)(a﹣1)=(+1)(﹣1)=3﹣1=2.故答案为:2【点评】本题考查了二元一次方程的解的定义及一元一次方程的解法.解题关键是把方程的解代入原方程,使原方程转化为关于a的一元一次方程.13.已知方程2x+y﹣5=0用含y的代数式表示x为:x=.【分析】把x看做已知数求出y即可.【解答】解:2x+y﹣5=02x=5﹣y,x=.故答案为:.【点评】此题考查了解二元一次方程,解题的关键是把x看做已知数求出y.14.方程x+5y+4=0,若用含有x的代数式表示y为;若用含有y的代数式表示x为﹣5y﹣4.【分析】要把二元一次方程x+5y+4=0中的y用含x的式子表示,移项、合并同类项即可.【解答】解:(1)x+5y+4=0,移项得5y=﹣x﹣4,y=;(2)x+5y+4=0,移项得x=﹣5y﹣4;故答案为,﹣5y﹣4.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y的式子表示x的形式.15.在方程3x﹣y=5中,用含x的代数式表示y为:y=12x﹣20,当x=3时,y=16.【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【解答】解:①由已知方程3x﹣y=5,移项,得,系数化为1,得y=12x﹣20;②当x=3代入y=12x﹣20,得y=16.【点评】本题考查的是方程的基本运算技能:移项,合并同类项,系数化为1等.16.规定:用{m}表示大于m的最小整数,例如{}=3,{5}=6,{﹣1.3}=﹣1;用[m]表示不大于m的最大整数,例如[]=3,[4]=4,[﹣1.5]=﹣2.若整数x满足关系式2{x+1}+3[x+1]=12,则x=1.【分析】根据{5}=6,[4]=4得出,利用x为整数,得出[x+1]=x+1,{x+1}=x+2,进而得出x的值即可.【解答】解:∵x为整数,∴[x+1]=x+1,{x+1}=x+2,∴2(x+2)+3(x+1)=12,解得:x=1.故答案为:1.【点评】此题主要考查了解一元一次方程,根据已知得出,[x+1]=x+1,{x+1}=x+2是解题关键.17.已知方程x2m﹣n﹣2+4y m+n+1=6是关于x,y的二元一次方程,则m=1,n =﹣1.【分析】利用二元一次方程的定义判断即可.【解答】解:根据题意,得:,解得:,故答案为:1、﹣1.【点评】此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.18.如果5x3m﹣2n﹣2y n﹣m+1=0是二元一次方程,则m、n的值分别为m=3,n =2.【分析】根据二元一次方程的定义可得3m﹣2n=1,n﹣m=1,再把两个方程联立,解二元一次方程组即可.【解答】解:由题意得:3m﹣2n=1,n﹣m=1,解得:n=4,m=3,故答案为:m=3,n=2.【点评】此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.19.已知关于x、y的二元一次方程(a﹣1)x+(a+2)y+5﹣2a=0,当a每取一个值时就得到一个方程,而这些方程有一个公共解,这个公共解是x=3,y =﹣1.【分析】根据题意先给a值随便取两个值,然后代入方程,从而能够求出x、y 的值,然后把x、y的值代入方程进行验证,能使左边和右边相等就是方程的解.【解答】解:∵当a每取一个值时就得到一个方程,而这些方程有一个公共解,∴a值随便取两个值,a=1,方程为y+1=0,a=2,方程为x+4y+1=0,解得x=3,y=﹣1,把x=3,y=﹣1,带到(a﹣1)x+(a+2)y+5﹣2a=0,可得3×(a﹣1)﹣1×(a+2)+5﹣2a=(3﹣1﹣2)×a﹣3﹣2+5=0,∴这个公共解是x=3,y=﹣1,故答案为x=3,y=﹣1.【点评】主要考查二元一次方程的解的定义,要会用代入法判断二元一次方程的解.该题主要用的是代入法.20.若是方程mx+y=﹣3的一个解,则m的值是﹣1.【分析】把代入方程mx+y=﹣3,即可解答.【解答】解:∵是方程mx+y=﹣3的一个解,∴m﹣2=﹣3,解得:m=﹣1.故答案为:﹣1.【点评】本题考查了二元一次方程组的解,解决本题的关键是明确二元一次方程组的解的定义.21.按如图的运算程序,能使输出结果为3的x,y的值是x=2、y=1(写一值即可).【分析】根据运算程序列出方程,取方程的一组正整数解即可.【解答】解:由题意得2x﹣y=3,当x=2、y=1时,2x﹣y=3,故答案为:x=2、y=1.【点评】此题考查了解二元一次方程,弄清题中的运算程序是解本题的关键.22.已知4x+5y﹣20=0,用含x的代数式表示y,得y=4﹣x.【分析】要把方程4x+5y﹣20=0写成用含x的式子表示y的形式,需要把含有y 的项移到等号一边,其他的项移到另一边,然后合并同类项,系数化1就可用含x的式子表示y的形式:y=4﹣x.【解答】解:移项得:5y=﹣4x+20系数化1得:y=4﹣x.故填:y=4﹣x.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y的式子表示x的形式.23.若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k=﹣2.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:根据题意得:,解得:k=﹣2.故答案为:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.24.无论a取何值,关于x、y的二元一次方程(2a﹣1)x+(a+2)y+5﹣2a=0总有一个公共解,这个公共解是.【分析】如果当a取一个确定的值时就得到一个方程,这些方程有一个公共解,说明无论a取何值,都不影响方程,即含a的项的系数相加为0.【解答】解:方程整理为a(2x+y﹣2)﹣x+2y+5=0,则,解得:,故答案为:.【点评】本题考查二元一次方程的解,由于a可取任何数,要想让当a取一个确定的值时就得到一个方程,所有这些方程有一个公共解,就需让含a的项的系数相加为0,此时即可得到关于x和y的方程组.25.已知二元一次方程﹣=1,用含x的代数式表示y为y=.【分析】把x看做已知数表示出y即可.【解答】解:方程去分母得:3x+3﹣4y+2=6,解得:y=,故答案为:y=【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.二.解答题(共25小题)26.已知关于x,y的二元一次方程(a﹣3)x+(2a﹣5)y+6﹣a=0,当a每取一个值时就有一个方程,这些方程有一个公共解.(1)求出这个公共解;(2)请说明,无论a取何值,这个公共解都是二元一次方程(a﹣3)x+(2a﹣5)y+6﹣a=0的解.【分析】(1)先把原方程去括号整理得出(x+2y﹣1)a﹣3x﹣5y+6=0,再由题意得出,解方程即可;(2)按照(1)的思路去做即可.【解答】解:(1)原方程去括号整理得:(x+2y﹣1)a﹣3x﹣5y+6=0,由题意得:,解得;(2)∵把(a﹣3)x+(2a﹣5)y+6﹣a=0化为下面的形式:(x+2y﹣1)a﹣3x﹣5y+6=0,∴,解得(3分)∴无论a取何值,这个公共解都是二元一次方程(a﹣3)x+(2a﹣5)y+6﹣a=0的解(2分)【点评】本题考查了二元一次方程的解,难度适中,是个不错的题目.27.求方程37x+107y=25的整数解.【分析】先把107,37,33,表示成:107=2×37+33,37=1×33+4,33=8×4+1,再用37与107表示1,然后求解即可.【解答】解:107=2×37+33,37=1×33+4,33=8×4+1.为用37和107表示1,我们把上述辗转相除过程回代,得1=33﹣8×4=37﹣4﹣8×4=37﹣9×4=37﹣9×(37﹣33)=9×33﹣8×37=9×(107﹣2×37)8×37=9×107﹣26×37=37×(﹣26)+107×9.由此可知x1=﹣26,y1=9是方程37x+107y=1的一组整数解.于是x0=25×(﹣26)=﹣650,y0=25×9=225是方程37x+107y=25的一组整数解.所以原方程的一切整数解为:,t是整数.【点评】本题考查了解二元一次方程,难度较大,关键是先把107与37分解,然后用37和107表示1.28.求证:如果a,b是互质的正整数,c是整数,且方程ax+by=c①,有一组整数解x0,y0,则此方程的一切整数解可以表示为,其中t=0,±1,±2,±3,….【分析】把x0,y0代入原方程中可得到一个方程,设方程的任一组解可得到第二个方程,联立两个方程求解,再根据a,b是互质的正整数,c是整数,即可得到原方程解的表示形式,即可证明结论.【解答】证明:因为x0,y0是方程①的整数解,当然满足ax0+by0=c,②因此a(x0﹣bt)+b(y0+at)=ax0+by0=c.这表明x=x0﹣bt,y=y0+at也是方程①的解.设x′,y′是方程①的任一整数解,则有ax′+by′=c.③③﹣②得a(x′﹣x0)=b′(y0﹣y′).④∵a,b是互质的正整数即(a,b)=1,∴即y′=y0+at,其中t是整数.将y′=y0+at代入④,即得x′=x0﹣bt.∴x′,y′可以表示成x=x0﹣bt,y=y0+at的形式,∴x=x0﹣bt,y=y0+at表示方程①的一切整数解.【点评】本题考查了二元一次方程的解和二元一次方程组的解.当没有条件限制时,二元一次方程的解有无数个.求不定方程的整数解,先将方程做适当变形,确定其中一个未知数的取值范围,然后列举出适合条件的所有整数值,再求出另一个未知数的值.29.求下列不定方程的整数解:(1)72x+157y=1;(2)9x+21y=144;(3)103x﹣91y=5.【分析】首先将方程做适当变形,根据解为整数确定其中一个未知数的取值,再进一步求得方程的另一个解.【解答】解:(1)由原方程得x==①,∵原方程的解为整数,∴当y=﹣11时,x=24,是原方程的一组解,故y=72t﹣11,代入①式得x=24﹣157t(t为整数),故原方程的解为(t为整数).(2)由原方程得:x==16﹣2y﹣y①,∵方程的解整数,16﹣2是整数,∴满足是整数即可,令y=t(t为整数),则y=3t,代入①式得,x=16﹣7t.故原方程的解为(t为整数).(3)由原方程得x==①,∵原方程的解为整数,∴当y=9时,x=8,是原方程的一组解,故y=103t+9,代入①式得x=91t+8(t为整数),原方程的解为(t为整数).【点评】本题是求不定方程的整数解,先将方程做适当变形,然后列举出其中一个未知数的适合条件的所有整数值,再求出另一个未知数的值.30.求不定方程x﹣y=2的正整数解.【分析】根据原方程,xy的关系可以得到x、y的一个等式关系,由于方程的解是正整数,则只要y取自然数,x取比y大2的数即可,原方程有无数组解.【解答】解:我们知道:3﹣1=2,4﹣2=2,5﹣3=2,所以这个方程的正整数解有无数组,它们是,其中n可以取一切自然数.因此,所要解的不定方程有无数组正整数解,它的解是不确定的.【点评】本题考查了二元一次方程的解和求不定方程的整数解.当没有条件限制时,方程的解有无数个.求不定方程的整数解,先将方程做适当变形,确定其中一个未知数的取值范围,然后列举出适合条件的所有整数值,再求出另一个未知数的值.31.求方程7x+19y=213的所有正整数解.【分析】首先把原方程中的y用含x的式子表示为,再根据解是整数分别讨论解的值.【解答】解:用方程7x+19y=213①的最小系数7除方程①的各项,并移项得x==30﹣2y+②因为x,y是整数,故3﹣5y/7=u也是整数,于是5y+7u=3.则y=③,令=v,则2u+5v=3.④由观察知u=﹣1,v=1是方程④的一组解.将u=﹣1,v=1代入③得y=2.y =2,代入②得x=25.于是方程①有一组解x0=25,y0=2,所以它的一切解为,由于要求方程的正整数解,所以,解不等式得t只能取0,1,因此得原方程的正整数解为:和.【点评】本题考查了二元一次方程的解法,此题运用辗转法求解,难度比较大.32.若自然数x,y满足x>y,x+y=2A,xy=G2,若A,G都是两位数,且互为反序数,求x,y.(注:数字排列顺序相反的两个数互为反序数,如12和21)【分析】设A=10a+b,则G=10b+a,其中a和b都是1到9的自然数,则求出(x+y)2=400a2+80ab+4b2,(x﹣y)2=22×32×11(a+b)(a﹣b),求出x﹣y =66,x+y=130,解方程组求出即可.【解答】解:设A=10a+b,则G=10b+a,其中a和b都是1到9的自然数,则x+y=20a+2b,xy=(10b+a)2=100b2+20ab+a2,∴(x+y)2=(20a+2b)2=400a2+80ab+4b2,(x﹣y)2=(x+y)2﹣4xy=396a2﹣396b2=22×32×11(a+b)(a﹣b),因为x、y都是自然数,所以(x﹣y)2是完全平方数,所以(a+b)和(a﹣b)中必有一个是11的倍数,∵a和b都是1到9的自然数,∴a+b=11,于是a﹣b也是一个完全平方数,只能a=6,b=5,所以(x﹣y)2=(2×3×11)2,∴x﹣y=66,x+y=20a+2b=130,解得:x=98,y=32.【点评】本题考查了解二元一次方程组,完全平方公式的应用,能选择适当的方法得出x﹣y和x+y的值是解此题的关键.33.求下列不定方程的正整数解:(1)3x﹣5y=19;(2)12x+5y=125.【分析】求不定方程的正整数解,先将方程做适当变形,确定其中一个未知数的取值范围,然后列举出适合条件的所有正整数值,再求出另一个未知数的值即可.【解答】解:(1)3x﹣5y=19,移项得:3x=5y+19,化系数为1得;x=,∵0<y<,即y只能在1,2,3,4,5,6中取值,当y=1时,x=8,当y=2时,x=不符合题意;当y=3时,x=不符合题意;当y=4时,x=13;当y=5时,x=不符合题意.故符合题意的正整数解为:,.(2)12x+5y=125,移项得:5y=125﹣12x,化系数为1得:y=25﹣x,∵0<x<,故x只能在1,2,3,4,5,6,7,8,9,10中取值,又∵y=25﹣为正整数,故符合条件的x为:5,10.当x=5时,y=13;当x=10时,y=1;故不定方程的正整数解为:,.【点评】本题考查了解二元一次方程,难度适中,关键是先将方程做适当变形,确定其中一个未知数的取值范围,然后列举出适合条件的所有正整数值,再求出另一个未知数的值即可.34.若一个三位数,其个位数加上十位数等于百位数,可表示为t=100(x+y)+10y+x,则称实数t为“加成数”,将t的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h.规定q=t﹣h,f(m)=,例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h=213,∴q=321﹣213=108,f(m)==12.(1)当f(m)最小时,求此时对应的“加成数”的值;(2)若f(m)是24的倍数,则称f(m)是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.【分析】(1)根据新定义,由求f(m)最小值,可知就是求q的最小值,根据定义表示q=t﹣h=100(x+y)+10y+x﹣(101y+11x)=9y+90x,可得结论;(2)根据f(m)是24的倍数,f(m)=24n(n为正整数),得q=216n,由(1)中q=9y+90x,列方程,解方程可得结论.【解答】解:(1)∵f(m)=,∴当f(m)最小时,q最小,∵t=100(x+y)+10y+x,h=100y+10x+x+y=101y+11x,∴q=t﹣h=100(x+y)+10y+x﹣(101y+11x)=9y+90x,且1≤y≤9,0≤x≤9,x、y为正整数,=9,此时对应的“加成数”是110;当x=0,y=1时,q小(2)∵f(m)是24的倍数,设f(m)=24n(n为正整数),则24n=,q=216n,由(1)知:q=9y+90x=9(y+10x),∴216n=9(y+10x),24n=y+10x,(x+y<10)①当n=1时,即y+10x=24,解得:x=2,y=4,则这样的“节气数”是24;②当n=2时,即y+10x=48,解得:x=4,y=8,x+y=12>10,不符合题意;③当n=3时,即y+10x=72,解得:x=7,y=2,则这样的“节气数”是72;①当n=4时,即y+10x=96,解得:x=9,y=6,x+y=15>10,不符合题意;①当n=5时,即y+10x=120,没有符合条件的整数解,综上,这样的“节气数”有2个,分别为24,72.【点评】本题主要考查了加成数和节气数的定义和应用,二元一次方程的整数解,理解新定义,并将其转化为二元一次方程是解题的关键.35.(1)填表,使上下每对x,y的值是方程3x+y=5的解(2)写出二元一次方程3x+y=5的正整数解:x=1、y=2.【分析】(1)当已知x的值时,把x的值代入解得到一个关于y的方程,解方程求得y的值;当已知y的值时,把y的值代入即可得到一个关于x的方程,解方程求得对应的x的值.据此计算补全表格;(2)根据方程的解的概念求解可得.【解答】解:(1)当x=﹣2时,﹣6+y=5,解得y=11;当x=0.4时,1.2+y=5,解得y=3.8;当y=0时,3x=5,解得x=;当y=3时,3x+3=5,解得x=;补全表格如下:(2)二元一次方程3x+y=5的正整数解:x=1、y=2,故答案为:x=1、y=2.【点评】本题考查了二元一次方程的解,正确解一元一次方程是关键.36.已知和是关于x,y的二元一次方程y=kx+b的解,求k,b的值.【分析】代入后得出一个二元一次方程组,求出方程组的解即可.【解答】解:根据题意得:,②﹣①得:5k=15,解得:k=3,把k=3代入①得:﹣6+b=﹣8,解得:b=﹣2,答:k=3,b=﹣2.【点评】本题考查了二元一次方程的解和解二元一次方程组,能得出关于k、b 的方程组是解此题的关键.37.对于两个两位数p和q,将其中任意一个两位数的十位上的数字和个位上的数字分别放置于另一个两位数十位上数字与个位上的数字之间和个位上的数字的右边,就可以得到两个新四位数,把这两个新四位数的和与11的商记为F(p,q).例如:当p=23,q=15时,将p十位上的2放置于q中1与5之间,将p个位上的3位置于q中5的右边,得到1253.将q十位上的1放置于p中2和3之间,将q个位上的5放置于p中3的右边,得到2135.这两个新四位数的和为1253+2135=3388,3388÷11=308,所以F(23,15)=308.(1)计算:F(13,26);(2)若a=10+m,b=10n+5,(0≤m≤9,1≤n≤9,m,n均为自然数).当150F (a,18)+F(b,26)=32761时,求m+n的值.【分析】(1)根据定义代入计算可得(2)根据题意代入可得二元一次方程,解得m,n的整数解,可求m+n的值.【解答】解:(1)F(13,26)=(2163+1236)÷11=309;(2)∵当150F(a,18)+F(b,26)=32761,。
第2章二元一次方程组一、选择题下列是二元一次方程的是()A.x﹣xy=0B.x﹣2=3y C.2x=3+3x D.x﹣=22二元一次方程3x+y=6的解可以是()A.B.C.D.3足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A.B.C.D.4关于x、y的方程组的解是,则|m﹣n|的值是()A.5B.3C.2D.15若是方程nx+6y=4的一个解,则代数式3m﹣n+1的值是()A.3B.2C.1D.﹣16当a为何值时,方程组的解,x、y的值互为相反数()A.a=﹣8B.a=8C.a=10D.a=﹣107与方程5x+2y=﹣9构成的方程组,其解为的是()A.x+2y=1B.3x+2y=﹣8C.3x﹣4y=﹣8D.5x+4y=﹣38李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.二、填空题9解方程组,当采用加减消元法时,先消去未知数比较简便.10是关于x,y的方程ax﹣y=3的解,则a=.11已知3x﹣2y﹣3=0,求23x÷22y=.12方程组(a为常数)的解满足方程x﹣3y=﹣1,则a=.13甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.三.解答题14解方程组:(1);(2).15某单位在疫情期间购买甲、乙两种防疫品共三次,只有一次甲、乙同时打折,其余两次均按标价购买.三次购买甲、乙的数量和费用如下表:购买甲的数量(个)购买乙的数量(个)购买总费用(元)第一次购物60501140第二次购物30701110第三次购物90801062(1)该单位在第次购物时享受了打折优惠;(2)求出防疫品甲、乙的标价.16课本里,用代入法解二元一次方程组的过程是用下面的框图表示:根据以上思路,请用代入法求出方程组的解(不用画框架图).第2章二元一次方程组一、选择题下列是二元一次方程的是()A.x﹣xy=0B.x﹣2=3y C.2x=3+3x D.x﹣=2【考点】二元一次方程的定义.【专题】一次方程(组)及应用;分式方程及应用;符号意识.【答案】B【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:A.x﹣xy=0,是二元二次方程,故本选项不合题意;B.x﹣2=3y,属于二元一次方程,故本选项符合题意;C.2x=3+3x,是一元一次方程,故本选项不合题意;D.,是分式方程,故本选项不合题意;故选:B.2二元一次方程3x+y=6的解可以是()A.B.C.D.【考点】二元一次方程的解.【专题】一次方程(组)及应用;运算能力.【答案】A【分析】将x=0代入方程求出y的值,判断所求值与各选项中对应的y的值是否一致,从而得出答案.【解答】解:A.当x=0时,y=6,是方程的解;B.当x=1时,9+y=6,解得y=3≠2,故不是方程的解;C.当x=2时,6+y=6,解得y=0≠1,故不是方程的解;D.当x=3时,9+y=6,解得y=﹣3≠3,故不是方程的解;故选:A.3足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【答案】A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【解答】解:设这个队胜x场,负y场,根据题意,得.故选:A.4关于x、y的方程组的解是,则|m﹣n|的值是()A.5B.3C.2D.1【考点】二元一次方程组的解.【专题】常规题型.【答案】D【分析】根据二元一次方程组的解的定义,把方程组的解代入方程组,求解得到m、n 的值,然后代入代数式进行计算即可得解.【解答】解:∵方程组的解是,∴,解得,所以,|m﹣n|=|2﹣3|=1.故选:D.5若是方程nx+6y=4的一个解,则代数式3m﹣n+1的值是()A.3B.2C.1D.﹣1【考点】二元一次方程的解.【专题】整式;一次方程(组)及应用;运算能力.【答案】A【分析】把代入方程nx+6y=4得出﹣2n+6m=4,求出3m﹣n=2,再代入求出即可.【解答】解:∵是方程nx+6y=4的一个解,∴代入得:﹣2n+6m=4,∴3m﹣n=2,∴3m﹣n+1=2+1=3,故选:A.6当a为何值时,方程组的解,x、y的值互为相反数()A.a=﹣8B.a=8C.a=10D.a=﹣10【考点】二元一次方程组的解.【专题】实数;一次方程(组)及应用;运算能力.【答案】B【分析】①﹣②×2得出﹣x﹣19y=36,得出方程组,求出x、y的值,再把x=2,y=﹣2代入①求出a即可.【解答】解:当x、y互为相反数时,x+y=0,∵,∴①﹣②×2得:﹣x﹣19y=36,解方程组得:,把x=2,y=﹣2代入①得:6+10=2a,解得:a=8,故选:B.7与方程5x+2y=﹣9构成的方程组,其解为的是()A.x+2y=1B.3x+2y=﹣8C.3x﹣4y=﹣8D.5x+4y=﹣3【考点】二元一次方程组的解.【答案】C【分析】将分别代入四个方程进行检验即可得到结果.【解答】解:A、将代入x+2y=1,得左边=﹣2+1=﹣1,右边=1,左边≠右边,所以本选项错误;B、将代入3x+2y=﹣8,得左边=﹣6+1=﹣5,右边=﹣8,左边≠右边,所以本选项错误;C、将代入3x﹣4y=﹣8,得左边=﹣6﹣2=﹣8,右边=﹣8,左边=右边,所以本选项正确;D、将代入5x+4y=﹣3,得左边=﹣10+2=﹣8,右边=﹣3,左边≠右边,所以本选项错误;故选:C.8李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【答案】D【分析】根据关键语句“到学校共用时15分钟”可得方程:x+y=15,根据“骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米”可得方程:250x+80y=2900,两个方程组合可得方程组.【解答】解:他骑车和步行的时间分别为x分钟,y分钟,由题意得:,故选:D.二、填空题9解方程组,当采用加减消元法时,先消去未知数比较简便.【考点】解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【答案】y.【分析】由未知数的系数的特点,y的系数互为相反数,即可得到答案.【解答】解:把两个方程进行相加,即可消去未知数y,故答案为:y.10是关于x,y的方程ax﹣y=3的解,则a=.【考点】二元一次方程的解.【专题】一次方程(组)及应用;运算能力.【答案】5.【分析】把x与y的值代入方程计算即可求出a的值.【解答】解:代入方程得:a﹣2=3,解得:a=5,故答案为:5.11已知3x﹣2y﹣3=0,求23x÷22y=.【考点】同底数幂的除法.【专题】整式;运算能力.【答案】见试题解答内容【分析】把3x﹣2y﹣3=0变形为3x﹣2y=3,再根据同底数幂的除法法则计算即可.【解答】解:由3x﹣2y﹣3=0得3x﹣2y=3,∴23x÷22y=23x﹣2y=23=8.故答案为:8.12方程组(a为常数)的解满足方程x﹣3y=﹣1,则a=.【考点】二元一次方程的解;二元一次方程组的解.【专题】一次方程(组)及应用;运算能力.【答案】2.5.【分析】将只含有x,y的两个方程联立,解出x,y,代入含a的方程中求出a即可.【解答】解:,解得:,代入ax﹣y=4得:2a﹣1=4,∴a=2.5.故答案为:2.5.13甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x米/秒,乙的速度为y米/秒,可列方程组.【考点】由实际问题抽象出二元一次方程组.【答案】见试题解答内容【分析】根据题意,得出等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙,得出方程组即可.【解答】解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故答案为:.三.解答题14解方程组:(1);(2).【考点】解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【答案】(1);(2)..【分析】(1)利用代入法解方程组即可得到答案;(2)加减消元法求解可得答案.【解答】解:(1)解方程组,由①得,x=6+2y③把③代入②得,2(6+2y)+3y=﹣2解得,y=﹣2把y=14代入③得,x=2所以原方程组的解为:;(2)①﹣②,得:7y=14,解得:y=2,将y=2代入①,得:3x﹣2×2=20,解得:x=8,所以原方程组的解为:.15某单位在疫情期间购买甲、乙两种防疫品共三次,只有一次甲、乙同时打折,其余两次均按标价购买.三次购买甲、乙的数量和费用如下表:购买甲的数量(个)购买乙的数量(个)购买总费用(元)第一次购物60501140第二次购物30701110第三次购物90801062(1)该单位在第次购物时享受了打折优惠;(2)求出防疫品甲、乙的标价.【考点】二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【答案】见试题解答内容【分析】(1)由第三次购买的东西多且总费用底,可得出该单位在第三次购物时享受了打折优惠;(2)设甲的标价是x元,乙的标价是y元,根据总价=单价×数量结合前两次购物的数量和费用,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:(1)观察表格数据,可知:第三次购物购买的物品更多,总费用反而更少,∴该单位在第三次购物时享受了打折优惠.故答案为:三.(2)设甲的标价是x元,乙的标价是y元,依题意,得:,解得:.答:甲的标价是9元,乙的标价是12元.16课本里,用代入法解二元一次方程组的过程是用下面的框图表示:根据以上思路,请用代入法求出方程组的解(不用画框架图).【考点】绝对值;解二元一次方程组.【专题】计算题;一次方程(组)及应用.【答案】见试题解答内容【分析】根据阅读材料中的思路利用代入法求出方程组的解即可.【解答】解:由①得:x=y③,把③代入②得:|y﹣2y|=2,解得:y=2或y=﹣2,当y=2时,x=y=2;当y=﹣2时,x=y=﹣2,∴方程组的解为或.。
浙教版数学七年级下册第2章单元检测一、选择题1.下列方程中,属于二元一次方程的是( B ) A .x +xy =8 B .y =x -1 C .x +1x =2D .x 2-2x +1=02.方程组⎩⎨⎧3x +2y =19,2x -y =1的解为( A )A.⎩⎨⎧x =3,y =5B.⎩⎨⎧x =5,y =2C.⎩⎨⎧x =3,y =-5D.⎩⎨⎧x =5,y =93.已知⎩⎨⎧x =2,y =-1是关于x ,y 的方程2x +ay =6的一个解,则a 的值为( B )A .-3B .-2C .2D .3【解析】 ∵⎩⎨⎧x =2,y =-1是关于x ,y 的方程2x +ay =6的一个解,∴2×2-a =6,解得a =-2.4.已知式子12x a -1y 3与-3x -b y 2a +b 是同类项,则a ,b 的值为( A ) A.⎩⎨⎧a =2,b =-1 B.⎩⎨⎧a =2,b =1 C.⎩⎨⎧a =-2,b =-1 D.⎩⎨⎧a =-2,b =1 【解析】 由题意,得⎩⎨⎧a -1=-b ,3=2a +b ,解得⎩⎨⎧a =2,b =-1.5.某文具店一本练习本和一支水笔的价格合计为 3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么下列方程组中,正确的是( B )A.⎩⎨⎧x -y =3,20x +10y =36B.⎩⎨⎧x +y =3,20x +10y =36 C.⎩⎨⎧y -x =3,20x +10y =36 D.⎩⎨⎧x +y =3,10x +20y =36 6.二元一次方程2x +y =11的非负的整数解有( C ) A .2个B .5个C .6个D .无数个【解析】 最小的非负的整数为0,当x =0时,0+y =11,解得y =11; 当x =1时,2+y =11,解得y =9; 当x =2时,4+y =11,解得y =7; 当x =3时,6+y =11,解得y =5; 当x =4时,8+y =11,解得y =3; 当x =5时,10+y =11,解得y =1;当x =6时,12+y =11,解得y =-1(不合题意,舍去),故当x ≥6时,不合题意, 故二元一次方程2x +y =11的非负的整数解有6个.7.如图,在3×3的方格中做填数游戏,要求每行、每列及对角线上三个方格中的数之和都相等,则表格中x ,y 的值为( A )A.⎩⎨⎧x =-1,y =1B.⎩⎨⎧x =1,y =-1C.⎩⎨⎧x =2,y =-1D.⎩⎨⎧x =-2,y =18.若方程组⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解为⎩⎨⎧x =4,y =6,则方程组⎩⎨⎧4a 1x +3b 1y =5c 1,4a 2x +3b 2y =5c 2的解为( C )A.⎩⎨⎧x =4,y =6B.⎩⎨⎧x =5,y =6C.⎩⎨⎧x =5,y =10D.⎩⎨⎧x =10,y =15 【解析】 ∵⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解为⎩⎨⎧x =4,y =6,∴⎩⎨⎧4a 1+6b 1=c 1,4a 2+6b 2=c 2,即⎩⎨⎧20a 1+30b 1=5c 1,20a 2+30b 2=5c 2.又∵⎩⎨⎧4a 1x +3b 1y =5c 1,4a 2x +3b 2y =5c 2,∴⎩⎨⎧4x =20,3y =30,解得⎩⎨⎧x =5,y =10.9.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根高出水面的长度是它的13,另一根高出水面的长度是它的15.两根铁棒长度之和为110 cm ,此时木桶中水的深度是( C )第9题图A .60 cmB .50 cmC .40 cmD .30 cm【解析】 设较长的铁棒长度为x (cm),较短的铁棒长度为y (cm).由题意,得⎩⎪⎨⎪⎧x +y =110,⎝⎛⎭⎪⎫1-13x =⎝ ⎛⎭⎪⎫1-15y ,解得⎩⎨⎧x =60,y =50, ∴⎝ ⎛⎭⎪⎫1-13x =40,即木桶中水的深度是40 cm. 10.下列关于x ,y 的方程组⎩⎨⎧x +3y =4-a ,x -5y =3a 的说法中,正确的是( C )①⎩⎨⎧x =5,y =-1是方程组的解;②不论a 取什么实数,x +y 的值始终不变; ③当a =-2时,x 与y 相等. A .①②B .①③C .②③D .①②③【解析】 把⎩⎨⎧x =5,y =-1代入x +3y =4-a ,得5-3=4-a ,解得a =2.把⎩⎨⎧x =5,y =1,代入x -5y =3a ,得5+5=3a ,解得a =103,故①不正确;解方程⎩⎨⎧x +3y =4-a ,x -5y =3a ,得⎩⎪⎨⎪⎧x =a +52,y =1-a 2,∴x +y =3,故无论a 取何值,x +y 的值始终不变,故②正确; 把a =-2代入方程组,得⎩⎨⎧x +3y =6,x -5y =-6,两式相加,得2x -2y =0, ∴x =y ,故③正确.综上所述,正确的是②③.故选C. 二、填空题11.写出一个以⎩⎨⎧x =2,y =-3为解的二元一次方程组:__⎩⎨⎧x +y =-1,x -y =5(答案不唯一)__.12.已知方程组⎩⎨⎧2x +3y =12,3x +2y =18,则x +y =__6__.【解析】 ⎩⎨⎧2x +3y =12,①3x +2y =18.②①+②,得5x +5y =30, ∴5(x +y )=30, ∴x +y =6.13.如果方程组⎩⎨⎧x =3,ax +by =5的解与方程组⎩⎨⎧y =4,bx +ay =2的解相同,那么a =__-1__,b =__2__.14.对于有理数x ,y ,定义新运算“※”:x ※y =ax +by +1(a ,b 为常数).若3※4=9,4※7=5,则7※11=__13__.【解析】 ∵3※4=9,4※7=5,∴根据题中的新定义化简,可得⎩⎨⎧3a +4b =8,①4a +7b =4,②①+②,得7a +11b =12, 则7※11=7a +11b +1=12+1=13.15.《孙子算经》中记载:“今有三人共车,二车空.二人共车,九人步.问人和车各几何?”其大意是:今有若干人乘车,若每3人乘一辆车,则最终剩余2辆空车;若每2人同乘一辆车,则最终剩下9人因无车可乘而步行,问有多少人,多少辆车?设有x 辆车,y 个人,则由题意可列方程组为__⎩⎨⎧3(x -2)=y ,2x +9=y__.16.已知关于x ,y 的方程组⎩⎨⎧3x +y =24,4x +ay =18有正整数解,则整数a 的值为__-1__.【解析】 ⎩⎨⎧3x +y =24,①4x +ay =18,②①×4-②×3,得(4-3a )y =42,∴y =424-3a .∵方程组的解为正整数,且a 为整数, ∴a =1或-1.当a =1时,y =42,代入①可得x =-6,不合题意,舍去; 当a =-1时,y =6,代入①可得x =6,符合题意. 故整数a 的值为-1. 三、解答题 17.解下列方程组: (1)⎩⎨⎧3x -4y =24,2x +3y =-1.解:⎩⎨⎧3x -4y =24,①2x +3y =-1,②①×3+②×4,得17x =68,解得x =4. 把x =4代入①,得12-4y =24,解得y =-3. ∴原方程组的解为⎩⎨⎧x =4,y =-3. (2)⎩⎪⎨⎪⎧2(x -1)=3-y ,y -12-x -13=-1.解:方程组整理,得⎩⎨⎧2x +y =5,①2x -3y =5,②①-②,得4y =0,解得y =0. 把y =0代入①,得2x =5, 解得x =52.∴原方程组的解为⎩⎪⎨⎪⎧x =52,y =0.18.若等式(2x -4)2+⎪⎪⎪⎪⎪⎪y -12=0中的x ,y 是方程组⎩⎨⎧mx +4y =8,5x +16y =n的解,求m ,n 的值.解:∵(2x -4)2+⎪⎪⎪⎪⎪⎪y -12=0,∴2x -4=0且y -12=0, ∴x =2,y =12.把x =2,y =12代入⎩⎨⎧mx +4y =8,5x +16y =n ,得⎩⎨⎧2m +2=8,10+8=n ,解得⎩⎨⎧m =3,n =18.19.解方程组⎩⎨⎧ax +by =2,cx +5y =8时,一马虎的学生把c 写错而得⎩⎨⎧x =-3,y =1,而正确的解为⎩⎨⎧x =3,y =-2.求a +b -c 的值.解:把⎩⎨⎧x =-3,y =1和⎩⎨⎧x =3,y =-2分别代入ax +by =2,得⎩⎨⎧-3a +b =2,①3a -2b =2.②①+②,得-b =4,解得b =-4.把b =-4代入①,得-3a -4=2,解得a =-2. 把⎩⎨⎧x =3,y =-2代入cx +5y =8,得3c -10=8,解得c =6, ∴a +b -c =-2-4-6=-12.20.如图,在大长方形ABCD 中,放入六个相同的小长方形,已知BC =11,DE =7. (1)设每个小长方形的长为x ,宽为y ,求x ,y 的值. (2)求图中阴影部分的面积.第20题图解:(1)由题意,得⎩⎨⎧x +y -2y =7,x +3y =11,解得⎩⎨⎧x =8,y =1.(2)S 阴影=11×(8+1)-6×1×8=51. 答:图中阴影部分的面积为51. 21.阅读理解:善于思考的小聪在解方程组⎩⎨⎧2x -3y =3,①2x -5y =5②时,发现①和②之间存在一定关系,他的解法如下:解:把②变形为2x -3y -2y =5.③ 把①代入③,得3-2y =5, 解得y =-1.把y =-1代入①,得x =0,∴原方程组的解为⎩⎨⎧x =0,y =-1.小聪的这种解法叫“整体换元法”.请用“整体换元法”解下列方程组: (1)⎩⎨⎧2x +5y =3,3x +5y =2.解:解方程组⎩⎨⎧2x +5y =3,①3x +5y =2.②把②变形为x +2x +5y =2.③把①代入③,得x +3=2,解得x =-1. 把x =-1代入①,得y =1, ∴原方程组的解为⎩⎨⎧x =-1,y =1.(2)⎩⎨⎧3x -2y =5,9x -4y =19.解:解方程组⎩⎨⎧3x -2y =5,①9x -4y =19.②把②变形为3(3x -2y )+2y =19.③ 把①代入③,得3×5+2y =19, 解得y =2.把y =2代入①,得x =3, ∴原方程组的解为⎩⎨⎧x =3,y =2.22.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x 人,女生y 人,男生人数比女生人数少 2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?解:(1)由题意,得⎩⎨⎧x +y =50,x =y -2,解得⎩⎨⎧x =24,y =26.答:这个班有男生有24人,女生有26人.(2)男生每小时剪筒底的数量为24×120=2 880(个), 女生每小时剪筒身的数量为26×40=1 040(个). ∵一个筒身配两个筒底,2 880∶1 040≠2∶1,∴原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套. 设男生应向女生支援a 人,由题意,得120(24-a )=(26+a )×40×2, 解得a =4.答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套.男生应向女生支援4人,才能使每小时剪出的筒身与筒底配套.23.小明为练习书法,去商店购买书法用品,购买发票上有部分信息不慎被墨汁污染导致无法看清,如下表所示.请解答下列问题:(1)小明购买墨水和毛笔各多少?(2)若小明再次购买墨水和字帖两种用品共花费150元,则有哪几种不同的购买方案? 解:(1)设小明购买墨水x 瓶,毛笔y 支. 由题意,得⎩⎨⎧x +y +2=5,15x +40y +90=185,解得⎩⎨⎧x =1,y =2. 答:小明购买墨水1瓶,毛笔2支. (2)字帖的单价为90÷2=45(元). 设再次购买墨水m 瓶,字帖n 本, 由题意,得15m +45n =150,∴m =10-3n . 又∵m ,n 均为正整数, ∴⎩⎨⎧m =1,n =3或⎩⎨⎧m =4,n =2或⎩⎨⎧m =7,n =1, ∴共有3种购买方案:方案一:购买1瓶墨水,3本字帖;方案二:购买4瓶墨水,2本字帖;方案三:购买7瓶墨水,1本字帖.。
浙教版七年级下册数学22.1 二元一次方程课前检测1.以下方程属于一元一次方程的是A .125=xB .123-=-y xC .08=-xyD .z y x -=32.小东买了单价为3元的贺卡x 张,单价为2元的贺卡y 张,共花了12元,那么可列出方程A .1223=+y xB .1232=+y xC .12)(5=+y xD .126=xy3.以下方程属于二元一次方程的是A .113=xB .1032-=+y xC .08=-xyD .z y x -=34.有组数①⎩⎨⎧-==30y x ,②⎩⎨⎧==05y x ,③⎩⎨⎧=-=310y x ,其中是方程1553-=+y x 的解的是A .①②B .①③C .②③D .①②③5.方程3=+y x 的解得个数有A .0个B .2个C .4个D .有数个6.将方程33=+y x 变方程形为用含x 的代数式表示y ,正确的选项是A .y x +=33B .y x -=33C .33-=x yD .x y 33-= 课后检测1.以下方程是二元一次方程的是A . 162=xB .y x +=33C .z y x =+-33D .yx 33+= 2.以下各组数值是方程623=+y x 的解的是A .⎩⎨⎧==32y xB . ⎩⎨⎧-==23y xC . ⎩⎨⎧-==32y xD . ⎩⎨⎧=-=62y x 3.某校展开〝慈善一日捐〞活动。
七〔2〕班共捐款380元,其中捐5元的有10人,捐10元的有x 人,剩下的y 人是捐15元的。
由题意所列的方程是A .380501510=-+y xB .380151050=++y xC . 380151050=++x yD .3801510=+y x4.二元一次方程1023=-y x ,假定6=x ,那么y =__________;假定5.3-=y ,那么=x _______。
5.写出方程2637=+y x 的一个解___________________________6.⎩⎨⎧-==33y x 是方程63=-ay x 的一个解,那么=a ___________ 7.方程103=+y x ,用含x 的代数式表示y ,那么y =___________8.⎩⎨⎧-==11y x 既是方程a y x =+3的解,又是方程b y x =+的解,求b a +的值9.一批机器零件共840个,甲先做4天后,乙参与与甲一同做,再做8天刚好完成。
浙教版数学七年级下册2.2《二元一次方程组》同步练习一、选择题1.下列六个方程组中,是二元一次方程组的有( )①②③④⑤⑥A.1个B.2个C.3个D.4个2.下列方程组中,是二元一次方程组的是( )A.3.在下列方程组中,不是二元一次方程组的是( )A. B. C. D.4.下列方程组中,解是的是( )A. B. C. D.5.方程组解的个数有( ).A.一个B.2个C.3个D.4个6.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( )A. B. C. D.7.已知是二元一次方程组的解,则m﹣n的值是( )A.1B.2C.3D.48.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.9.方程5x+2y=﹣9与下列方程构成的方程组的解为的是( )A.x+2y=1B.3x+2y=﹣8C.5x+4y=﹣3D.3x﹣4y=﹣810.既是方程2x-y=3的解,又是方程3x+4y=10的解是( )A. B.. C. D.11.方程y=1﹣x与3x+2y=5的公共解是( )A. B. C. D.12.已知是二元一次方程组的解,则m﹣n的值是( )A.1B.2C.3D.4二、填空题13.方程组的一个解为,那么这个方程组的另一个解是 .14.若方程组的解是方程3x+my=﹣1的一个解,则m= .15.在;;各对数值中,________是方程组的解.16.已知的解,则m=_______,n=______.17.已知是方程组的解,则2m+n= .18.解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数★=19.已知是方程组的解,则m= ;n= ;20.若关于 x,y 的方程组的解是,则|m﹣n|为 .参考答案1.C2.答案为:A3.答案为:C4.答案为:C5.答案为:A6.答案为:C7.答案为:D8.答案为:C9.答案为:D10.答案为:B.11.答案为:B12.答案为:D13.答案为:.14.答案为:﹣715.答案为:16.答案为:1,4.17.答案为:11.18.答案为:-219.答案为:-,-120.答案为:2.。
二元一次方程组一.选择题(共10小题,3*10=30) 1. 下列不是二元一次方程组的是( )A.⎩⎪⎨⎪⎧1x -y =4x -y =1B.⎩⎪⎨⎪⎧4x +3y =62x +y =4C.⎩⎪⎨⎪⎧x +y =4x -y =4D.⎩⎪⎨⎪⎧3x +5y =25x +10y =25 2.下面选项中是二元一次方程组⎩⎪⎨⎪⎧x +y =5,2x -y =4的解是( )A.⎩⎪⎨⎪⎧x =1y =4B.⎩⎪⎨⎪⎧x =2y =3C.⎩⎪⎨⎪⎧x =3y =2D.⎩⎪⎨⎪⎧x =4y =1 3.某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰好为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧x -y =49y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49y =2(x -1) 4. 方程3x+4y=16与下面哪个方程所组成的方程组的解是⎩⎪⎨⎪⎧x =4y =1()A .12x+3y=7B .3x-5y=7C .14x-7y=8 D .2(x-y )=3y5. 方程组⎩⎪⎨⎪⎧2x +y =□,x +y =3的解为⎩⎪⎨⎪⎧x =2,y =□,则被遮盖的两个数分别为( ) A .2,1 B .2,3 C .5,1 D .2,46.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意列方程组正确的是( )A.⎩⎪⎨⎪⎧x +y =7,x =2yB.⎩⎪⎨⎪⎧x +y =7,y =2xC.⎩⎪⎨⎪⎧x +2y =7,x =2yD.⎩⎪⎨⎪⎧2x +y =7,y =2x 7.二元一次方程组⎩⎪⎨⎪⎧2x +y =8,2x -y =0的解是( )A.⎩⎪⎨⎪⎧x =4,y =0B.⎩⎪⎨⎪⎧x =3,y =2C.⎩⎪⎨⎪⎧x =3,y =6D.⎩⎪⎨⎪⎧x =2,y =4 8. 下面三组数值:①⎩⎪⎨⎪⎧x =-1,y =-2, ②⎩⎪⎨⎪⎧x =2,y =4,③⎩⎪⎨⎪⎧x =0,y =6,其中是方程组⎩⎪⎨⎪⎧2x -y =0,x +y =6的解的是( ) A .① B .② C .③ D .都不是9. 方程2x +3y =11和下列方程构成的方程组的解是⎩⎪⎨⎪⎧x =4,y =1的方程是( )A .3x +4y =20B .4x -7y =3C .2x -7y =1D .5x -4y =6 10. 下列说法正确的是( )A.⎩⎪⎨⎪⎧x -3y =9,x +2xy =3是二元一次方程组 B .方程x +3y =6的解是⎩⎪⎨⎪⎧x =3y =1C .方程2x -y =3的解必是方程组⎩⎪⎨⎪⎧2x -y =3,3x +y =1的解D.⎩⎪⎨⎪⎧x =3,y =-1是方程组⎩⎪⎨⎪⎧x -y =4,2x +3y =3的解 二.填空题(共6小题,3*6=18)11. 下列方程组中:①⎩⎪⎨⎪⎧2x -y =1,y =z +1;②⎩⎪⎨⎪⎧x =0,y =3;③⎩⎪⎨⎪⎧x -y =0,2x +3y =5;④⎩⎪⎨⎪⎧xy =1,x +2y =8;⑤⎩⎪⎨⎪⎧x -y =3,1x+3y =5.属于二元一次方程组的有______.(填序号)12. 若方程组⎩⎪⎨⎪⎧5x -3y =7,2y +az =4是二元一次方程组,则a 的值为_______.13.写一个以⎩⎪⎨⎪⎧x =1,y =-2为解的二元一次方程组___________________.14.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +by =0,x +y =-1的解是⎩⎪⎨⎪⎧x =1,y =▲.其中y 的值被墨渍盖住了,则b 的值是_______.15. 我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为_______________.16.如果方程组⎩⎪⎨⎪⎧3x +7y =10ax +(a -1)y =5的解中x 与y 的值相等,那么a 的值是_______.三.解答题(共7小题,52分)17. (6分) 已知方程组⎩⎪⎨⎪⎧3x -(m -3)y|m-2|-2=1(m +1)x =-2 是二元一次方程组,求m 的值.18. (6分) 已知方程组⎩⎪⎨⎪⎧ax +by =-5ax -2y =a 的解是⎩⎪⎨⎪⎧x =2y =1,求a ,b 的值.19. (6分) 已知⎩⎪⎨⎪⎧x =2,y =1是关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x -(m +1)y =2nx +y =1 的解,求2m +n 的平方根.20. (8分) 已知方程组⎩⎪⎨⎪⎧x -y =2,2x +my =2m +8的解是⎩⎪⎨⎪⎧x =k ,y =1,求该方程组的解及m 的值.21. (8分) 植树节这天,七(2)班参加植树活动,若每人种6棵,则还剩9棵;若每人种8棵,则有一人少种1棵.若设有x 个学生,y 棵树苗,请根据问题中的条件列出关于x ,y 的方程组,并用列表尝试的方法求出学生人数与树苗的棵数.22. (8分)小华跟爸爸去建材市场买材料,准备装修新房子,他们看中了两种大理石地板,某商店中甲种每块6元,乙种每块3.5元,小华学了妈妈去市场买东西的经验,也向店主讨价还价,结果以甲种每块5元,乙种每块3元的价格成交,小华共买了两种大理石900块,付款3300元,问甲种和乙种各买了多少块? (1)设购买甲种和乙种大理石地板分别为x 块、y 块,请根据题意,列出二元一次方程组;(2)通过尝试你能判断小华买了甲种和乙种大理石各多少块吗?(3)经过讨价还价小华节约了多少元钱?23. (8分)阅读下面情境:甲、乙两人共同解关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +5y =15①,4x +by =-2②,由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试求出a ,b 的正确值,并计算a2019+(110b)2020的值.参考答案:1-5 ACDBC 6-10ADBCD11. ②③ 12. 0 13. ⎩⎪⎨⎪⎧x -y =33x -2y =7(开放性题,答案不唯一) 14. 12 15.3 16. ⎩⎪⎨⎪⎧x +y =100,3x +13y =100 17. 解:依题意得|m -2|-2=1,且m -3≠0,m +1≠0,解得m =5.故m 的值是518. 解:将x=2,y=1代入元一次方程组⎩⎪⎨⎪⎧ax +by =-5ax -2y =a ,得⎩⎪⎨⎪⎧2a +b =-52a -2=a, 解得,a =2,b =-919. 解:将x=2,y=3代入元一次方程组⎩⎪⎨⎪⎧2x -(m +1)y =2nx +y =1 ,得⎩⎪⎨⎪⎧4-3(m +1)=22n +3=1 ,解得m =1,n =0,所以±2m +n =±220. 解:将y=1代入方程x-y=2.解得x=3,即k=3,所以该方程组的解是⎩⎪⎨⎪⎧x =3y =1 ,再将⎩⎪⎨⎪⎧x =3y =1代入2x +my =2m +8,解得m =-221. 解:由题意列方程得⎩⎪⎨⎪⎧6x+9=y8x-1=y ,列表如下:从表中找到两个方程的公共解为⎩⎪⎨⎪⎧x =5y =3922. 解:(1)⎩⎪⎨⎪⎧x+y =9005x+3y =3300(2)甲种大理石300块,乙种大理石600块 (3)300·1+600·0.5=600元23. 解:将⎩⎪⎨⎪⎧x =-3,y =-1代入②得b =-10,将⎩⎪⎨⎪⎧x =5,y =4代入①得a =-1,所以a2019+(-110b)2020=(-1)2019+[-110×(-10)]2020=-1+1=0。
2.1 二元一次方程同步练习
【知识盘点】
1.含有______未知数,且含有未知数的项的次数都是______•的方程叫做二元一次方程.
2.已知
2
1
x
y
=-
⎧
⎨
=
⎩
是方程2ax-5y=3的一个解,则a=_______.
3.填表,使上、下每对x、y的值满足方程3x+2y=5.
x …-3 -2 -1 0 1 2 3 …
y …
4.有两种商品,甲种商品每个6千克,乙种商品每个8千克,现有甲种商品x 个,•乙种商品y个,共88千克.
(1)根据题意,列出方程___________________;
(2)若x=12,则y=_______;
(3)若有乙种商品5个,则甲种商品有_______个.
5.如图,由若干盆花组成形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数记为s,按此规律推断,•以s,•n•为未知数的二元一次方程为________.
【基础过关】
6.下列方程是二元一次方程的是()
A.x2+x=1 B.2x+3y-1=0 C.x+y-z=0 D.x+1
y
+1=0
7.下列各组数值中是方程x-2y=4的解的是()
A.
2104
...
1121 x x x x
B C D
y y y y
==-==⎧⎧⎧⎧
⎨⎨⎨⎨===-=⎩⎩⎩⎩。