八年级第一学期期末最后一题
- 格式:doc
- 大小:256.00 KB
- 文档页数:6
2023-2024学年度第一学期期末考试八年级数学试卷试卷满分:150分考试时间:120分钟一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.下列几种著名的数学曲线中,不是轴对称图形的是(▲)A .B .C .D .2.有下列实数: ,1.8-,9,3,33,其中无理数有(▲)A .1个B .2个C .3个D .4个3.下列数据中不能确定物体位置的是(▲)A .电影票上的“5排8号”B .小明住在某小区3号楼7号C .南偏西37°D .东经130°,北纬54°的城市4.如图,AD 为∠BAC 的角平分线,添加下列条件后,不能证明△ABD ≌△ACD 的是(▲)A .∠B =∠C B .∠BDA =∠CDA C .AB =AC D .BD =CD 5.在等腰三角形ABC 中,∠A =100°,则底角的度数是(▲)A .100°B .80°C .50°D .40°6.如图,△AOB 是边长为2的等边三角形,点B 在x 轴上,则点A 关于x 轴的对称点的坐标为(▲)A .(1,-3)B .(1,3)C .(-1,-3)D .(-1,3)7.一次函数b ax y +=1与正比例函数bx y =-2在同一坐标系中的图像大致是(▲)A .B .C .D .8.如图,△ABC 中,∠ACB =90°,BC =6,AC =8,点D 是AB 的中点,将△ACD 沿CD 翻折得到△ECD ,连接AE ,BE ,则线段AE 的长等于(▲)A .75B .548C .53D .514第4题图第6题图第8题图二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.36的平方根是▲.10.扬州市面积约为6591平方公里,数据6591用四舍五入法精确到百位,并用科学记数法表示为▲.11.比较大小:3▲1-π(用“>”、“<”或“=”填空).12.如果将直线y =2x -1向上平移3个单位,那么所得直线的函数表达式是▲.13.已知点A (1,m ),B (32,n )在一次函数y =3x +1的图像上,则m ▲n (用“>”、“<”或“=”填空).14.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若BC =3cm ,AD =4cm ,则图中阴影部分的面积是▲cm 2.15.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为()a a -,+112,则a 的值为▲.16.如图,在Rt △ABC 中,AC =4,AB =5,∠C =90°,BD 平分∠ABC 交AC 于点D ,则DC 的长是▲.17.已知A 、B 两地是一条直路,甲骑自行车从A 地到B 地,乙骑摩托车从B 地到A 地,两人同时出发,乙先到达目的地,两人之间的距离s (km )与运动时间t (h )的函数关系大致如图所示,则下列结论正确的有▲.①两人出发2h 后相遇;②甲骑自行车的速度为60km/h ;③乙比甲提前2h 到达目的地;④乙到达目的地时两人相距200km .第14题图第15题图第16题图第17题图18.定义:在平面直角坐标系xOy 中,O 为坐标原点,任意两点P (x 1,y 1)、Q (x 2,y 2),称2121y y x x +++的值为P 、Q 两点的“坐标和距离”.若P (1,-3),Q 为直线y =x +2上任意一点,则P ,Q 的“坐标和距离”的最小值为▲.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:9)1(6423--+;(2)求27)4(3-=-x 中x 的值.20.(本题满分8分)已知2a +1与a -4是b 的两个不相等的平方根,求b -1的立方根.21.(本题满分8分)已知y 与2x -3成正比例,且当x =2时,y =2.(1)求y 与x 的函数关系式;(2)求当x =21时的函数值.22.(本题满分8分)已知:如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,AD ⊥BC ,垂足为点D ,求BC ,AD 的长.23.(本题满分10分)如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (﹣2,4),B (﹣4,2),C (﹣3,1),按下列要求作图.(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1(点A 、B 、C 分别对应A 1、B 1、C 1);(2)△A 1B 1C 1的面积=▲;(3)若M (x ,y )是△ABC 内部任意一点,请直接写出这点在△A 1B 1C 1内部的对应点M 1的坐标▲;(4)P 是x 轴上一点,满足线段B 1P +BP 的值最小,画出P 点,并写出P 点坐标▲.24.(本题满分10分)已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,连接BM 、DM .(1)求证:BM =DM ;(2)求证:MN ⊥BD .25.(本题满分10分)在四边形ABCD 中,O 是边BC 上的一点.若△OAB ≌△OCD ,则点O 叫做该四边形的“全等点”.(1)如图,已知在四边形ABCD 中,∠BAO =85°,∠B =40°,求∠AOD 的度数;(2)如图,在四边形ABCD 中,边BC 上的点O 是四边形ABCD 的“全等点”,已知CD =32,OA =5,BC =12,连接AC ,求AC 的长.26.(本题满分10分)如图,一次函数343+-=x y 的图像分别于x 轴、y 轴交于点A 、B ,以线段AB 为边在第一象限内作等腰直角△ABC ,∠BAC =90°.(1)求过B 、C 两点的直线的函数解析式;(2)在x 轴上取一点M ,使△AMC 是等腰三角形,直接写出符合条件的所有M 的坐标.27.(本题满分12分)如图,深50cm 的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,右图为容器顶部离水面的距离y (cm )随时间t (分钟)的变化图像.(1)求放入的长方体的高度;(2)求该容器注满水所用的时间;(3)若长方体铁块的底面积为6cm 2,求圆柱体的底面积.28.(本题满分12分)已知,△ABC 是等边三角形,点D 为射线BC 上一动点,连接AD ,以AD 为边在直线AD 右侧作等边△ADE .图1图2图3(1)如图1,点D 在线段BC 上,连接CE ,若AB =4,且CE =1,求线段CD 的长;(2)如图2,点D 是BC 延长线上一点,过点E 作EF ⊥AC 于点F ,求证:CF =AF +CD ;(3)如图3,若AB =8,点D 在射线BC 上运动,取AC 中点G ,连接EG ,请直接写出EG 的最小值.2023-2024学年度第一学期期末考试八年级数学参考答案一、选择题(每题3分,共24分)题号12345678答案DBCDDACB二、填空题(每题3分,共30分)9.±6;10.3106.6⨯;11.<;12.22+=x y ;13.<;14.3;15.-2;16.23;17.①②④;18.2.三、解答题19.(1)计算:9)1(6423--+解:原式=2……………………4分(2)求27)4(3-=-x 中x 的值.解:x =1……………………8分20.解:2a +1+a -4=0a =1……………………4分b =9b -1的立方根为2……………………8分21.(1)解:设y =k (2x -3)(k ≠0)x =2,y =2k =2y =4x -6……………………4分(2)解:当21=x 时y =-4……………………8分22.(1)BC =5……………………4分(2)AD =512……………………8分23.(1)图略……………………2分(2)2……………………4分(3)(-x ,y )……………………6分(4)作出点P 图略…………………8分(0,0)……………………10分24.(1)在△ABC 中,∵∠ABC =90°,M 是AC 的中点∴BM =21AC 同理DM =21AC∴BM =DM ……………………5分(2)在△MBD 中,BM =DM∵N 是BD 的中点∴MN ⊥BD……………………10分25.(1)70;……………………5分(2)80或54……………………10分26.(1)371+=x y ;……………………5分(2)(-1,0)、(9,0)、(10,0)(649,0)……………………10分(其中前3个1分1个,最后一个2分)27.(1)20cm ;……………………4分(2)21分钟;……………………8分(3)8cm 2……………………10分28.(1)3;……………………4分(2)在AC 上取一点G ,使CG =CD ,连EG先证△ABD ≌△ACE 得到∠ACE =∠DCE =60°再证△EGC ≌△EDC 得EG =EA 又∵EF ⊥AC ∴AF =FG ∴CF =AF +CD……………………8分(3)12或32……………………12分。
内蒙古鄂尔多斯康巴什新区2025届数学八年级第一学期期末考试试题期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)1.把多项式a2﹣4a分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.(a﹣2)2D.a(a+2(a﹣2)2.在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=()A.5 B.4 C.6 D.103.若x2+mxy+4y2是一个完全平方式,那么m的值是()A.±4 B.﹣2 C.±2 D.44.如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速注入乙容器中.图2中的线段AB,CD分别表示容器中的水的深度h(厘米)与注入时间t(分钟)之间的函数图象.下列结论错误的是( )A.注水前乙容器内水的高度是5厘米D .注水1分钟时,甲容器的水比乙容器的水深5厘米 5.点P (3,4-)关于x 轴对称的点的坐标是( ) A .(3,4-)B .(3-,4-)C .(3,4)D .(3-,4)6.已知点()()()1232,,1,,1,y y y --都在直线3y x b =-+上,则123,,y y y 的大小关系( )A .123y y y >>B .123y y y <<C .312y y y >>D .312y y y <<7.下列命题的逆命题是真命题的是( ) A .对顶角相等 B .全等三角形的对应角相等 C .同一三角形内等边对等角D .同角的补角相等8.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ). A .5B .6C .12D .169.相距S 千米的两个港口A 、B 分别位于河的上游和下游,货船在静水中的速度为a 千米/时,水流的速度为b 千米/时,一艘货船从A 港口出发,在两港之间不停顿地往返一次所需的时间是( ) A .2Sa b+小时 B .2Sa b-小时 C .S S a b ⎛⎫+⎪⎝⎭小时D .SS a b a b ⎛⎫+⎪+-⎝⎭小时10.下列各点中,位于平面直角坐标系第四象限的点是( ) A .(1,2) B .(﹣1,2) C .(1,﹣2) D .(﹣1,﹣2)11.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( ) A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m12.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)二、填空题(每题4分,共24分)13.如图, 在△ABC 中, ∠ACB 的平分线交AB 于点D, DE ⊥AC 于点E, F 为BC 上一点,若DF=AD, △ACD 与△CDF 的面积分别为10和4, 则△AED 的面积为______14.如图,小明把一副含45°角和30°角的直角三角板如图摆放,则∠1=____°.15.若关于x y ,的二元一次方程组2231x y kx y +=⎧⎨+=⎩的解是一对相反数,则实数k =__________.16.如图,AD 是△ABC 的中线,∠ADC =30°,把△ADC 沿着直线AD 翻折,点C 落在点E 的位置,如果BC =2,那么线段BE 的长度为 ____________17.某班的一个综合实践活动小组去甲、乙两个超市调查去年和今年“元旦”期间的销售情况,下面是调查后小明与其它两位同学进行交流的情景.小明说:“去年两超市销售额共为150万元,今年两超市销售额共为170万元”, 小亮说:“甲超市销售额今年比去年增加10% 小颖说:“乙超市销售额今年比去年增加20% 根据他们的对话,得出今年甲超市销售额为_____万元 18.若分式21x x -+的值为0,则x=____. 三、解答题(共78分)19.(8分)先化简,再求值:253242m m m m m m -⎛⎫-÷ ⎪--+⎝⎭,请在2,﹣2,0,3当中选一个合适的数作为m 的值,代入求值.20.(8分)某学校为了丰富学生课余生活,开展了“第二课堂”活动,推出了以下四种选修课程:A 、绘画;B 、唱歌;C 、演讲;D 、书法.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图,请结合统计图中的信息解决下列问题:(1)这次抽查的学生人数是多少人? (2)将条形统计图补充完整;(3)在扇形统计图中,求选课程D 的人数所对的圆心角的度数;(4)如果该校共有1200名学生,请你估计该校报课程B 的学生约有多少人? 21.(8分)先观察下列等式,再回答问题: 2211111111121112++=+-=+; 2211111111232216++=+-=+; 22111111113433112++=+-=+; (12211145++(直接写出结果) (2)根据上述规律,解答问题: 设2222222211111111111 (112233420192020)m =+++++++++求不超过m 的最大整数是多少?()1求b的值,并在给定的直角坐标系中画出此函数的图象.()2观察此图象,直接写出当06y<<时,x的取值范围.23.(10分)两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?24.(10分)某中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以下信息解答问题:(1)此次共调查了多少人?(2)求“年龄13岁”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.25.(12分)若点P的坐标为1,293xx-⎛⎫-⎪⎝⎭,其中x满足不等式组5102(1)131722x xx x-≥+⎧⎪⎨-≤-⎪⎩,求点P所在的象限.26.(1)计算:()()3232342132392xy x x xy y x y ⎡⎤-⋅-⋅⋅÷⎢⎥⎣⎦; (2)先化简,再求值: ()()()2223x y x y x y x ++-+-,其中20182x =,201912y ⎛⎫= ⎪⎝⎭.参考答案一、选择题(每题4分,共48分) 1、A【分析】原式利用提取公因式法分解因式即可. 【详解】解:原式=a (a ﹣4), 故选:A . 【点睛】本题考查因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键. 2、C【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答. 【详解】观察发现,∵AB=BE ,∠ACB=∠BDE=90°, ∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°, ∴∠BAC=∠EBD ,∴△ABC ≌△BDE (AAS ), ∴BC=ED , ∵AB 2=AC 2+BC 2, ∴AB 2=AC 2+ED 2=S 1+S 2, 即S 1+S 2=1,同理S 2+S 1=2,S 1+S 4=1. 则S 1+2S 2+2S 1+S 4=1+2+1=6,【点睛】本题考查了勾股定理、全等三角形的判定与性质,发现正放置的两个小正方形的面积和正好是它们之间斜放置的正方形的面积是解题的关键.3、A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵x2+mxy+1y2=x2+mxy+(2y)2,∴mxy=±2x×2y,解得:m=±1.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键.4、D【解析】根据题意和函数图象,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图可得,注水前乙容器内水的高度是5厘米,故选项A正确,甲容器内的水4分钟全部注入乙容器,故选项B正确,注水2分钟时,甲容器内水的深度是20×=10厘米,乙容器内水的深度是:5+(15﹣5)×=10厘米,故此时甲、乙两个容器中的水的深度相等,故选项C正确,注水1分钟时,甲容器内水的深度是20﹣20×=15厘米,乙容器内水的深度是:5+(15﹣5)×=7.5厘米,此时甲容器的水比乙容器的水深15﹣7.5=7.5厘米,故选项D错误,故选:D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.【分析】根据点坐标关于x轴对称的变换规律即可得.【详解】点坐标关于x轴对称的变换规律:横坐标相同,纵坐标互为相反数,P-,(3,4)∴点P关于x轴对称的点的坐标是(3,4),故选:C.【点睛】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于x轴对称的变换规律是解题关键.6、A【分析】先根据直线y=−1x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】∵直线y=−1x+b,k=−1<0,∴y随x的增大而减小,又∵−2<−1<1,∴y1>y2>y1.故选:A.【点睛】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x 的增大而增大;当k<0,y随x的增大而减小.7、C【分析】先交换原命题的题设与结论得到四个逆命题,然后判断它们的真假.【详解】解:A、对顶角相等的逆命题是相等的角是对顶角,是假命题;B、全等三角形对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C、同一三角形内等角对等边的逆命题是同一三角形内等边对等角,是真命题;D、同角的补角相等的逆命题是补角相等的角是同角,也可以是等角,是假命题;故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考8、C【分析】设此三角形第三边长为x ,根据三角形的三边关系求出x 的取值范围,找到符合条件的x 值即可.【详解】设此三角形第三边长为x ,则 10-4﹤x ﹤10+4,即6﹤x ﹤14, 四个选项中只有12符合条件, 故选:C . 【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边,熟练掌握三角形的三边关系是解答的关键. 9、D【分析】先分别算出顺水和逆水的速度,再根据时间=路程÷速度,算出往返时间. 【详解】依据顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度, 则顺水速度为+a b ,时间为Sa b +,逆水速度为-a b ,时间为S a b-, 所以往返时间为S S a b a b++-. 故选D 【点睛】本题主要考查了列代数式,熟练掌握顺水逆水速度,以及时间、路程、速度三者直接的关系是解题的关键. 10、C【解析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解. 【详解】A 、(1,2)在第一象限,故本选项错误; B 、(﹣1,2)在第二象限,故本选项错误; C 、(1,﹣2)在第四象限,故本选项正确; D 、(﹣1,﹣2)在第三象限,故本选项错误. 故选:C . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】28nm =28×10﹣9m = 2.8×10﹣8m , 所以28nm 用科学记数法可表示为:2.8×10﹣8m , 故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12、B【分析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出1∠A=∠1+∠1这一始终保持不变的性质.【详解】∵在四边形ADA′E 中,∠A+∠A′+∠ADA′+∠AEA′=360°, 则1∠A+(180°-∠1)+(180°-∠1)=360°, ∴可得1∠A=∠1+∠1. 故选B 【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.二、填空题(每题4分,共24分) 13、1【分析】如图(见解析),过点D 作DG BC ⊥,根据角平分线的性质可得DE DG =,再利用三角形全等的判定定理得出,CDE CDG ADE FDG ∆≅∆∆≅∆,从而有,CDE CDG ADE FDG S S S S ∆∆∆∆==,最后根据三角形面积的和差即可得出答案.【详解】如图,过点D 作DG BC ⊥CD 平分ACB ∠,DE AC ⊥DE DG ∴= CD CD =()CDE CDG HL ∴∆≅∆CDE CDG S S ∆∆∴=()ADE FDG HL ∴∆≅∆ADE FDG S S ∆∆∴=104ACD ADE CDE CDECDG CDF FDG ADE S S S S S S S S ∆∆∆∆∆∆∆∆=+=⎧∴⎨==+=+⎩ 则410ADE ADE S S ∆∆++=解得3ADE S ∆=故答案为:1.【点睛】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.14、1【分析】根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可.【详解】解:如图所示,∵∠BAC=30°,∠ACB=90°,∴∠1=∠ACB+∠BAC=90°+30°=1°,故答案为:1.【点睛】本题考查的是三角形的内角和定理以及三角形外角的性质的运用,熟知三角形的一个外角等于与它不相邻的两个内角的和是解答此题的关键.15、1【分析】由x 、y 互为相反数可得到x=-y ,从而可求得x 、y 的值,于是可得到k 的值.【详解】解:∵关于x 、y 的二元一次方程组2231x y k x y +=⎧⎨+=⎩的解是一对相反数, ∴x=-y ,∴-2y+3y=1,解得:y=1,则x=-1,∴k=-1+2×1=1, 故答案为:1.【点睛】本题主要考查的是二元一次方程组的解和解二元一次方程组,求得x 、y 的值是解题的关键.16、3【分析】根据折叠的性质判定△EDC 是等边三角形,然后再利用Rt △BEC 求BE .【详解】解:连接EC ,AD 是ABC ∆的中线,且ADC ∆沿着直线AD 翻折,∴CD BD DE ==,BDE ∴是等腰三角形,DBE DEB ∴∠=∠30ADC ADE ∠=∠=︒∴60CDE ∠=︒,30DBE DEB ∴∠=∠=︒,EDC ∆为等边三角形,∴90BEC ∠=︒,在Rt BCE ∆中,2BC =,1EC =∴3BE =【点睛】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等边三角形的性质求解.17、1【分析】设甲超市去年销售额为x 万元,乙超市去年销售额为y 万元,根据题意列出方程组求解后,再求出甲超市今年的销售额即可.【详解】解:设甲超市去年销售额为x 万元,乙超市去年销售额为y 万元, 根据题意得150(110%)(120%)170x y x y +=⎧⎨+++=⎩ 解得10050x y =⎧⎨=⎩所以今年甲超市销售额为(110%)100110+⨯=(万元).故答案为:1.【点睛】本题主要考查二元一次方程组的应用,根据题意列出方程组是解题的关键. 18、1【分析】根据分式的值为零的条件得到x-1=0且x≠0,易得x=1. 【详解】∵分式21x x -+的值为0, ∴x−1=0且x≠0,∴x=1.故答案为1.【点睛】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件.三、解答题(共78分)19、2m m -,1. 【分析】先把括号内通分,再进行减法运算,接着把除法运算化为乘法运算,则约分得到原式=2m m -,然后根据分式有意义的条件把m =1代入计算即可. 【详解】解:原式=(2)52(2)(2)3m m m m m m m +-+⋅+-- =(3)2(2)(2)3m m m m m m -+⋅+-- =2m m -,∵m=2或﹣2或3时,原式没有意义,∴m只能取1,当m=1时,原式=02-=1.【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20、(1)这次抽查的学生人数是40人;(2)图见解析;(3)36°;(4)该校报课程B的学生约有420人【分析】(1)根据选择课程A的人数和所占抽查学生总人数的百分率即可求出这次抽查的学生人数;(2)用抽查学生总人数减去选课程A、选课程B、选课程D的人数,即可求出选课程C的人数,然后补全条形统计图即可;(3)求出选课程D的人数占抽查学生总人数的分率,再乘360°即可;(4)求出选课程B的人数占抽查学生总人数的分率,再乘该校总人数即可.【详解】解:(1)这次抽查的学生人数为:12÷30%=40人答:这次抽查的学生人数是40人.(2)选课程C的人数为:40-12-14-4=10人补全条形统计图,如下(3)选课程D的人数所对的圆心角的度数为436036 40⨯︒=︒答:选课程D的人数所对的圆心角的度数36°.(4)该校报课程B的学生约有141200420 40⨯=人答:该校报课程B的学生约有420人.【点睛】此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键.21、(1)1120;(2)不超过m 的最大整数是1. 【分析】(1)由①②③的规律写出式子即可;(2)根据题目中的规律计算即可得到结论.【详解】解:(11120;(2)m =112+116+1112+…+1120192020⨯ =1×1+(12+16+112+…+1120192020⨯) =1+(1﹣12+12﹣13+13﹣14+…+1120192020-) =1+(1﹣12020) =201920192020, ∴不超过m 的最大整数是1.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是找出规律.22、()16b =,图像见解析;()203x <<.【分析】(1)把点()2,2A 代入一次函数解析式来求b 的值,根据“两点确定一条直线”画图;(2)根据图象直接回答问题.【详解】(1)将点()2,2A 代入y =﹣2x +b ,得2=-4+b解得:b=6∴y =﹣2x +6列表得:描点,并连线∴该直线如图所示:(2)确定直线与x 轴的交点(3,0),与y 轴的交点(0,6)由图象知:当06y <<时,x 的取值范围03x <<.【点睛】本题考查了一次函数的图象、一次函数图象上点的坐标特征等.一次函数的图象是一直线,根据“两点确定一条直线”来作图.23、不重叠的两部分全等.见解析【分析】根据题意AB=BD ,AC=DF ,∠A=∠D ,AB=BD ,AC=DF 可得AF=DC ,利用AAS 即可判定△AOF ≌△DOC【详解】解:不重叠的两部分全等.理由如下:∵三角形纸板ABC 和DEF 完全相同,∴AB =DB ,BC =BF ,∠A =∠D∴AF =CD在△AOF 和△DOC 中A D AOF DO AF DC C ⎧⎪⎨⎪=∠∠∠∠⎩==∴△AOF ≌△DOC (AAS )∴不重叠的两部分全等24、(1)50人;(2)72°;(3)详见解析【分析】(1)根据15岁在扇形中所占的百分比及人数即可求出总人数;(2)先求出年龄13岁人数所占比例,再乘以360°即可计算;(3)根据总人数计算出年龄14岁和年龄16岁的人数,再补全即可.【详解】解:(1)1836%50÷=,∴此次共调查了50人.(2)1036072 50⨯︒=︒,∴“年龄13岁”在扇形统计图中所占圆心角的度数为:72°.(3)年龄14岁的人数为:5028%14⨯=(人)年龄16岁的人数为:50-6-10-14-18=2(人)条形图如下:【点睛】本题考查了条形统计图与扇形统计图,解题的关键是理解条形统计图与扇形统计图之间的联系.25、点P在第四象限【分析】先求出不等式组的解集,进而求得P点的坐标,即可求得点P所在的象限.【详解】5102(1)131722x xx x-≥+⎧⎪⎨-≤-⎪⎩①②,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵13x-=1,2x-9=-1,∴点P的坐标为(1,-1),∴点P在的第四象限.【点睛】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).26、(1)83x xy -;(2)xy ,12【分析】(1)先根据积的乘方、幂的乘方和同底数幂乘法法则进行计算,再根据多项式除单项式的运算法则计算即可;(2)根据完全平方公式、多项式乘多项式的运算法则去括号,再合并同类项化成最简式,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】(1)()()3232342132392xy x x xy y x y ⎡⎤-⋅-⋅⋅÷⎢⎥⎣⎦ 332242*********x x x y x x y y y ⎡⎤=⋅-⋅⋅÷⎢⎥⎣⎦5104252(27)99x y y y x x =-÷52425104292799x y x y x y x y =÷-÷83y x x =-;(2)()()()2223x y x y x y x ++-+- 222222223x xy xy y y x x x y =++---++xy =,当20182x =,201912y ⎛⎫= ⎪⎝⎭时, 原式201920182018201820182018111111122212222222⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【点睛】本题考查整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.。
湖南省长沙市明德中学2024届八年级数学第一学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,在△PAB 中,∠A =∠B ,D 、E 、F 分别是边PA 、PB 、AB 上的点,且AD =BF ,BE =AF .若∠DFE =34°,则∠P 的度数为( )A .112°B .120°C .146°D .150°2.一个三角形的三条边长分别为4,7,x ,则x 的值有可能是下列哪个数( ) A .3B .7C .11D .123.等腰三角形的两边长分别为4cm 和8cm ,则它的周长为( ) A .16cmB .17cmC .20cmD .16cm 或20cm4.如图,在ABC 中,90,4,3C AC BC ∠=︒==,将ABC 绕点A 逆时针旋转,使点C 恰好落在线段AB 上的点E 处,点B 落在点D 处,则B D ,两点间的距离为( )A 10B 8C .3D .55.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .56.如图,在△ABC 和△DEF 中,∠B=∠DEF,AB =DE ,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是( )A .∠A=∠DB .BC =EF C .∠ACB=∠FD .AC =DF7.若1x =-使某个分式无意义,则这个分式可以是( ) A .121x x -- B .211x x ++ C .211x x -- D .121x x ++ 8.如图,直线a ,b ,c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处9.下列因式分解正确的是( ) A .256(5)6m m m m -+=-+ B .2241(21)m m -=- C .2244(2)m m m +-=+ D .241(21)(21)m m m -=+-10.如果把分式2aba b+中的a 、b 同时扩大为原来的2倍,那么得到的分式的值( ) A .不变B .扩大为原来的2倍C .缩小到原来的12D .扩大为原来的4倍.11.已知△ABC 中,AB=8,BC=5,那么边AC 的长可能是下列哪个数 ( ) A .15B .12C .3D .212.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=12,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则BQ+QP 的最小值是( )A.4 B.5 C.6 D.7二、填空题(每题4分,共24分)13.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______________.14.计算:6x2÷2x= .15.邮政部门规定:信函重100克以内(包括100克)每20克贴邮票0.8元,不足20克重以20克计算;超过100克,先贴邮票4元,超过100克部分每100克加贴邮票2元,不足100克重以100克计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12克,每个信封重4克,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是_________元.16.若32x 有意义,则x的取值范围是__________.17.若实数,满足,则______.18.如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,图中阴影是草地,其余是水面.那么乘游艇游点C出发,行进速度为每小时11713千米,到达对岸AD最少要用小时.三、解答题(共78分)19.(8分)(1)如图1,在△ABC 中,∠ABC 的平分线BF 交AC 于F,过点F 作DF∥BC,求证:BD=DF.(2)如图2,在△ABC 中,∠ABC 的平分线BF 与∠ACB 的平分线CF 相交于F,过点F 作DE∥BC,交直线AB 于点D,交直线AC 于点E.那么BD,CE,DE 之间存在什么关系?并证明这种关系.(3)如图3,在△ABC 中,∠ABC 的平分线BF 与∠ACB 的外角平分线CF 相交于F,过点F 作DE∥BC,交直线AB 于点D,交直线AC 于点E.那么BD,CE,DE 之间存在什么关系?请写出你的猜想.(不需证明)20.(8分)如图,在等边ABC ∆中,点D ,E 分别是AC ,AB 上的动点,且AE CD =,BD 交CE 于点P . (1)如图1,求证120BPC ︒∠=;(2)点M 是边BC 的中点,连接PA ,PM .①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 ;②若点A ,P ,M 三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.21.(8分)甲、乙、丙三明射击队员在某次训练中的成绩如下表: 队员 成绩(单位:环) 甲 6 6 7 7 8 9 9 9 9 10 乙 6 7 7 8 8 8 8 9 9 10 丙66677810101010针对上述成绩,三位教练是这样评价的: 教练A :三名队员的水平相当; 教练B :三名队员每人都有自己的优势;教练C :如果从不同的角度分析,教练A 和B 说的都有道理. 你同意教练C 的观点吗?通过数据分析,说明你的理由.22.(10分)如图1,直线AB ∥CD ,直线l 与直线AB ,CD 相交于点E ,F ,点P 是射线EA 上的一个动点(不包括端点)(1)若∠CFE =119°,PG 交∠FEB 的平分线EG 于点G ,∠APG =150°,则∠G 的大小为 .(2)如图2,连接PF .将△EPF 折叠,顶点E 落在点Q 处.①若∠PEF =48°,点Q 刚好落在其中的一条平行线上,请直接写出∠EFP 的大小为 . ②若∠PEF =75°,∠CFQ =12∠PFC ,求∠EFP 的度数.23.(10分)如图所示,在△ABC 中,已知AB =AC ,∠BAC =120°,AD ⊥AC ,DC =6 求BD 的长.24.(10分)已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).25.(12分)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,该服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.请问该服装商第一批进货的单价是多少元?26.如图,在ABC ∆中,,=⊥AB AC AD BC 于D(1)若52C BAC ∠=∠,求BAD ∠的度数(2)若点E 在AB 上,EF//AC 交AD 的延长线于点F 求证:AE=FE参考答案一、选择题(每题4分,共48分) 1、A【分析】根据等边对等角得到∠A=∠B ,证得△ADF ≌△BFE ,得∠ADF=∠BFE ,由三角形的外角的性质求出∠A=∠DFE=42°,根据三角形内角和定理计算即可. 【题目详解】解:∵PA=PB , ∴∠A=∠B ,在△ADF 和△BFE 中,AD BF A B AF BE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BFE (SAS ), ∴∠ADF=∠BFE ,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF , ∴∠A=∠DFE=34°, ∴∠B =34°,∴∠P=180°-∠A-∠B=112°, 故选:A . 【题目点拨】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键. 2、B【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围,从而得出结果.【题目详解】解:根据题意得:7-4<x <7+4, 即3<x <11, 故选:B . 【题目点拨】本题考查三角形的三边关系,关键是理解如何根据已知的两条边求第三边的范围.3、C【解题分析】试题分析:分当腰长为4cm 或是腰长为8cm 两种情况:①当腰长是4cm 时,则三角形的三边是4cm ,4cm ,8cm ,4cm+4cm=8cm 不满足三角形的三边关系;当腰长是8cm 时,三角形的三边是8cm ,8cm ,4cm ,三角形的周长是20cm .故答案选C .考点:等腰三角形的性质;三角形三边关系. 4、A【分析】连接BD ,利用勾股定理求出AB ,然后根据旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3,从而求出∠DEB 和BE ,最后利用勾股定理即可求出结论. 【题目详解】解:连接BD∵90,4,3C AC BC ∠=︒== ∴225AC BC +由旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3 ∴∠DEB=180°-∠AED=90°,BE=AB -AE=1 在Rt △DEB 中,2210+=BE DE 故选A . 【题目点拨】此题考查的是勾股定理和旋转的性质,掌握勾股定理和旋转的性质是解决此题的关键. 5、B【题目详解】解:∵AD 是∠BAC 的平分线, ∴∠EAD =∠CAD 在△ADE 和△ADC 中, AE =AC , ∠EAD =∠CAD , AD =AD ,∴△ADE ≌△ADC (SAS),∴ED =CD ,∴BC =BD +CD =DE +BD =5,∴△BDE 的周长=BE +BD +ED =(6−4)+5=7 故选B . 【题目点拨】本题考查全等三角形的应用.三角形全等的判定定理有:边边边(SSS )、边角边(SAS )、角边角(ASA )、角角边(AAS )、HL.通过证明三角形全等可以得到相等的边或角,可将待求量进行转化,使问题迎刃而解. 6、D【解题分析】解:∵∠B =∠DEF ,AB =DE ,∴添加∠A =∠D ,利用ASA 可得△ABC ≌△DEF ; ∴添加BC =EF ,利用SAS 可得△ABC ≌△DEF ; ∴添加∠ACB =∠F ,利用AAS 可得△ABC ≌△DEF ; 故选D .点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键. 7、B【分析】根据分式无意义的条件,对每个式子进行判断,即可得到答案. 【题目详解】解:A 、由210x -=,得12x =,故A 不符合题意; B 、由10x +=,得1x =-,故B 符合题意; C 、由10x -=,得1x =,故C 不符合题意; D 、由210x +=,得12x =-,故D 不符合题意;故选:B. 【题目点拨】本题考查了分式无意义的条件,解题的关键是掌握分式无意义的条件,即分母等于0. 8、D【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果. 【题目详解】解:如图所示,可供选择的地址有4个,故选:D 【题目点拨】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键. 9、D【分析】因式分解:把一个整式化为几个因式的积的形式.从而可以得到答案. 【题目详解】A 没有把256m m -+化为因式积的形式,所以A 错误, B 从左往右的变形不是恒等变形,因式分解是恒等变形,所以B 错误, C 变形也不是恒等变形所以错误,D 化为几个因式的积的形式,是因式分解,所以D 正确. 故选D . 【题目点拨】本题考查的是多项式的因式分解,掌握因式分解的定义是解题关键. 10、B【分析】依题意分别用2a 和2b 去代换原分式中的a 和b ,利用分式的基本性质化简即可 【题目详解】分别用2a 和2b 去代换原分式中的a 和b , 得22242222a b ab aba b a b a b⨯⨯==⨯+++,可见新分式是原分式的2倍. 故选:B . 【题目点拨】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论. 11、B【解题分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可. 【题目详解】解:根据三角形的三边关系,8−5<AC <8+5, 即3<AC <13, 符合条件的只有12, 故选:B . 【题目点拨】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键. 12、C【分析】如图,作点P 关于直线AD 的对称点P′,连接QP′,由△AQP ≌△AQP′,得PQ=QP′,欲求PQ+BQ 的最小值,只要求出BQ+QP′的最小值,即当BP′⊥AC 时,BQ+QP′的值最小,此时Q 与D 重合,P′与C 重合,最小值为BC 的长.【题目详解】解:如图,作点P 关于直线AD 的对称点P′,连接QP′,△AQP 和△AQP′中,''⎧=⎪∠=∠⎨⎪=⎩AP AP QAP QAP AQ AQ ,∴△AQP ≌△AQP′, ∴PQ=QP′∴欲求PQ+BQ 的最小值,只要求出BQ+QP′的最小值,∴当BP′⊥AC 时,BQ+QP′的值最小,此时Q 与D 重合,P′与C 重合,最小值为BC 的长. 在Rt △ABC 中,∵∠C=90°,AB=12,∠BAC=30°, ∴BC=12AB=6, ∴PQ+BQ 的最小值是6, 故选:C . 【题目点拨】本题考查了勾股定理、轴对称中的最短路线问题、垂线段最短等知识,找出点P 、Q 的位置是解题的关键.二、填空题(每题4分,共24分)13、14801480370x x =++ 【解题分析】试题解析:设原来的平均速度为x 千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程:1480x =148070x ++3, 故答案为1480x =148070x ++3. 14、3x .【解题分析】试题解析:6x 2÷2x=3x . 考点:单项式除以单项式.15、5.1【分析】由题意知,把它分成两个小于或等于100克的信封比较省钱,设其中一个信封装x 份答卷,根据重量小于等于100列出方程组求出x 的取值范围,然后分情况计算所贴邮票的总金额即可.【题目详解】解:11份答卷以及两个信封总计:12×11+2×4=140(克),由题意知,把它分成两个小于或等于100克的信封比较省钱,设其中一个信封装x 份答卷,则另一个信封装(11−x )份答卷,由题意得:()12410012114100x x +≤⎧⎨-+≤⎩, 解得:3≤x≤8,∴共有三种情况:①一个信封装3份答卷,另一个信封装8份答卷,装3份答卷的信封重量为12×3+4=40(克),装8份答卷的信封重量为140-40=100(克),此时所贴邮票的总金额为:0.8×2+0.8×5=5.1(元);②一个信封装4份答卷,另一个信封装7份答卷,装4份答卷的信封重量为12×4+4=52(克),装7份答卷的信封重量为140-52=88(克),此时所贴邮票的总金额为:0.8×3+0.8×5=1.4(元);③一个信封装5份答卷,另一个信封装1份答卷,装5份答卷的信封重量为12×5+4=14(克),装1份答卷的信封重量为140-14=71(克),此时所贴邮票的总金额为:0.8×4+0.8×4=1.4(元);∴所贴邮票的总金额最少是5.1元,故答案为:5.1.【题目点拨】本题考查了一元一次不等式组的实际应用,正确理解题意,分析得出把它分成两个小于或等于100克的信封比较省钱,进而列出方程组是解题的关键.16、一切实数【分析】根据使立方根有意义的条件解答即可.【题目详解】解:立方根的被开方数可以取一切实数,所以x可以取一切实数.故答案为:一切实数.【题目点拨】本题考查使立方根有意义的条件,理解掌握该知识点是解答关键.17、1.5【解题分析】根据非负数的性质列式求出m,n的值,然后代入代数式进行计算即可得解.【题目详解】解:根据题意得:,∴∴;故答案为:.【题目点拨】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值.18、0.1【分析】连接AC,在直角△ABC中,已知AB,BC可以求AC,根据AC,CD,AD的长度符合勾股定理确定AC⊥CD,则可计算△ACD的面积,又因为△ACD的面积可以根据AD边和AD边上的高求得,故根据△ACD的面积可以求得C到AD的最短距离,即△ACD中AD边上的高.【题目详解】解:连接AC,在直角△ABC中,AB=3km,BC=1km,则22,34∵CD=12km,AD=13km,故存在AD2=AC2+CD2∴△ACD为直角三角形,且∠ACD=90°,∴△ACD的面积为12×AC×CD=30km2,∵AD=13km,∴AD边上的高,即C到AD的最短距离为7150 1313=km,游艇的速度为11601313150⨯km/小时,需要时间为601313150⨯小时=0.1小时.故答案为0.1.点睛:本题考查了勾股定理在实际生活中的应用,考查了直角三角形面积计算公式,本题中证明△ACD是直角三角形是解题的关键.三、解答题(共78分)19、(1)见详解;(2)BD+CE=DE,证明过程见详解;(3)BD﹣CE=DE,证明过程见详解【分析】(1)根据平行线的性质和角平分线定义得出∠DFB=∠CBF,∠ABF=∠CBF,推出∠DFB=∠DBF,根据等角对等边推出即可;(2)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论;(3)与(1)证明过程类似,求出BD=DF,EF=CE,即可得出结论.【题目详解】解:(1)∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;(2)BD+CE=DE,理由是:∵BF平分∠ABC,∴∠ABF=∠CBF,∵DF∥BC,∴∠DFB=∠CBF,∴∠DFB=∠DBF,∴BD=DF;同理可证:CE =EF ,∵DE =DF +EF ,∴BD +CE =DE ;(3)BD ﹣CE =DE .理由是:∵BF 平分∠ABC ,∴∠ABF =∠CBF ,∵DF ∥BC ,∴∠DFB =∠CBF ,∴∠DFB =∠DBF ,∴BD =DF ;同理可证:CE =EF ,∵DE =DF ﹣EF ,∴BD ﹣CE =DE .【题目点拨】本题考查了角平分线定义,平行线的性质,等腰三角形的判定等知识点,本题具有一定的代表性,三个问题证明过程类似.20、(1)证明过程见详解;(2)①2AP PM =;②结论成立,证明见详解【分析】(1)先证明()AEC CDB SAS ≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论; (2)①2AP PM =;由等边三角形的性质和已知条件得出AM ⊥BC ,∠CAP =30°,可得PB =PC ,由∠BPC =120°和等腰三角形的性质可得∠PCB =30°,进而可得AP =PC ,由30°角的直角三角形的性质可得PC =2PM ,于是可得结论;②延长BP 至D ,使PD =PC ,连接AD 、CD ,根据SAS 可证△ACD ≌△BCP ,得出AD =BP ,∠ADC =∠BPC =120°,然后延长PM 至N ,使MN =MP ,连接CN ,易证△CMN ≌△BMP (SAS ),可得CN =BP =AD ,∠NCM =∠PBM ,最后再根据SAS 证明△ADP ≌△NCP ,即可证得结论.【题目详解】(1)证明:因为△ABC 为等边三角形,所以60A ACB ∠=∠=︒∵AC BC A ACB AE CD =⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS ≌ ,∴AEC CDB ∠=∠,在四边形AEPD 中,∵360AEC EPD PDA A ∠+∠+∠+∠=︒,∴18060360AEC EPD CDB ∠+∠+︒-∠+︒=︒,∴120EPD ∠=︒,∴120BPC ∠=︒;(2)①如图2,∵△ABC 是等边三角形,点M 是边BC 的中点,∴∠BAC =∠ABC =∠ACB =60°,AM ⊥BC ,∠CAP =12∠BAC =30°,∴PB =PC , ∵∠BPC =120°,∴∠PBC =∠PCB =30°,∴PC =2PM ,∠ACP =60°﹣30°=30°=∠CAP ,∴AP =PC ,∴AP =2PM ;故答案为:2AP PM ;②AP =2PM 成立,理由如下:延长BP 至D ,使PD =PC ,连接AD 、CD ,如图4所示:则∠CPD =180°﹣∠BPC =60°,∴△PCD 是等边三角形,∴CD =PD =PC ,∠PDC =∠PCD =60°,∵△ABC 是等边三角形,∴BC =AC ,∠ACB =60°=∠PCD ,∴∠BCP =∠ACD ,∴△ACD ≌△BCP (SAS ),∴AD =BP ,∠ADC =∠BPC =120°,∴∠ADP =120°﹣60°=60°,延长PM 至N ,使MN =MP ,连接CN ,∵点M 是边BC 的中点,∴CM =BM ,∴△CMN ≌△BMP (SAS ),∴CN =BP =AD ,∠NCM =∠PBM ,∴CN ∥BP ,∴∠NCP +∠BPC =180°,∴∠NCP =60°=∠ADP ,在△ADP 和△NCP 中,∵AD=NC ,∠ADP =∠NCP ,PD=PC ,∴△ADP ≌△NCP (SAS ),∴AP =PN =2CM ;【题目点拨】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.21、同意教练C 的观点,见解析【分析】依次求出甲、乙、丙三名队员成绩的平均数、中位数、方差及众数,根据数据的稳定性即可判断.【题目详解】解:依题意渴求得: 甲队员成绩的平均数为6677899991010+++++++++=8; 乙队员成绩的平均数为6778888991010+++++++++=8; 丙队员成绩的平均数为6667781010101010+++++++++=8; 甲队员成绩的中位数为898.52+=,乙队员成绩的中位数为8882+=, 丙队员成绩的中位数为787.52+=, 甲队员成绩的方差为2s 甲=110 [(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(9−8)2+(9−8)2+(9−8)2+(9−8)2+(10−8)2]=1.8;乙队员成绩的方差为2s 乙=110[(6−8)2+(7−8)2+(7−8)2+(8−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2+(9−8)2+(10−8)2]=1.2; 丙队员成绩的方差为2s 丙=110 [(6−8)2+(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(10−8)2+(10−8)2+(10−8)2+(10−8)2]=3; 由于甲、乙、丙三名队员成绩的平均数分别为:8x =甲,8x =乙,8x =丙,所以,三名队员的水平相当.故,教练A 说的有道理.由于甲、乙、丙三名队员的成绩的中位数分别为:8.5;8;7.5.所以,从中位数方面分析,甲队员有优势.由于甲、乙、丙三名队员的成绩的方差分别为:2 1.8s =甲,2 1.2s =乙,23s =丙.所以,从方差方面分析,乙队员有优势.由于甲、乙、丙三名队员的成绩的众数分别为:9;8;10.所以,从众数方面分析,丙队员有优势.故,教练B说的有道理.所以,同意教练C的观点.【题目点拨】此题主要考查数据分析的应用,解题的关键是熟知平均数、中位数、方差及众数的求解方法.22、(1)29.5°;(2)①42°或66°;②35°或63°.【分析】(1)根据平行线的性质和三角形的内角和即可得到结论;(2)①Ⅰ、当点Q落在AB上时,利用三角形内角和定理计算即可.Ⅱ、当点Q落在CD上时,∠PQF=∠PEF=48°,利用平行线的性质,三角形的内角和定理计算即可.②分两种情形:Ⅰ、当点Q在平行线AB,CD之间时.Ⅱ、当点Q在CD下方时,分别构建方程即可解决问题.【题目详解】(1)∵直线AB∥CD,∴∠BEF=∠CFE=119°,∠PEF=180°﹣∠CFE=61°,∵EG平分∠BEF,∴∠FEG=12∠BEF=59.5°,∵∠APG=150°,∴∠EPF=30°,∴∠G=180°﹣30°﹣61°﹣59.5°=29.5°;故答案为:29.5°;(2)①Ⅰ、当点Q落在AB上时,易证PF⊥AB,可得∠EPF=90°,∴∠EFP=90°﹣∠PEF=90°﹣48°=42°.Ⅱ、当点Q落在CD上时,∠PQF=∠PEF=48°,∵AB∥CD,∴∠EPQ+∠PQF=180°,∴∠EPQ=132°,∵∠EPF=∠QPF,∴∠EPF=12×132°=66°,∴∠EFP=180°﹣48°﹣66°=66°.综上所述,满足条件的∠EFP的值为42°或66°,故答案为:42°或66°.②Ⅰ、当点Q在平行线AB,CD之间时.设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.Ⅱ、当点Q在CD下方时,设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=23x,∴75°+23x+x=180°,解得x=63°,∴∠EFP=63°.【题目点拨】本题考查了三角形的角度问题,掌握平行线的性质和三角形的内角和定理是解题的关键.23、1.【题目详解】试题分析:由题意先求得∠B=∠C=10°,再由AD⊥AC,求得∠ADC=60°,则∠BAD=10°,然后得出AD=BD.∵AB=AC,∠BAC=120°,∴∠B=∠C=10°,∵AD⊥AC,DC=6,∴AD=12CD=1,∠ADC=60°.∴∠B=∠BAD=10°.∴AD=BD=1.考点:1.含10度角的直角三角形;2.等腰三角形的判定与性质.24、详见解析.【解题分析】根据题目要求画出线段a、h,再画△ABC,使AB=a,△ABC的高为h;首先画一条直线,再画垂线,然后截取高,再画腰即可.【题目详解】解:作图:①画射线AE ,在射线上截取AB=a ,②作AB 的垂直平分线,垂足为O ,再截取CO=h ,③再连接AC 、CB ,△ABC 即为所求.【题目点拨】此题主要考查了复杂作图,关键是掌握垂线的画法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25、该服装商第一批进货的单价是80元.【分析】设第一批进货的单价为x 元,则第二批进货单价为()8x +元,据此分别表示出两批进货的数量,然后根据“第二批所购数量是第一批购进数量的2倍”列出方程求解,然后检验得出答案即可.【题目详解】设第一批进货的单价为x 元,则第二批进货单价为()8x +元, 则:80001760028x x ⨯=+, 解得:80x =,经检验,80x =是原方程的解,答:该服装商第一批进货的单价是80元.【题目点拨】本题主要考查了分式方程的实际应用,准确找出等量关系是解题关键.26、(1)50°;(2)见解析【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD ,根据52C BAC ∠=∠设∠C=2x ,∠BAC=5x ,根据三角形的内角和求出x ,即可得到结果;(2)根据等腰三角形的性质得到∠BAD=∠CAD 根据平行线的性质得到∠F=∠CAD ,等量代换得到∠BAD=∠F ,于是得到结论.【题目详解】解:(1)∵AB=AC ,AD ⊥BC 于点D ,∴∠BAD=∠CAD ,∠ADC=∠ADB=90°,∵52C BAC ∠=∠,设∠C=2x ,∠BAC=5x ,则∠B=2x,则2x+2x+5x=180,解得:x=20,∴∠BAC=100°,∴∠BAD=50°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.【题目点拨】本题考查了等腰三角形的性质,平行线的性质,正确的识别图形是解题的关键.。
第一学期期末考试题(卷)八年级数学A卷(100分)一.选择题(本大题共30分,每小题3分,共10小题;请把最佳的一个选项填在题中括号内)1.下列运算中,结果正确的是()A.aaa=÷33B.422)(abab=C.523)(aa=D.2aaa=⋅2.下列图形中,是轴对称图形.....的是()3.下列各曲线中,不能表示y是x的函数的是()B C D4. 估计)A.3到4之间B.4到5之间C.5到6之间D.6到7之间5.下列计算错误的是()A.baaba3215)3)(5(=-- B.232412)13)(4(xxxx--=+-A B C DC.273)2)(13(2++=++x x x x D.243531155ab b a c b a -=÷- 6.下列计算正确的是( )A.2)1)(2(2--=-+x x x x B.222)(b a b a +=+ C.22))((b a b a b a -=-+ D.x y x x x xy -=÷+-6)6(27. 图中全等的三角形是 ( )A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ8. Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于 点D ,2CD =,则点D 到AB 的距离是( )A .1B .2C .3D .4 9.已知一次函数y=kx+b b 的符号是( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<010.如图,∠1=∠2,∠C=∠D ,AC 、点,下列结论中不正确的是( )A .∠DAE=∠CBEB .ΔDEAC .CE=DED .ΔEAB 二.填空题(本大题共30分,每小题3题中横线上)11.点(2,3)关于y 12.把直线121-=x y 向上平移21个单位,可得到函数_______________.13.若直线y=kx 平行直线y=5x+3,则k=_____. 14.比较大小:-3- 15. 16的算术平方根是 . 16.函数y =x 的取值范围是_______________.17. 在Rt △ABC 中,∠C =90°,∠B =60°,AB =12,则BC = . 18. 若函数mxm y )1(-=是正比例函数,则m 的值是 .19. 如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是 .20. 大家一定知道杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += . 三.解答题(本大题共40分,共6小题;请写出必要的演算、推理、解答过程)21.化简(每题4分,共8分)(1)33+23+308)14.3(16-+--π(2)(3x —2)2—(2x+4)(2x —4)1222332234432234()()2()33()464a b a b a b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++Ⅱ11 11 2 11 3 3 1 1 4 6 4 1.....................Ⅰ22. 分解因式(每题4分,共8分)(1) 22363ay axy ax ++ (2) 3x 3—12x23.(5分)已知一次函数的图像经过点(—2,-2)和点(2,4), 求这个一次函数的解析式.24.(6分)已知:如图,CAE ∠是ABC ∆的外角,12∠=∠,AD ∥BC.求证:AB AC =25.(6分)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE.AB_2_1 EADCB求证:BC=DE.26.(7分)甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图7. 根据图象解决下列问题:(1) 谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2) 分别求出甲、乙两人的行驶速度; (3) 在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内: ①什么时间甲在乙的前面;②什么时间甲与乙相遇;③什么时间 甲在乙后面.B 卷(50分)四.解答题(本大题共50分,共6小题;请写出必要的演算、推理、解答过程)27.(8分)运用乘法公式计算:2)())((c b a c b a c b a +++--++.28.(8分)如图在AFD ∆和图 7CEB ∆中,点A ,E ,F ,C 在同一条直线上,有下面四个论断:(1)AD =CB , (2)AE =CF , (3)D B ∠=∠, (4)AD //BC .请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程.29.(8分)如图,∆ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,求证:EF=BE+CF.30. (8分)如图,已知直线1:23l y x =+,直线2:5l y x =-+,直线1l 、2l 分别交x 轴于B 、C 两点,1l 、2l 相交于点A .(1) 求A 、B 、C 三点坐标; (2) 求△ABC 的面积.31.(8分)探索:11)(1(2-=+-x x x ) 1)1)(1(32-=++-x x x x1)1)(1(423-=+++-x x x x x 1)1)(1(5234-=++++-x x x x x x......(1)试求122222223456++++++的值; (2)判断1222222200620072008++++++ 的值的个位数是几?32.(10分)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A 、B 两仓库。
2021-2022学年八年级第一学期期末数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.﹣8的立方根是()A.4B.2C.﹣2D.±2【分析】根据立方根的定义即可求解.解:﹣8的立方根是﹣2.故选:C.2.下列数是无理数的是()A.B.πC.0D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.是分数,属于有理数,故本选项不合题意;B.π是无理数,故本选项符合题意;C.0是整数,属于有理数,故本选项不合题意;D.,是整数,属于有理数,故本选项不合题意;故选:B.3.计算(x2)3的结果是()A.x5B.x6C.x8D.3x2【分析】根据幂的乘方和积的乘方的运算法则求解.解:(x2)3=x6.故选:B.4.计算的结果为()A.10B.5C.3D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.解:=5.故选:B.5.运用乘法公式计算(4+x)(x﹣4)的结果是()A.x2﹣16B.x2+16C.16﹣x2D.﹣x2﹣16【分析】用平方差公式直接得出结果.解:(4+x)(x﹣4)=(x+4)(x﹣4)=x2﹣42=x2﹣16,故选:A.6.如图所示,在△ABC中,∠ACB=90°,分别以AB、BC、AC为边向外作正方形,若三个正方形的面积分别为225、400、S,则S的值为()A.25B.175C.600D.625【分析】由勾股定理得:AC2+BC2=AB2,直接代入即可.解:在△ABC中,∠ACB=90°,由勾股定理得:AC2+BC2=AB2,∴225+400=S,∴S=625.故选:D.7.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=()A.28°B.59°C.60°D.62°【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=28°,求出∠CAB的度数,然后即可求出∠AEC的度数.解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,∴△CAE≌△DAE,∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°﹣28°=62°,∵∠AEC=90°﹣∠CAB=90°﹣31°=59°.故选:B.8.在△ABC中,∠BAC=90°,AB>AC,∠B≠30°,用无刻度的直尺和圆规在BC边上找一点D,使AD=BD,下列作法正确的是()A.B.C.D.【分析】根据“要在BC边上找一点D,使AD=BD”知点D应该是线段AB垂直平分线与BC的交点,据此求解即可.解:若要在BC边上找一点D,使AD=BD,则点D应该是线段AB垂直平分线与BC的交点,故选:D.二、填空题(本大题共6小题,每小题3分,共18分)9.二次根式有意义,则x的取值范围是x≤3.【分析】直接利用二次根式有意义的条件,即二次根式中的被开方数是非负数,进而得出答案.解:二次根式有意义,则9﹣3x≥0,故x的取值范围是x≤3.故答案为:x≤3.10.比较大小:﹣3 <0(填“>”、“=”或“<”).【分析】首先求出介于2和3之间,从而得最后答案.解:∵2<<3,∴﹣3<0.故答案为:<.11.计算:2x•(﹣3xy)=﹣6x2y.【分析】根据单项式乘单项式的运算法则计算.解:2x•(﹣3xy)=﹣6x2y,故答案为:﹣6x2y.12.若一个三角形的三边长分别为5、12、13,则此三角形的面积为30.【分析】先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=30.13.如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=2,AB=5,则△ABD的面积为5.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.14.如图,在△ABC中,AB=AC,D为BC边上一点,且∠BAD=30°,若AD=DE,∠DAE=72°,则∠EDC的度数为33°.【分析】利用等腰三角形两底角相等和三角形内角和定理可得.解:∵∠BAD=30°,∠DAE=72°,AB=AC,∴∠B=∠C==39°,∵AD=DE,∴∠DAE=∠DEA=72°,∵∠AED=∠C+∠EDC,∴∠EDC=∠AED﹣∠C=72°﹣39°=33°,故答案为:33°.三、解答题(本大题共10小题,共78分)15.计算:﹣﹣﹣|﹣6|.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.解:原式=4﹣+0.5﹣6=﹣2.16.因式分解:(1)4m2﹣36;(2)2a2b﹣8ab2+8b3.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2b,再利用完全平方公式分解因式即可.解:(1)原式=4(m2﹣9)=4(m+3)(m﹣3);(2)原式=2b(a2﹣4ab+4b2)=2b(a﹣2b)2.17.图①、图②均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长均为1,点A、点B均在格点上,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中,以线段AB为腰画一个等腰三角形.(2)在图②中,以线段AB为底画一个等腰三角形.【分析】(1)根据要求作出图形即可;(2)根据要求作出图形即可.解:(1)如图1中,△ABC即为所求;(2)如图2中,△ABC即为所求.18.先化简,再求值:(x﹣3)2﹣x(2x+1)+x2,其中x=.【分析】直接利用乘法公式、单项式乘多项式化简,合并同类项,再把已知数据代入得出答案.解:原式=x2﹣6x+9﹣2x2﹣x+x2=﹣7x+9,当x=时,原式=﹣7×=﹣1.19.如图,点B、F、C、E四点在同一条直线上,∠B=∠E,AB=DE,BF=CE.求证:AC=DF.【分析】根据题意得出BC=EF,即可利用SAS证明△ABC和△DEF,再利用全等三角形的性质即可得解.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.20.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度沿北偏东40°方向航行,乙船沿南偏东50°方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问:乙船的航速是多少?【分析】根据方向角的概念求出∠CAB=90°,根据勾股定理求出AC的长,得到答案.解:∵甲船沿北偏东40°方向航行,乙船沿南偏东50°方向航行,∴∠CAB=90°,∵AB=16×3=48,BC=60,∴AC==36,∴乙船的航速是36÷3=12海里/时,答:乙船的航速是36÷3=12海里/时.21.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形.(1)图2中间空白的部分的面积是(a﹣b)2;(2)观察图2,请你写出代数式(a+b)2、(a﹣b)2、ab之间的等量关系式(a﹣b)2=(a+b)2﹣4ab;(3)根据你得到的关系式解答下列问题:若x+y=﹣4,xy=3,求x﹣y的值.【分析】(1)由图形面积间和差关系可得此题结果为(a﹣b)2;(2)由图形面积间关系可得:(a﹣b)2=(a+b)2﹣4ab;(3)由(2)题关系式可得,(x﹣y)2=(x+y)2﹣4xy,就能求得最后结果.解:(1)由题意得,图2中间空白的部分的面积是(a﹣b)2,故答案为:(a﹣b)2;(2)由图2中间空白的部分的面积的不同表示方法可得:(a﹣b)2=(a+b)2﹣4ab,故答案为:(a﹣b)2=(a+b)2﹣4ab;(3)由(2)题关系式可得,(x﹣y)2=(x+y)2﹣4xy=(﹣4)2﹣4×3=4∴x﹣y=±2,即x﹣y的值是±2.22.2021年央视春晚,数十个节目给千家万户送上了丰富的“年夜大餐”.某校随机对八年级部分学生进行了一次调查,对最喜欢相声《年三十的歌》(记为A)、歌曲《牛起来》(记为B)、武术表演《天地英雄》(记为C)、小品《开往春天的幸福》(记为D)的同学进行了统计(每位同学只选择一个最喜欢的节目),绘制了以下不完整的统计图,请根据图中信息解答问题:(1)求本次接受调查的学生人数.(2)求扇形统计图中D所在扇形的圆心角度数.(3)将条形统计图补充完整.【分析】(1)根据B的人数除以所占的百分比得到接受调查的学生人数;(2)用360°乘以D节目男、女生人数和占被调查人数的比例即可;(3)先求出D所占百分比,再求出C所占百分比,继而可以求出C的人数,进而得出C中男生人数;用总人数乘A占的百分比得出A的人数进而得出A中女生人数,然后补全条形统计图即可;解:(1)本次接受调查的学生人数为(12+8)÷40%=50(名);(2)扇形统计图中D所在扇形的圆心角度数为360°×=36°;(3)D占的百分比为×100%=10%,C占的百分比为1﹣(20%+40%+10%)=30%,∴C的人数为50×30%=15(人),即C中男生为15﹣8=7(人);A的人数为50×20%=10(人),A中女生人数为10﹣6=4(人),补全条形统计图,如图所示:23.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.【分析】(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD =∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE﹣CD=AD﹣BE;(3)运用(2)中的方法即可得出DE,AD,BE之间的等量关系是:DE=BE﹣AD.解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE﹣CD=AD﹣BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE ﹣AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD﹣CE=BE﹣AD.24.如图,在Rt△ABC中,∠ABC=90°,BC=AB,AC=8,点D是边AC的中点,动点P从点D出发,沿DA以每秒2个单位长度的速度向终点A匀速运动.同时,动点Q从点D出发,沿DC以每秒1个单位长度的速度向终点C匀速运动.当点P到达终点时,点Q也随之停止运动.过点Q作QE⊥AC,使QE=QD,且点E落在直线AC的上方,当点P不与点D重合时,以PQ、QE为邻边作长方形PQEF.设长方形PQEF与△ABC 的重叠部分的面积为S,点P的运动时间为t(秒).(1)用含t的代数式表示线段AP的长度为4﹣2t.(2)当点F落在线段AB上时,求t的值.(3)用含t的代数式表示S.(4)连结AF、DF.当△AFD是等腰三角形时,直接写出t的值.【分析】(1)由AC=8,点D是边AC的中点求出AD的长为4,再由动点P从点D出发,沿DA以每秒2个单位长度的速度向终点A匀速运动,且运动的时间为t得PD=2t,则AP=4﹣2t;(2)当点F落在线段AB上时,可证明△APF是等腰直角三角形,则AP=FP=QE=t,可列方程t=4﹣2t,解方程求出t的值即可;(3)先确定当点P到达终点A时,则点E恰好落在BC边上,再分两种情况进行讨论,一是当0<t≤时,长方形PQEF与△ABC的重叠部分的面积S为长方形PQEF本身,二是当<t≤2时,则长方形PQEF与△ABC的重叠部分的面积S为S长方形PQEF﹣S△FGH,分别求出用含t的代数式表示S的等式即可;(4)△AFD是等腰三角形存在两种情况,一是AF=DF,则PD=PA=AD=2,列方程求出t的值;二是FD=AD=4,在Rt△PDF中根据勾股定理列方程求出t的值即可.解:(1)∵AC=8,点D是边AC的中点,∴AD=AC=4,∵PD=2t,故答案为:4﹣2t.(2)当点F落在线段AB上时,如图1,∵四边形PQEF是长方形,∴∠QPF=90°,FP=QE,∴∠APF=180°﹣∠QPF=90°,∵∠ABC=90°,BC=AB,∴∠A=∠C=45°,∴∠PFA=∠A=45°,∴AP=FP=QE,∵QE=QD=t,∴AP=t,∴t=4﹣2t,解得t=,∴当点F落在线段AB上时,t的值为.(3)当点P与点A重合时,则2t=4,解得t=2,此时QD=QE=QC=2,∴点E恰好落在BC边上,当0<t≤时,如图2,∵PD=2t,QE=QD=t,∴PQ=2t+t=3t,∵S=S长方形PQEF=PQ•QE,∴S=3t•t=3t2;当<t≤2时,如图3,PF交AB于点G,EF交AB于点H,∵∠PGA=∠A=45°,∴∠FGH=∠PGA=45°,∵∠F=90°,∴∠FHG=∠FGH=45°,∵FP=QE=t,GP=AP=4﹣2t,∴FH=FG=t﹣(4﹣2t)=3t﹣4,∵S=S长方形PQEF﹣S△FGH,∴S=3t2﹣(3t﹣4)2=﹣t2+12t﹣8,综上所述,S=.(4)如图4,△AFD是等腰三角形,且AF=DF,∵PF⊥AD,∴PD=PA=AD=2,∴2t=2,解得t=1;如图5,△AFD是等腰三角形,且FD=AD=4,∵∠DPF=90°,∴PD2+FP2=FD2,∵PD=2t,FP=t,∴(2t)2+t2=42,解得t=或t=﹣(不符合题意,舍去),综上所述,t的值为1或.。
…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2022--2023学年度第一学期期末测试卷八年级 生物(满分:100分 时间:60分钟)题号 一 二 三 四 总分 分数一、选择题(本大题共25小题,每小题2分,共50分。
每小题只有一个正确答案,请把你选择的答案的序号填写在题后括号内) 1. 下列各种动物中,不属于腔肠动物的是( ) A.水螅 B.海蜇 C.珊瑚虫 D.乌贼 2. 下列描述不属于环节动物主要特征的是( ) A.身体呈圆筒形 B.体表有角质层C.身体由许多体节组成D.靠刚毛或疣足辅助运动 3. 下列动物中,真正属于鱼类的动物是( ) A.章鱼 B.鲸鱼 C.甲鱼 D.鲫鱼4. 蝗虫可以在干燥的陆地上生活,在它的形态结构中,防止水分散失的是( )A.体表的革质翅B.体表的大量鳞片C.覆盖全身的表皮D.坚硬的外骨骼 5. 家鸽等鸟类的双重呼吸是指每呼吸一次( ) A.在肺里进行两次气体交换 B.在气囊里各进行一次气体交换 C.在气囊里进行两次气体交换D.吸气时在气囊,呼气时在肺进行气体交换6. 鱼类、两栖类、爬行类、鸟类和哺乳类的共同特点是( ) A.都是变温动物B.都是恒温动物C.体表都有覆盖物 D.背部都有脊柱7. 以下四个成语都与动物有关,其中哪个成语所涉及到的两个动物均属恒温动物( )A.鸡犬不宁B.蛛丝马迹C.鹬蚌相争D.虎头蛇尾 8. 下列动物行为中,与蜘蛛织网属于同一类型的是( ) A.黑熊表演 B.蚯蚓走迷宫 C.候鸟迁徙 D.鹦鹉学舌 9. 下列现象不属于动物之间进行信息交流的是( ) A.飞蛾扑向光源 B.发现蜜源的蜜蜂“跳舞”C.昆虫释放性外激素D.小狒狒对“首领”做出顺从的姿态 10. 下列表示骨、关节和肌肉关系正确的模式图是( ) A.B.C.D.11. 宋代词人辛弃疾在一首词中写道“稻花香里说丰年,听取蛙声一片”,夏季青蛙高声鸣叫的行为是( )A.贮食行为B.繁殖行为C.攻击行为D.防御行为 12. 蜜蜂群体中有蜂王、雄蜂和工蜂,它们分工合作,共同维持群体生活,蜜蜂的这种行为属于( )A.社会(群)行为 B .攻击行为 C.防御行为 D.繁殖行为 13. 下列不属于动物在生物圈中的作用是( )A.维持生态平衡B.促进生态系统的物质循环C.用于观赏D.帮助植物传粉、传播种子 14. 大量的细菌能使食物迅速腐烂,食品在冰箱中能保存一定时间不……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…腐烂,主要原因是冰箱环境中()A.细菌很少B.细菌繁殖很慢C.没有细菌D.细菌都冻死了15. 下列生物中既具有成形的细胞核又具有细胞壁的是()A.病毒B.细菌C.真菌D.动物16. 保护生物多样性的最有效措施是()A.就地保护B.迁地保护C.建立自然保护区D.建立繁育基地17. 花、果实和种子常作为绿色开花植物分类的重要依据,主要原因是()A.形态较小,利于解剖、观察B.与繁殖后代有重要关系C.形态和结构相对稳定D.容易被采集,便于比较18. (.小明同学在提水时,此时他的弘二头肌和弘三头肌分别处于何种状态()A.收缩、舒张B.舒张、收缩C.舒张、舒张D.收缩、收缩19. 细菌、真菌、病毒的共同特点是()A.具有细胞结构B.无成形的细胞核C.生活方式大多为自养D.生活方式大多为异养20. 为了保护南极的生态环境,到南极考察的科学工作者不仅要把塑料等难以降解的垃圾带离南极,还要把粪便等生活垃圾带离南极,这是因为南极()A.缺乏必要的生活设施B.缺少生产者C.没有消费者D.分解者很少21. 国宝大熊猫“团团”“圆圆”作为大陆人民的友好使者被赠送到我国宝岛台湾。
2024届北京市育才学校八年级数学第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)1.下面的图形中,是轴对称图形的是( )A .B .C .D .2.如图,在等腰ABC ∆中,顶角44A ∠=︒,BD 平分底角ABC ∠交AC 于点,D E 是BC 延长线上一点,且CD CE =,则E ∠的度数为 ( )A .22°B .44°C .34°D .68°3.现有甲,乙两个工程队分别同时开挖两条 600 m 长的隧道,所挖遂道长度 y (m )与挖掘时间x (天)之间的函数关系如图所示.则下列说法中,错误的是( )A .甲队每天挖 100 mB .乙队开挖两天后,每天挖50米C .甲队比乙队提前2天完成任务D .当3x =时,甲、乙两队所挖管道长度相同4.如图,直线//,160a b ︒∠=,则2∠=( )A.60︒B.100︒C.150︒D.120︒5.如图,直线y=-x+m与直线y=nx+5n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+5n>0的整数解为()A.-5,-4,-3 B.-4,-3 C.-4,-3,-2 D.-3,-26.在平面直角坐标系中,点A(﹣1,2)关于x轴对称的点B的坐标为()A.(﹣1,2)B.(1,2)C.(1,﹣2)D.(﹣1,﹣2)7.如图,小峰从点O出发,前进5m后向右转45°,再前进5m后又向右转45°,…,这样一直走下去,他第一次回到出发点O时,一共走的路程是()A.10米B.20 米C.40 米D.80米8.某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为45°,下方是一个直径为70cm,高为100cm的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()A .30cmB .35cmC .352cmD .65cm9.如图,在平面直角坐标系中,()11A ,,()11B ,-,()12C --,,()12D -,,把一条长为2019个单位长度且没有弹性的细线(线的粗细不略不计)的一端固定在点A 处,并按A B C D A -----…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(1,0)B .(1,1)C .(-1,1)D .(-1,-2)10.已知ABC ∆中,AB AC =,求证:90B ∠<︒,运用反证法证明这个结论,第一步应先假设( )成立 A .90B ∠≥︒ B .90B ∠>︒ C .90A ∠>︒ D .90A ∠≥︒11.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快12.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A .带①去B .带②去C .带③去D .①②③都带去二、填空题(每题4分,共24分)13.如图,A .B 两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C 也在格点上,且△ABC 为等腰三角形,则符合条件的点C 共有______个.14.如图:点C 在AB 上,DAC ∆、EBC ∆均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,则下列结论①AE DB = ②CM CN = ③CMN ∆为等边三角形 ④//BC MN 正确的是______(填出所有正确的序号)15.已知点A (m+3,2)与点B (1,n ﹣1)关于y 轴对称,则代数式(m+n )2017的值为 .16.函数y x 2=+中,自变量x 的取值范围是 .17.如图,在Rt △ABC 中,平分交BC 于D 点,E ,F 分别是上的动点,则的最小值为__________.18.三角形三个内角的度数之比是1:2:3,它的最大边长是6cm ,则它最短边长为________.三、解答题(共78分)19.(8分)如图,将平行四边形ABCD 的边AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD .(1)求证:四边形CEDF 是平行四边形;(2)若AB=4,AD=6,∠A=60°,求CE的长.20.(8分)如图, A、B是分别在x轴上位于原点左右侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOC=1.(1)求点A的坐标及m的值;(2)求直线AP的解析式;(3)若S△BOP=S△DOP,求直线BD的解析式.21.(8分)(1)计算:(1+3)2﹣12×6;(2)解方程组:125x yx y+=⎧⎨-=⎩①②.22.(10分)某单位欲从内部招聘管理人员一名,对甲乙丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)根据实际需要,单位将笔试,面试,民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?23.(10分)随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.某快递中转站平均每天需要分拣10万件快件,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作(每天工作时间为8小时).24.(10分)已知1322x =-,求代数式2623x x x -+-的值. 25.(12分)已知一次函数y =﹣33x+4与x 轴交于点A ,与y 轴交于点C ,∠CAO =30°,B 点在第一象限,四边形OABC 为长方形,将B 点沿直线AC 对折,得到点D ,连接点CD 交x 轴于点E .(1)M 是直线AC 上一个动点,N 是y 轴上一个动点,求出EMN 周长的最小值;(2)点P 为y 轴上一动点,作直线AP 交直线CD 于点Q ,将直线AP 绕着点A 旋转,在旋转过程中,与直线CD 交于Q .请问,在旋转过程中,是否存在点P 使得CPQ 为等腰三角形?如果存在,请求出∠OAP 的度数;如果不存在,请说明理由.26.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值.参考答案一、选择题(每题4分,共48分)1、C【分析】沿着一条直线对折,两边能够完全重合的图形就是轴对称图形,根据定义判断即可.【题目详解】A 选项图形不是轴对称图形,不符合题意;B 选项图形不是轴对称图形,不符合题意;C 选项图形是轴对称图形,符合题意;D 选项图形不是轴对称图形,不符合题意;故选C .【题目点拨】本题考查轴对称图形的判断,熟记轴对称图形的定义是解题的关键.2、C【分析】先根据等腰三角形的性质求得∠ACB=68º,从而求出∠ACE=112º,再由CD CE =求出E ∠的度数.【题目详解】∵在等腰ABC ∆中,顶角44A ∠=︒,∴∠ACB =(18044)682-︒=︒, 又∵CD CE =,∠ACB =∠E+∠CDE, ∴∠E=∠CDE=68342︒=︒. 故选:C .【题目点拨】考查了三角形外角性质、等腰三角形的性质和三角形内角和定理,解题关键是利用了三角形的一个外角等于与它不相邻的两个内角和.3、D【分析】从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【题目详解】解:由图象,得600÷6=100米/天,故A 正确;(500-300)÷4=50米/天,故B 正确;由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8-6=2天,∴甲队比乙队提前2天完成任务,故C 正确;当x=3时,甲队所挖管道长度=3×100=300米,乙队所挖管道长度=300+(3-2)×50=350米,故D 错误;故选:D.【题目点拨】本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.4、D【分析】由//,160a b ︒∠=得到∠3的度数为60︒,再根据邻补角即可计算得到∠2的度数.【题目详解】∵//,160a b ︒∠=,∴∠3=∠1=60︒,∴∠2=180︒-60︒=120︒,故选:D.【题目点拨】此题考查平行线的性质,邻补角的定义,正确理解题中角度的关系,由此列式计算得出角度值是解题的关键. 5、B【解题分析】根据一次函数图像与不等式的性质即可求解.【题目详解】直线y=nx+5n 中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x 的不等式-x+m >nx+5n >0的解集为-5<x <-2故整数解为-4,-3,故选B.【题目点拨】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.6、D【解题分析】试题分析:关于x 轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,从而点A (﹣1,2)关于x 轴对称的点B 的坐标是(﹣1,﹣2).故选D .7、C【分析】小峰从O 点出发,前进5米后向右转45°,再前进5米后又向右转45°,…,这样一直走下去,他第一次回到出发点O 时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【题目详解】依题意可知,小峰所走路径为正多边形,设这个正多边形的边数为n ,则45n =360,解得:n =8,∴他第一次回到出发点O 时一共走了:5×8=40米. 故选:C .【题目点拨】此题考查多边形的外角和,正多边形的判定与性质.解题关键是根据每一个外角判断多边形的边数.8、D【分析】由题意可知,进入容器内的三角形可看作是一个斜边为70cm 的等腰直角三角形,由等腰三角形三线合一的性质可得到高,即可求出答案.【题目详解】由题意可知,进入容器内的三角形可看作是一个斜边为70cm 的等腰直角三角形,由等腰三角形三线合一的性质可得到高斜边上的高应该为35cm ,使容器中的液面与上方装置相接触,容器中液体的高度至少应为100﹣35=65cm .故选D .考点:等腰直角三角形.9、A【分析】根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【题目详解】解:∵A (1,1),B (-1,1),C (-1,-2),D (1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即细线另一端所在位置的点的坐标是(1,0).故选:A .【题目点拨】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.10、A【分析】根据反证法的步骤,第一步要从结论的反面出发假设结论,即可判断.【题目详解】解:90B ∠<︒的反面为90B ∠≥︒故选A .【题目点拨】此题考查的是反证法的步骤,掌握反证法的第一步为假设结论不成立,并找到结论的反面是解决此题的关键.11、C【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【题目详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【题目点拨】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.12、C【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【题目详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【题目点拨】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.二、填空题(每题4分,共24分)13、9【解题分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.14、①②③④【分析】利用等边三角形的性质得CA=CD,∠ACD=60°,CE=CB,∠BCE=60°,所以∠DCE=60°,∠ACE=∠BCD =120°,则利用“SAS”可判定△ACE≌△DCB,所以AE=DB,∠CAE=∠CDB,则可对①进行判定;再证明△ACM≌△DCN得到CM=CN,则可对②进行判定;然后证明△CMN为等边三角形得到∠CMN=60°,则可对③④进行判定.【题目详解】解:∵△DAC、△EBC均是等边三角形,∴CA=CD,∠ACD=60°,CE=CB,∠BCE=60°,∴∠DCE=60°,∠ACE=∠BCD=120°,在△ACE和△DCB中AC CDACE DCB EC BC⎪∠⎪⎩∠⎧⎨===,∴△ACE≌△DCB(SAS),∴AE=DB,所以①正确;∵△ACE≌△DCB,∴∠MAC=∠NDC,∵∠ACD=∠BCE=60°,∴∠MCA=∠DCN=60°,在△ACM和△DCN中MAC NDC CA CDACM DCN ∠∠∠⎧⎪⎪⎩∠⎨===,∴△ACM≌△DCN(ASA),∴CM=CN,所以②正确;∵CM=CN,∠MCN=60°,∴△CMN为等边三角形,故③正确,∴∠CMN=60°,∴∠CMN=∠MCA,∴MN∥BC,所以④正确,故答案为:①②③④.【题目点拨】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件,也考查了等边三角形的判定与性质.15、﹣1.【题目详解】解:∵点A(m+3,2)与点B(1,n﹣1)关于y轴对称,∴m+3=﹣1,n﹣1=2,解得:m=﹣4,n=3,∴(m+n)2017=﹣1.故答案为﹣1.【题目点拨】本题主要考查了关于y轴对称的点的坐标特征,若两个关于y轴对称,则这两点的横坐标互为相反数,纵坐标相等.≥-.16、x2【解题分析】∵x2+在实数范围内有意义,+≥∴x20,≥-∴x2≥-故答案为x217、【分析】利用勾股定理先求出BA,再求到CH,由垂线段最短可得解.【题目详解】如图,在AB上取点F′,使AF′=AF,过点C作CH⊥AB,垂足为H.在Rt△ABC中,依据勾股定理可知BA=10,CH=.∵EF+CE=EF′+EC,∴当C、E、F′共线,且点F′与H重合时,FE+EC的值最小,最小值为.故答案为.18、3cm【分析】先根据三角形三个内角之比为1:2:3求出各角的度数判断出三角形的形状,再根据含30度角的直角三角形的性质求解.【题目详解】解:∵三角形三个内角之比为1:2:3,∴设三角形最小的内角为x ,则另外两个内角分别为2x ,3x ,∴x+2x+3x=180°,∴x=30°,3x=90°,∴此三角形是直角三角形.∴它的最小的边长,即30度角所对的直角边长为:12×6=3cm . 故答案为:3cm.【题目点拨】本题考查的是含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半,解答此题的关键是根据三角形三个内角度数的比值判断出三角形的形状.三、解答题(共78分)19、(1)见解析;(2)13【分析】(1)利用平行四边形的性质得出AD=BC ,AD ∥BC ,进而利用已知得出DE=FC ,DE ∥FC ,进而得出答案;(2)首先过点D 作DN ⊥BC 于点N ,再利用平行四边形的性质结合勾股定理得出DF 的长,进而得出答案.【题目详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∵DE =12AD ,F 是BC 边的中点, ∴DE =FC ,DE ∥FC ,∴四边形CEDF 是平行四边形;(2)解:过点D 作DN ⊥BC 于点N ,∵四边形ABCD 是平行四边形,∠A =60°,∴∠BCD =∠A =60°,CD=AB ,BC=AD ,∵AB =4,AD =6,∴FC =3,NC =12DC =2,DN =23 ∴FN = FC - NC =1,则DF =EC =()2222231DN FN +=+13【题目点拨】本题主要考查了平行四边形的判定与性质以及勾股定理等知识,熟练应用平行四边形的判定方法是解题关键.20、(1)A(-1,0),m=125;(2)1=25y x+;(3)62455y x=-+【分析】(1)根据三角形面积公式得到12×OA•2=1,可计算出OA=1,则A点坐标为(-1,0),再求出直线AC的表达式,令x=2,求出y即可得到m值;(2)由(1)可得结果;(3)利用三角形面积公式由S△BOP=S△DOP,PB=PD,即点P为BD的中点,则可确定B点坐标为(4,0),D点坐标为(0,245),然后利用待定系数法确定直线BD的解析式.【题目详解】解:(1)∵S△AOC=1,C(0,2),12×OA•2=1,∴OA=1,∴A点坐标为(-1,0),设直线AC的表达式为:y=kx+b,则0102k bb=-+⎧⎨=⎩,解得:152kb⎧=⎪⎨⎪=⎩,∴直线AC的表达式为:1=25y x+,令x=2,则y=125,∴m的值为125;(2)由(1)可得:∴直线AP的解析式为1=25y x+;(3)∵S△BOP=S△DOP,∴PB=PD,即点P为BD的中点,∴B点坐标为(4,0),D点坐标为(0,245),设直线BD的解析式为y=sx+t,把B(4,0),D(0,245)代入得04 24 5s t t=+⎧⎪⎨=⎪⎩,解得:65245st⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BD的解析式为62455y x=-+.【题目点拨】本题考查了待定系数法求一次函数解析式,一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.21、(1)(2)21xy=⎧⎨=-⎩.【分析】(1)利用完全平方公式,根据二次根式得运算法则计算即可得答案;(2)利用加减消元法解方程组即可得答案.【题目详解】(1)原式=+3==.(2)125 x yx y+=⎧⎨-=⎩①②①+②得3x=6,解得:x=2,把x=2代入①得2+y=1,解得:y=﹣1,∴方程组的解为21 xy=⎧⎨=-⎩.【题目点拨】本题考查了二次根式的运算和解二元一次方程组,熟练掌握二次根式得运算法则及加减法解二元一次方程组是解题关键.22、(1)甲:50分;乙:80分;丙:70分;(2)丙【分析】(1)根据扇形统计图即可求出三人的得分;(2)利用加权平均数列式计算求出三人的得分,然后判断录用的候选人即可.【题目详解】解:(1)由题意得,民主测评:甲:200×25%=50分, 乙:200×40%=80分, 丙:200×35%=70分; (2)∵43310++=, 则,()7549335031072.9x =⨯+⨯+⨯÷=甲分()8047038031077x =⨯+⨯+⨯÷=乙分()9046837031077.4x =⨯+⨯+⨯÷=丙分∵77.4>77>72.9,∴丙将被录用.【题目点拨】本题考查的是加权平均数的求法,要注意各部分的权重与相应的数据的关系,熟记运算方法是解题的关键.23、每天只需要安排6名工人就可以完成分拣工作.【分析】设用传统方式每人每小时可分拣x 件,则用智能分拣设备后每人每小时可分拣25x 件,根据工作时间=工作总量÷工作效率结合5人用此设备分拣8000件快件的时间比20人用传统方式分拣同样数量的快件节省4小时,即可得出关于x 的分式方程,解之经检验后即可得出x 的值,再利用需要人数=工作总量÷每人每天用智能分拣设备后的工作量,即可求出结论(利用进一法取整).【题目详解】解:设用传统方式每人每小时可分拣x 件,则用智能分拣设备后每人每小时可分拣25x 件, 依题意,得:80008000452520x x=-⨯, 解得:x =84,经检验,x =84是原方程的解,且符合题意,∴100000÷(84×25×8)=5(人)……16000(件),∴5+1=6(人).答:每天只需要安排6名工人就可以完成分拣工作.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24、4【分析】先将x 进行化简,然后再代入求值即可.【题目详解】解:3x===+,原式23632+-++=4.【题目点拨】本题考查二次根式的化简与计算,掌握化简方法及运算法则是解题关键.25、(1)1;(2)存在,15°或60°【分析】(1)首先确定A,C的坐标,由矩形的性质和折叠的性质可得AD=AB=4,∠CAD=60°,可得∠DAO=30°,由直角三角形的性质求出点D的坐标,过点E作y轴的对称点G,过点E作AC的对称点H,连接GH交y轴于点N,与AC交于M,即△EMN的周长最小值为GH,由直角三角形的性质可求AE,OE的长,可求点G,点H坐标,即可求解.(2)分两种情况讨论,由等腰三角形的性质可求解.【题目详解】解:(1)∵一次函数4y x+=与x轴交于点A,与y轴交于点C,∴C(0,4),A(0),∴OC=AB=4,BC=OA=∵四边形AOCB是矩形,∠OAC=30°∴AC=2CO=1,∠CAB=60°,∵B点沿直线AC对折,使得点B落在点D处,∴AD=AB=4,∠CAD=60°,∴∠DAO=30°,如图,过点D作DF⊥AO于F,∵DF⊥AO,∠DAO=30°,∴DF=12AD=2,AF=3DF=23,∴OF=AO﹣AF=23,∴点D坐标(23,﹣2).如图,过点E作y轴的对称点G,过点E作AC的对称点H,连接GH交y轴于点N,与AC交于M,即△EMN的周长最小值为GH,∵∠OAD=30°,AD=4,∠ADC=90°∴AE=833,∴OE=433,∵点G,点E关于y轴对称,点E,点H关于AC对称,∴点G 43,0),点H83,4)∴GH22 834348 33⎛⎫++=⎪⎪⎝⎭,∴△EMN的周长最小值为1.(2)存在点P使得△CPQ为等腰三角形,∵∠ACB=∠ACD=30°,∴∠OCE=30°,①如图,若CP=CQ,则∠CPQ=75°,∴∠OAP=90°﹣∠CPQ=15°,②如图,若PQ=CQ,则∠QPC=∠PCQ=30°,∴∠PAO=90°﹣∠CPQ=60°,综上所述,满足条件的∠OAP的值为15°或60°.【题目点拨】本题考查矩形、折叠、直角三角形、等腰三角形等知识和数形结合思想方法的综合应用,熟练应用数形结合的思想方法解决几何综合问题是解题关键.26、11【分析】根据算术平方根和立方根的概念列出方程求出x和y,代入求值即可.x-的算术平方根是3,【题目详解】解:∵1x-,∴1=9x,∴=10∵24x y ++的立方根是3,∴24=27x y ++,即204=27y ++∴3y =,∴2320911x y -=-=.【题目点拨】本题考查算术平方根和立方根.熟练掌握算术平方根与立方根的意义是解题的关键.。
学年度第一学期期末考试武汉市部分区八年级数学压轴题1.(硚口区)在平面直角坐标系中,已知A(-m,0),B(0,n),C(m,0)。
(1)如图1,若AC=AB,CM⊥AB于点M,MN∥y轴交AO于点N(-2,0),则m=__________。
(2)如图2,若m2-2mn+n2=0,∠ACB的平分线CD交AB于点D,过AC上一点E作EF∥CD,交AB于点F,AG是∆AEF的高,探究AG与EF的数量关系。
(3)如图3,在(1)的条件下,AC上一点H满足,直线MH交y轴于点Q,求点Q的坐标。
2.(东湖高新区)如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+ b2-8b+162=0。
(1)求a、b的值。
(2)如图1,C为y轴负半轴上一点,连接CA,过点C作CD⊥CA,使CD=CA,连接BD,求证:∠CBD=45°。
(3)如图2,若有一等腰Rt∆BMN,∠BMN=90°,连接AN,取AN中点P,连接PM、PO,试探究PM和PO的关系。
3.(江汉区)在平面直角坐标系中,点A (0,4),B (m,0)在坐标轴上,点C 与O 关于直线AB 对称,点D 在线段AB 上。
(1)如图1,若m=8,求AB 的长。
(2)如图2,若m=4,连接OD ,在y 轴上取一点E ,使OD=DE ,求证:CE= 。
(3)如图3,若m= ,在射线AO 上截取AF ,使AF=BD ,当CD+CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值。
4.(江岸区)已知,平面直角坐标系中,A(0,4),B(b,0),(-4<b<0),将线段AB绕点A逆时针旋转90°得到线段AC,连接BC。
(1)如图1,直接写出点C的坐标:_______________________(用b表示)。
(2)如图2,取线段BC的中点D,在x轴取一点E使∠DEB=45°,作CF⊥x轴于点F。
1.已知:如图,在△ABC 中,AD 、BE 是高,F 是AB 的中点,FG DE ^,点G 是垂足.求证:点G 是DE 的中点.的中点.2.如图,在△OBC 中,点O 为坐标原点,点C 坐标为(4,0),点B 坐标为(2,23),A B y ^轴,点A 为垂足,BC OH ^,点H 为垂足.动点P 、Q 分别从点O 、A 同时出发,点P 沿线段OH 向点H 运动,点Q 沿线段AO 向点O 运动,速度都是每秒1个单位长度.设点P 的运动时间为t 秒. (1)求证:OB CB =;(2)若△OPQ 的面积为S ,求S 与t 之间的函数关系式及定义域;之间的函数关系式及定义域; (3)当PQ OB ^(垂足为点M )时,求五边形ABHPQ 的面积的值. A BH OQPy xMCMED MOCN_ F_ E_ D _ C_ B_ A_y _x _ O6.已知:如图,正比例函数的图象与反比例函数的图象交于点(1)试确定上述正比例函数和反比例函数的表达式;)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?反比例函数的值大于正比例函数的值? (3)是反比例函数图象上的一动点,其中过点作直线轴,轴,交交轴于点;过点作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段与的大小关系,并说明理由.的大小关系,并说明理由.7.已知:如图,在⊿ABC 中,∠C=90°,∠B=30°,AC =6,点D 在边BC 上,AD 平分∠CAB ,E 为AC 上的一个动点(不与A 、C 重合),EF ⊥AB ,垂足为F . (1)求证:AD=DB ;(2)设CE=x ,BF=y ,求y 关于x 的函数解析式;的函数解析式; (3)当∠DEF =90°时,求BF 的长. 第26题图FE D CBA压轴题答案1.证明: 联结EF 、DF .……………………………1分∵AD 是高,是高, ∴AD BC ^,∴90ADB Ð=.………………………1分又∵F 是AB 的中点,的中点, ∴12DF AB =(直角三角形斜边上的中线等于斜边的一半) .……2分 同理可得:12EF AB =.……………………………………………1分∴EF DF =.…………………………………………………………1分又∵FG DE ^,…………………………………………………………1分 ∴DG EG =.…………………………………………………………1分 即:点G 是DE 的中点.的中点.2.解:(1)∵()222234OB =+=………………………………………………1分 ()()2224234CB =-+=………………………………………1分∴OB CB = ………………………………………………………………1分 (2)易证:△OBC 为等边三角形.为等边三角形. ∵BC OH ^,∴30BOH HOC Ð=Ð=.………………1分∴30AOB Ð=.过点P 作PE OA ^垂足为点E .在Rt △PEO 中,30EPO Ð=,PO t =,∴122tEO PO ==,由勾股定理得:32PE t =.…………………………1分 又∵23OQ AO AQ t =-=-,………………………………………………1分 ∴()211363232224t tS OQ PE t t -==-=.………………………1分即:23342S t t =-+(320<<t ).……………………………………1分 【说明】最后1分为定义域分数.(3)易证Rt △OAB ≌Rt △OHB ≌Rt △OHC ,GFE D CB AA BHOQPy xCE∴2OABH3434OABOHBOHBOHCOBCSSSSSSOC =+=+==´= 四边形.1分 易证△OPQ 为等边三角形,为等边三角形, ∴OQ OP =,即:23t t -=,解得,解得 3t =.……………………………………………1分 ∴233344OPQSOP =´= .…………………………………………………1分∴ABHPQ331343344OPQOABHSSS=-=-=五边形四边形.……………1分3. 解:解:PD+PE=CM PD+PE=CM PD+PE=CM,, 证明:连接AP AP,,∵AB=AC, ∴S △ABC =S △ABP +S △ACP =AB ×PD+AC ×PE=×AB ×(PD+PE ), ∵S △ABC =AB ×CM, ∴PD+P ∴PD+PE=CM E=CM E=CM。
湖北省武汉十二中学2024届八年级数学第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.点P(-2,3)关于x 轴的对称点的坐标为( )A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2)2.计算16的平方根为( ) A .4± B .2±C .4D .2± 3.已知函数|3|(3)m y m x-=-是正比例函数,且图像在第二、四象限内,则m 的值是( ) A .2 B .2- C .4 D .12- 4.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .5.如图,等边△ABC 的边长为4,AD 是边BC 上的中线,F 是边AD 上的动点,E 是边AC 上一点,若AE=2,则EF+CF 取得最小值时,∠ECF 的度数为( )A .15°B .22.5°C .30°D .45°6.下列图形中,不一定是轴对称图形的是( )A .正方形B .等腰三角形C .直角三角形D .圆7.如图,若40,50,B D BA BC ∠=︒∠=︒=,则DAC ∠的度数是( )A .10︒B .20︒C .30D .40︒ 8.实数5是( )A .整数B .分数C .有理数D .无理数9.若x y <,则下列不等式成立的是( )A .22x y -+<-+B .44x y >C .22x y -<-D .33x y -<-10.以下列长度的线段为边,可以作一个三角形的是( )A .6cm ,16cm ,21cmB .8cm ,16cm ,30cmC .6cm ,16cm ,24cmD .8cm ,16cm ,24cm11.人数相同的八年级一、二两班同学在同一次数学单元测试,班级平均分和方差如下:1280x x ==,221224,18s s ==,则成绩较为稳定的班级是( )A .一班B .二班C .两班成绩一样稳定D .无法确定 12.设,,则A 、B 的关系为( ) A .A >B B .A <B C .A =B D .无法确定二、填空题(每题4分,共24分)13.如图所示,将△ABC 沿着DE 翻折,若∠1+∠2=80°,则∠B =_____度.14.小刚准备测量一段河水的深度, 他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为_______.15.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .16.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.17.化简2(0,0)3ba ba>≥结果是_______ .18.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅有0.00000000034米,将数据0.00000000034用科学记数法表示为_______.三、解答题(共78分)19.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.20.(8分)如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE 绕点A 旋转到图3的位置时,△AMN 还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).21.(8分)△ABC 在平面直角坐标系中的位置如图所示,A ,B ,C 三点在格点上.(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1.(2)求△A 1B 1C 1的面积.22.(10分)若一次函数y kx b =+,当26x -≤≤时,函数值的范围为119y -≤≤,求此一次函数的解析式?23.(10分)如图,D 是等边△ABC 的AB 边上的一动点(不与端点A 、B 重合),以CD 为一边向上作等边△EDC ,连接AE .(1)无论D 点运动到什么位置,图中总有一对全等的三角形,请找出这一对三角形,并证明你得出的结论;(2)D 点在运动过程中,直线AE 与BC 始终保持怎样的位置关系?并说明理由.24.(10分)先化简,再求代数式2121212x x x x x x +÷---++的值,其中232x =-. 25.(12分)如图,在Rt △ABC 中,(M 2,N 2),∠BAC=30°,E 为AB 边的中点,以BE 为边作等边△BDE ,连接AD ,CD .(1)求证:△ADE ≌△CDB ;(2)若BC=3,在AC 边上找一点H ,使得BH+EH 最小,并求出这个最小值.26.在△ABC 中,AB=AC ,在△ABC 的外部作等边三角形△ACD ,E 为AC 的中点,连接DE 并延长交BC 于点F ,连接BD .(1)如图1,若∠BAC=100°,则∠ABD 的度数为_____,∠BDF 的度数为______;(2)如图2,∠ACB 的平分线交AB 于点M ,交EF 于点N ,连接BN ,若BN=DN ,∠ACB=a .(I)用a 表示∠BAD ;(II)①求证:∠ABN=30°;②直接写出a 的度数以及△BMN 的形状.参考答案一、选择题(每题4分,共48分)1、B【分析】根据平面直角坐标系中关于x 轴对称的点,横坐标相同,纵坐标互为相反数解答.【题目详解】解:根据平面直角坐标系中对称点的规律可知,点P (-2,3)关于x 轴的对称点坐标为(-2,-3). 故选:B .【题目点拨】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2、B,又∵(±2)2=4,∴4的平方根是±2±2, 故选B .【题目点拨】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 3、C【分析】根据正比例函数的定义解答即可.【题目详解】∵函数|3|(3)m y m x-=-是正比例函数, ∴31m -=,得m=2或m=4,∵图象在第二、四象限内,∴3-m 0<,∴m 3>,∴m=4,故选:C.【题目点拨】此题考查正比例函数的定义、性质,熟记定义并掌握正比例函数的特点即可解答问题.4、A【分析】根据0ab <且a b >,得到a,b 的取值,再根据一次函数的图像即可求解.【题目详解】解:∵0ab <,且a b >,∴a >0,b <0.∴函数y ax b =+的图象经过第一、三、四象限.故选A .【题目点拨】此题主要考查一次函数的图像,解题的关键是熟知不等式的性质及一次函数的图像.5、C【解题分析】试题解析:过E 作EM∥BC,交AD 于N ,∵AC=4,AE=2,∴EC=2=AE ,∴AM=BM=2,∴AM=AE ,∵AD 是BC 边上的中线,△ABC 是等边三角形,∴AD ⊥BC ,∵EM ∥BC ,∴AD ⊥EM ,∵AM=AE ,∴E 和M 关于AD 对称,连接CM 交AD 于F ,连接EF ,则此时EF+CF 的值最小,∵△ABC 是等边三角形,∴∠ACB=60°,AC=BC ,∵AM=BM ,∴∠ECF=12∠ACB=30°, 故选C .6、C 【解题分析】正方形、等腰三角形、圆一定是轴对称图形,等腰直角三角形是轴对称图形,故选C7、B【分析】先根据等边对等角求出ACB ∠,再根据外角的性质,利用ACB D DAC ∠=∠+∠即可求解.【题目详解】解:40B BA BC ∠=︒=,40)2=70∴︒-︒÷︒∠ACB=(180又=50D ∠︒705020DAC ACB D ∴∠=∠-∠=︒-︒=︒故选:B .【题目点拨】本题考查了等腰三角形的性质以及三角形的外角,正确的分析题意,进行角的计算,即可求出正确答案.8、D【解题分析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比,即可判定.【题目详解】由题意,得故选:D .【题目点拨】此题主要考查对无理数的理解,熟练掌握,即可解题.9、C【分析】根据不等式的性质依次分析判断即可.【题目详解】A 、x y <,则x y -->,所以22x y -+-+>,故A 错误;B 、x y <,则44x y <,故B 错误;C 、x y <,22x y -<-,故C 正确;D 、x y <,则33x y -->,故D 错误;故选C.【题目点拨】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 10、A【分析】利用两条短边之和大于第三边来逐一判断四个选项给定的三条边长能否组成三角形,此题得解.【题目详解】A 、∵6+16=22>21,∴6、16、21能组成三角形;B 、∵8+16=24<30,∴8、16、30不能组成三角形;C 、∵6+16=22<24,∴6、16、24不能组成三角形;D 、∵8+16=24,∴8、16、24不能组成三角形.故选:A .【题目点拨】本题考查了三角形三边关系,牢记三角形的三边关系是解题的关键.11、B【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【题目详解】解:∵12222418s s =>=,∴成绩较为稳定的班级是乙班.故选:B .【题目点拨】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12、A【解题分析】利用作差法进行解答即可. 【题目详解】∵= x 2-5x+6-(x 2-5x+4)= x 2-5x+6-x 2+5x-4=2>0, ∴A>B.故选A.【题目点拨】本题考查了整式的混合运算,熟练运用作差法比较大小是解决问题的关键.二、填空题(每题4分,共24分)13、1.【分析】利用三角形的内角和和四边形的内角和即可求得.【题目详解】∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°﹣∠B)=360°,∴∠B=1°.故答案为:1°.【题目点拨】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.14、2米【分析】河水的深、竹竿的长、离岸的距离三者构成直角三角形,作出图形,根据勾股定理即可求解.【题目详解】如图,在Rt△ABC中,AC=1.5cm.CD=AB-BC=3.5m.设河深BC=xm,则AB=3.5+x米.根据勾股定理得出:∵AC3+BC3=AB3∴1.53+x3=(x+3.5)3解得:x=3.【题目点拨】本题考查了勾股定理在实际生活中的应用,根据勾股定理可以把求线段的长的问题转化为解方程得问题是解题的关键.15、85°.【解题分析】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.16、12.1【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=12×1×1=12.1,即可得出结论.【题目详解】如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB(ASA),∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×1×1=12.1,∴四边形ABCD的面积为12.1,故答案为12.1.【题目点拨】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题17、6 3 ab a【分析】首先将被开方数的分子和分母同时乘以3a,然后再依据二次根式的性质化简即可.【题目详解】解:原式236 33b a ab a a⋅=⋅6ab.【题目点拨】本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.18、103.410-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.00000000034=3.4×10-10,故答案为:3.4×10-10.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题(共78分)19、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;()2用待定系数法求出一次函数解析式,再代入进行运算即可.【题目详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【题目点拨】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.20、(1)CD=BE .理由见解析;(2)△AMN 是等边三角形.理由见解析.【分析】(1)CD=BE .利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE≌△ACD;然后根据全等三角形的对应边相等即可求得结论CD=BE ;(2)△AMN 是等边三角形.首先利用全等三角形“△ABE≌△ACD”的对应角相等、已知条件“M、N 分别是BE 、CD 的中点”、等边△ABC 的性质证得△ABM≌△ACN;然后利用全等三角形的对应边相等、对应角相等求得AM=AN 、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【题目详解】(1)CD=BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB=AC,AD=AE ,∠BAC=∠EAD=60°,∵∠BAE=∠BAC﹣∠EAC=60°﹣∠EAC,∠DAC=∠DAE﹣∠EAC=60°﹣∠EAC,∴∠BAE=∠DAC,在△ABE 和△ACD 中,=AB AC BAE DAC AE AD =⎧⎪∠∠⎨⎪=⎩,∴△ABE≌△ACD(SAS )∴CD=BE(2)△AMN 是等边三角形.理由如下:∵△ABE≌△ACD,∴∠ABE=∠ACD.∵M、N 分别是BE 、CD 的中点,∴BM=CN∵AB=AC,∠ABE=∠ACD,在△ABM 和△ACN 中,=BM CN ABE ACD AB AC =⎧⎪∠∠⎨⎪=⎩,∴△ABM≌△ACN(SAS ).∴AM=AN,∠MAB=∠NAC.∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN 是等边三角形【题目点拨】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.21、(1)见解析;(2)6.2【分析】(1)作出△ABC 各个顶点关于y 轴对称的对应点,顺次连接起来,即可;(2)利用△A 1B 1C 1所在矩形面积减去周围三角形面积进而得出答案.【题目详解】(1)如图所示:△A 1B 1C 1,即为所求;(2)△A 1B 1C 1的面积为:3×2﹣12×1×2﹣12×2×3﹣12×2×3=6.2.【题目点拨】本题主要考查图形的轴对称变换,掌握轴对称变换的定义以及割补法求面积,是解题的关键.22、y=52x-6或y=-52x+1【分析】根据函数自变量的取值范围,分两种情况用待定系数法求函数解析式.【题目详解】解:设所求的解析式为y=kx+b,分两种情况考虑:(1)将x=-2,y=-11代入得:-11=-2k+b,将x=6,y=9代入得:9=6k+b,∴211 69k bk b-+=-⎧⎨+=⎩,解得:k=52,b=-6,则函数的解析式是y=52x-6;(2)将x=6,y=-11代入得:-11=6k+b,将x=-2,y=9代入得:9=-2k+b,∴29 611k bk b-+=⎧⎨+=-⎩,解得:k=-52,b=1,则函数的解析式是y=-52x+1.综上,函数的解析式是y=52x-6或y=-52x+1. 故答案为:y=52x-6或y=-52x+1. 【题目点拨】 本题考查了一次函数的图像与性质,待定系数法求函数解析式,要注意利用一次函数自变量的取值范围,来列出方程组,求出未知数,写出解析式.23、(1)△BDC ≌△AEC ,理由见解析;(2)AE//BC ,理由见解析【分析】(1)根据等边三角形的性质可得∠BCA =∠DCE =60°,BC =AC ,DC =EC ,然后根据等式的基本性质可得∠BCD =∠ACE ,再利用SAS 即可证出结论;(2)根据全等三角形的性质和等边三角形的性质可得∠DBC =∠EAC =60°,∠ACB =60°,然后利用平行线的判定即可得出结论.【题目详解】(1)△BDC ≌△AEC理由如下:∵△ABC 和△EDC 都是等边三角形,∴∠BCA =∠DCE =60°,BC =AC ,DC =EC .∴∠BCA -∠ACD=∠DCE -∠ACD∴∠BCD =∠ACE在△BDC 和△AEC 中BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩∴△BDC ≌△AEC(2)AE//BC理由如下:∵△BDC ≌△AEC ,△ABC 是等边三角形∴∠DBC =∠EAC =60°,∠ACB =60°∴∠EAC =∠ACB故AE//BC【题目点拨】此题考查的是全等三角形判定及性质、等边三角形的性质和平行线的判定,掌握全等三角形判定及性质、等边三角形的性质和平行线的判定是解决此题的关键.24、12x -+,6- 【分析】利用除法法则变形,约分后计算得到最简结果,把x 的值代入计算即可求出值. 【题目详解】2121212x x x x x x +÷---++ 21(1)122x x x x x -=⋅--++ 122x x x x -=-++ 12x =-+,当2x =时,原式==. 【题目点拨】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25、(1)证明见解析;(2)BH+EH 的最小值为1.【解题分析】(1)只要证明△DEB 是等边三角形,再根据SAS 即可证明;(2)如图,作点E 关于直线AC 点E',连接BE'交AC 于点H .则点H 即为符合条件的点.【题目详解】(1)在Rt △ABC 中,∠BAC=10°,E 为AB 边的中点, ∴BC=EA ,∠ABC=60°, ∵△DEB 为等边三角形,∴DB=DE ,∠DEB=∠DBE=60°, ∴∠DEA=120°,∠DBC=120°, ∴∠DEA=∠DBC ,∴△ADE ≌△CDB ;(2)如图,作点E 关于直线AC 点E',连接BE'交AC 于点H ,则点H 即为符合条件的点,由作图可知:EH=HE',AE'=AE ,∠E'AC=∠BAC=10°, ∴∠EAE'=60°, ∴△EAE'为等边三角形,∴E E'=EA=12AB , ∴∠AE'B=90°, 在Rt △ABC 中,∠BAC=10°,BC=3, ∴AB=23,A E'=AE=3,∴B E'=()()2222'233AB AE -=- =1,∴BH+EH 的最小值为1.【题目点拨】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,轴对称中的最短路径问题、勾股定理等,熟练掌握相关的性质与判定定理、利用轴对称添加辅助线确定最短路径问题是解题的关键.26、 (1)10°,20°;(2)(Ⅰ)2402BAD a ∠=︒-;(II)①证明见解析;②a =40°,△BMN 等腰三角形.【分析】(1)由等边三角形的性质可得AD=AC ,∠CAD=60°,利用等量代换可得AD=AB ,根据等腰三角形的性质即可求出∠ABD 的度数,由等腰三角形“三线合一”的性质可得∠ADE=30°,进而可求出∠BDF 的度数;(2)(Ⅰ)根据等腰三角形的性质可用a 表示出∠BAC ,由∠CAD=60°即可表示出∠BAD ;(Ⅱ)①如图,连接AN ,由角平分线的定义可得∠CAN=12a ,根据等腰三角形“三线合一”的性质可得DN 是AC 的垂直平分线,可得AN=CN ,∠CAN=∠CAN ,即可求出∠DAN=12a +60°,由(Ⅰ)可知∠BAD=240°-2a ,由△ABN ≌△AND 可得∠BAN=∠DAN ,可得∠BAN=120°+a ,列方程即可求出a 的值,利用外角性质可求出∠ANM 的度数,根据三角形内角和可求出∠AMN 的度数,利用外角性质可求出∠MNB 的度数,可得∠BMN=∠ABN ,可证明△BMN 是等腰三角形.【题目详解】(1)∵△ACD 是等边三角形,∴AD=AC=CD ,∠CAD=∠ADC=60°,∵AB=AC ,∴AD=AB ,∵∠BAC=100°,∴∠BAD=∠BAC+∠CAD=160°,∴∠ABD=∠ADB=12(180°-∠BAD )=10°, ∵点E 为AC 中点,∴ ∠ADE=∠CDE=30°,∴∠BDF=∠ADE-∠ADB=20°,故答案为:10°,20°(2)(Ⅰ)∵AB=AC ,∠ACB=a ,∴∠ABC=∠ACB=a ,∴1802BAC a ∠=-,∵△ACD 为等边三角形,∴∠CAD=60°,∴∠BAD=∠BAC+∠CAD=240°+a . (II)①如图,连接AN ,∵△ACD 为等边三角形,∴CA AD AB ==,在△ABN 和△AND 中,AD AB DN BN AN AN =⎧⎪=⎨⎪=⎩,∴△ABN ≌△AND ,∴∠ABN=∠ADN ,∵点E AC 的中点,∴DF ⊥AC ,ED 平分∠ADC ,∴∠ADE=30°,∴∠ABN=∠ADE=30°.②∵CM 平分∠ACB ,∠ACB=a ,∴∠CAM=∠BCM=12a,∵点E是AC的中点,△ACD是等边三角形,∴DN是AC的垂直平分线,∴AN=CN,∴∠CAN=∠ACM=12a,∴∠DAN=∠CAD+∠CAN=60°+12a,∵△ABN≌△AND,∴∠BAN=∠DAN=60°+12a,∴∠BAN=2∠BAN=120°+a,由(Ⅰ)得:∠BAD=240°-2a,∴120°+a=240°-2a,解得:a=40°,∴∠BAN=60°+12a=80°,∠ANM=∠NAC+∠NCA=a=40°,∴∠AMC=180°-∠BAN-∠ANM=60°,∵∠ABN=30°,∴∠MNB=∠AMC-∠ABN=30°,∴∠ABN=∠MNB,∴MB=MN,∴BMN△是等腰三角形.【题目点拨】本题考查等边三角形的性质、全等三角形的判定与性质及等腰三角形的判定与性质,等边三角形的三条边都相等,每个内角都是60°;等腰三角形的两个底角相等,顶角的角平分线、底边的高、底边的中线“三线合一”;熟练掌握相关性质及判定定理是解题关键.。
2023~2024学年度第一学期期末试卷八年级语文注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共8页,满分150分,考试时间150分钟。
2.答题前,请务必核对答题纸上的条形码姓名、考试号。
3.须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答无效。
如需改动,请用橡皮擦干净后,再书写其它答案。
4.请直接将答案书写在答题纸上。
一(30分)江南霜雪晚,初冬正佳时。
小文随家人赴一场研学之旅——寻根人文印记,溯源传统文化。
第一站:【江苏省江海博物馆】江海博物馆是中国唯一以江海文化为主题的博物馆,是海门打造江海特色花园城市最为厚重和最有看点的文化地标, A 。
走进博物馆,我们可以听到海门先民战江斗海的动人故事,可以看到今日海门人追江赶海的jué jiàng身影。
这里真实jì zǎi了江海文明的前世今生,体现了浓郁的江海文化韵味,是传承和hóng yáng江海文化最主要的公益性文化阵地。
1.根据拼音在横线上用行楷写出相应的汉字。
(3分)__________ __________ __________2.选择条理最为清晰、语言最为连贯的句子填写在A处:__________(只填序号)(2分)A.是体现江海魅力文化、保护江海城市记忆、延续江海历史文脉的主要载体。
B.是保护江海城市记忆、延续江海历史文脉、体现江海魅力文化的主要载体。
C.是延续江海历史文脉、体现江海魅力文化、保护江海城市记忆的主要载体。
3.博物馆展出了清朝胡义赞的《归棹洛阳图轴》,图上附录了唐代韦应物的一首诗。
因年代久远,有一字模糊不清。
小文根据律诗的相关知识,推断该字是:()(2分)凄凄去亲爱,泛泛入烟雾。
归棹洛阳人,残钟广陵()。
今夕为此别,何处还相遇。
世事波上舟,沿洄安得住。
A.楼 B.月 C.树 D.舟第二站:【青龙港1806】拥有200多年历史的青龙港,是长江下游江海地区联结上海的航运枢纽,史称“长江第一渡”。
浙教版八年级第一学期期末数学试卷及答案一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)下列四个图标中,属于轴对称图形的是()A.B.C.D.2.(4分)下列长度的三条线段能组成三角形的是()A.3cm、3cm、6cm B.3cm、5cm、7cmC.2cm、4cm、6cm D.2cm、9cm、6cm3.(4分)要使分式有意义,则x的取值应满足()A.x=﹣1B.x=1C.x≠1D.x≠﹣14.(4分)下列各式从左到右的变形中,属于因式分解的是()A.(x+3)(x﹣3)=x2﹣9B.2ab﹣2ac=2a(b﹣c)C.(m+1)2=m2+2m+1D.n2+2n+1=n(n+2)+15.(4分)下列运算正确的是()A.(﹣a)2=﹣a2B.2a2﹣a2=﹣a2C.a﹣1•a3=a2D.(a﹣1)2=a26.(4分)一个多边形的每一个外角都为72°,这个多边形是()A.五边形B.六边形C.八边形D.十边形7.(4分)如图,OP平分∠AOB,E为OA上一点,OE=4,P到OB的距离是2,则△OPE的面积为()A.2B.3C.4D.88.(4分)如图,点C是线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为()A.6B.8C.10D.129.(4分)如图,玩具车从A点出发,向西走了a米,到达B点,然后顺时针旋转120°,前进b米,到达C点,再顺时针旋转120°,前进c米,到达D点,D点刚好在A点的正北方向,则a、b、c之间的关系为()A.a+c=b B.2a=b+c C.4c=a+b D.a=b﹣c10.(4分)如图,直角三角形ABC中,AC=BC,AD是△ABC的角平分线,动点M、N同时从A点出发,以相同的速度分别沿A→C→B和A一B→C方向运动,并在边BC上的点E相遇,连接AE,①AE平分△ABC的周长,②AE是△ABD的角平分线,③AE是△ABD的中线.以上结论正确的有()A.①②B.①③C.②③D.①②③二、填空题(本题有6小题,每小题5分,共30分).11.(5分)计算:(a+2b)(a﹣2b)=.12.(5分)若把分式的x、y同时变为原来的10倍,则分式的值(填变大,变小,不变)13.(5分)如图所示的五边形花环是用五个全等的等腰三角形拼成的,则∠BAC的度数为.14.(5分)等腰三角形的一个角比另一个角大30°,则顶角为度.15.(5分)已知=320,a2﹣b2=322,则a﹣b=.16.(5分)如图,△ABC中,AB=AC,BC=,AB的垂直平分线交BC于点D.且BD<CD,过点B作射线AD的垂线,垂足为E,则CD﹣DE=.三、解答题(第17~20题,每题8分,第21题10分,第22~23题,每题12分,第24题14分,共80分)17.(8分)计算:(1)用简便方法计算:1012﹣992;(2)因式分解:2a2+12ab+18b2.18.(8分)先化简,后求值:,其中x=,y=.19.(8分)已知:如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE.BC=EF.(1)求证:△ABC≌△DEF;(2)若点E为BC中点,EC=6,求线段BF的长度.20.(8分)如图,D是Rt△ABC斜边BC上的一点,连接AD,将△ACD沿AD翻折得△AFD.恰有AF⊥BC.(1)若∠C=35°,∠BAF=;(2)试判断△ABD的形状,并说明理由.21.(10分)如图,图中的小方格都是边长为1的正方形.(1)画出△ABC关于y轴的对称图形△A1B1C1,并直接写出△A1B1C1的各顶点坐标:A1,B1,C1;(2)P为x轴上一动点,连接PB,PC,当PB+PC的值最小时,请在图中作出点P,(保留作图痕迹)并直接写出点P的坐标为.22.(12分)杭绍台高铁开通后,相比原有的“杭甬﹣﹣甬台”铁路,全程平均速度提高了50%,温岭站到杭州东站的里程缩短了50km.行车时间减少了50分钟.测得杭绍台高铁从温岭站到杭州东站全程共skm.(1)求杭绍台铁路的平均速度(用含s的式子表示);(2)因设计原因,列车在杭甬线的平均速度与在杭绍台的平均速度相同,杭甬线与甬台线的线路里程之比为4:5,求列车在甬台线的平均速度.23.(12分)学习了平方差、完全平方公式后,小聪同学对学习和运用数学公式非常感兴趣,他通过上网查阅,发现还有很多数学公式,如立方和公式:(a+b)(a2﹣ab+b2)=a3+b3,他发现,运用立方和公式可以解决很多数学问题,请你也来试试利用立方和公式解决以下问题:(1)【公式理解】公式中的字母可以代表任何数、字母或式子.①化简:(a﹣b)(a2+ab+b2)=;②计算:(993+1)÷(992﹣99+1)=;(2)【公式运用】已知:+x=5,求的值;(3)【公式应用】如图,将两块棱长分别为a、b的实心正方体橡皮泥揉合在一起,重新捏成一个高为的实心长方体,问这个长方体有无可能是正方体,若可能,a与b应满足什么关系?若不可能,说明理由.24.(14分)如图1,已知AB=AC,D是AC上一个动点,E、C位于BD两侧,BD=BE,∠BAC=∠DBE.(1)当∠BAC=60°时,如图2,连接AE,求证:AE=CD;(2)当∠BAC=45°时,①若DE⊥AB,则∠CDB=度;②如图4.连接AE.当∠CDB=度时,AE最小;(3)当∠BAC=90°时,如图5,连接CE交AB于点M,求的值.参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)下列四个图标中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项B、C、D均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(4分)下列长度的三条线段能组成三角形的是()A.3cm、3cm、6cm B.3cm、5cm、7cmC.2cm、4cm、6cm D.2cm、9cm、6cm【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A、3+3=6,不能组成三角形,不符合题意;B、3+5>7,能组成三角形,符合题意;C、2+4=6,不能组成三角形,不符合题意;D、2+6<9,不能组成三角形,不符合题意.故选:B.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和>最大的数就可以.3.(4分)要使分式有意义,则x的取值应满足()A.x=﹣1B.x=1C.x≠1D.x≠﹣1【分析】根据分母等于0,分式无意义;分母不等于0,分式有意义对各选项举反例判断即可.【解答】解:依题意得:x﹣1≠0.解得x≠1.故选:C.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.(4分)下列各式从左到右的变形中,属于因式分解的是()A.(x+3)(x﹣3)=x2﹣9B.2ab﹣2ac=2a(b﹣c)C.(m+1)2=m2+2m+1D.n2+2n+1=n(n+2)+1【分析】根据因式分解的定义判断求解.【解答】解:A.是整式乘法,故此选项不符合题意;B.符合因式分解定义,故此选项符合题意;C.是整式乘法,故此选项不符合题意;D.没有把多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意.故选:B.【点评】本题主要考查因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解.5.(4分)下列运算正确的是()A.(﹣a)2=﹣a2B.2a2﹣a2=﹣a2C.a﹣1•a3=a2D.(a﹣1)2=a2【分析】根据积的乘方判断A选项;根据合并同类项判断B选项;根据同底数幂的乘法判断C选项;根据完全平方公式判断D选项.【解答】解:A选项,原式=a2,故该选项不符合题意;B选项,原式=a2,故该选项不符合题意;C选项,原式=a2,故该选项符合题意;D选项,原式=a2﹣2a+1,故该选项不符合题意;故选:C.【点评】本题考查了积的乘方,合并同类项,同底数幂的乘法,完全平方公式,掌握(a±b)2=a2±2ab+b2是解题的关键.6.(4分)一个多边形的每一个外角都为72°,这个多边形是()A.五边形B.六边形C.八边形D.十边形【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于72°,∴多边形的边数为360°÷72°=5.故这个多边形的边数是5.故选:A.【点评】本题主要考查了多边形的外角和定理:多边形的外角和是360°.7.(4分)如图,OP平分∠AOB,E为OA上一点,OE=4,P到OB的距离是2,则△OPE的面积为()A.2B.3C.4D.8【分析】过P作PD⊥OB于D,作PC⊥OA于C,根据角平分线上的点到角的两边的距离相等可得PC=PD=2,根据三角形的面积公式计算可求解.【解答】解:如图,过P作PD⊥OB于D,作PC⊥OA于C,∵OP是∠AOB的平分线,P到OB的距离是2,∴PC=PD=2,∵OE=4,∴S△OPE=OE•PC=.故选:C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.8.(4分)如图,点C是线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为()A.6B.8C.10D.12【分析】设BC=a,CG=b,建立关于a,b的关系,最后求面积.【解答】解:设BC=a,CG=b,则S1=a2,S2=b2,a+b=BG=8.∴a2+b2=40.∵(a+b)2=a2+b2+2ab=64,∴2ab=64﹣40=24,∴ab=12,∴阴影部分的面积等于ab=×12=6.故选:A.【点评】本题考查完全平方公式的几何背景,通过面积关系构造使用完全平方公式的条件是求解本题的关键.9.(4分)如图,玩具车从A点出发,向西走了a米,到达B点,然后顺时针旋转120°,前进b米,到达C点,再顺时针旋转120°,前进c米,到达D点,D点刚好在A点的正北方向,则a、b、c之间的关系为()A.a+c=b B.2a=b+c C.4c=a+b D.a=b﹣c【分析】连接AD,延长CD,BA交于E点,则AD⊥AB,通过证明△BCE为等边三角形可得BE=CE=AC=b,∠E=60°,即可求得∠ADE=30°,利用含30°角的直角三角形的性质可得DE=2AE,进而可得2(b﹣a)+c =b,化简即可求解.【解答】解:连接AD,延长CD,BA交于E点,则AD⊥AB,由题意得∠ABC=∠BCD=60°,∴△BCE为等边三角形,∴BE=CE=AC=b,∠E=60°,∵AD⊥AB,∴∠EAD=90°,∴∠ADE=∠EAD﹣∠E=30°,∴DE=2AE,∵CD=c,AB=a,∴2(b﹣a)+c=b,即2a=b+c,故选:B.【点评】本题主要考查等边三角形的判定与性质,含30°角的直角三角形的性质,构造等边三角形是解题的关键.10.(4分)如图,直角三角形ABC中,AC=BC,AD是△ABC的角平分线,动点M、N同时从A点出发,以相同的速度分别沿A→C→B和A一B→C方向运动,并在边BC上的点E相遇,连接AE,①AE平分△ABC的周长,②AE是△ABD的角平分线,③AE是△ABD的中线.以上结论正确的有()A.①②B.①③C.②③D.①②③【分析】过点D作DF⊥AB于点F,根据题意可得AC+CE=AB+BE,进而可以判断①正确;根据AD是△ABC 的角平分线,DF⊥AB,DC⊥AC,可得DF=DC,然后证明Rt△ADF≌Rt△ADC,可得AF=AC,然后根据线段的和差可得BE=DE,可得AE是△ABD的中线,进而判断③正确,即可解决问题.【解答】解:如图,过点D作DF⊥AB于点F,∵动点M、N同时从A点出发,以相同的速度分别沿A→C→B和A一B→C方向运动,并在边BC上的点E相遇,∴AC+CE=AB+BE,∴AE平分△ABC的周长,故①正确;∵AD是△ABC的角平分线,DF⊥AB,DC⊥AC,∴DF=DC,在Rt△ADF和Rt△ADC中,,∴Rt△ADF≌Rt△ADC(HL),∴AF=AC,∵∠B=45°,∠DFB=90°,∴△DFB是等腰直角三角形,∴DF=BF,∴AB=AF+FB=AC+CD,∵AC+CE=AB+BE,∴AB+BE=AC+CD+DE,∴BE=DE,∴AE是△ABD的中线,故③正确,综上所述:结论正确的有①③.故选:B.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,解决本题的关键是得到△ACD≌△AFD.二、填空题(本题有6小题,每小题5分,共30分).11.(5分)计算:(a+2b)(a﹣2b)=a2﹣4b2.【分析】找出相同项和相反项,再用平方差公式计算即可.【解答】解:(a+2b)(a﹣2b)=a2﹣4b2.故答案为:a2﹣4b2.【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.12.(5分)若把分式的x、y同时变为原来的10倍,则分式的值不变(填变大,变小,不变)【分析】根据分式的基本性质即可求出答案.【解答】解:分式的x、y同时变为原来的10倍,可得=,与原分式相同,故答案为:不变.【点评】本题考查分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.13.(5分)如图所示的五边形花环是用五个全等的等腰三角形拼成的,则∠BAC的度数为36°.【分析】利用全等三角形的性质和正五边形的定义可判断五边形花环为正五边形,根据多边形的内角和定理可计算出∠ABD=108°,然后根据三角形内角和求解即可.【解答】解:如图,∵五边形花环是用五个全等的等腰三角形拼成的,∴五边形花环为正五边形,∴∠ABD==108°,∵∠ABC+∠CBD=∠ABC+∠BAC=108°,∴∠BCA=180°﹣108°=72°,∴∠BAC=180°﹣2∠BCA=36°.故答案为:36°.【点评】本题考查了多边形内角与外角:多边形内角和定理:(n﹣2)•180°(n≥3且n为整数);多边形的外角和等于360°,熟记有关知识是解题的基础.14.(5分)等腰三角形的一个角比另一个角大30°,则顶角为80或40度.【分析】根据已知条件,先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.【解答】解:①较大的角为顶角,设这个角为x,则:x+2(x﹣30)=180,x=80;②较大的角为底角,设顶角为y°,则:y+2(y+30)=180,y=40,答:等腰三角形的顶角为80°或40°.故答案为:80或40.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.(5分)已知=320,a2﹣b2=322,则a﹣b=±3.【分析】利用平方差公式和比例性质把两已知等式进行变形,再依据等量关系可得关于a﹣b的方程,求解即可.【解答】解:∵a2﹣b2=322,∴(a+b)(a﹣b)=322,∴a+b=,∵=320,∴a+b=320(a﹣b),∴=320(a﹣b),∴(a﹣b)2=32,∴a﹣b=±3,故答案为:±3.【点评】此题考查的是平方差公式及比例的性质,掌握其公式结构是解决此题的关键.16.(5分)如图,△ABC中,AB=AC,BC=,AB的垂直平分线交BC于点D.且BD<CD,过点B作射线AD的垂线,垂足为E,则CD﹣DE=.【分析】作AF⊥BC于F,证明△BDE≌△ADF,根据全等三角形的性质得DF=DE,可得CD﹣DE=CF,由等腰三角形的性质即可求解.【解答】解:作AF⊥BC于F,∵AB的垂直平分线交BC于点D.∴AD=BD,∵AF⊥BC,BE⊥DE,∴∠E=∠AFD=90°,在△BDE和△ADF中,,∴△BDE≌△ADF(AAS),∴DF=DE,∴CD﹣DE=CD﹣DF=CF,∵AB=AC,AF⊥BC,BC=,∴CF=BC=.故答案为:.【点评】此题考查了线段垂直平分线的性质,等腰三角形的性质,全等三角形的判断与性质,熟练掌握等腰三角形的性质是解题的关键.三、解答题(第17~20题,每题8分,第21题10分,第22~23题,每题12分,第24题14分,共80分)17.(8分)计算:(1)用简便方法计算:1012﹣992;(2)因式分解:2a2+12ab+18b2.【分析】(1)利用平方差公式分解进行计算即可;(2)先提公因式,然后利用完全平方公式继续分解即可.【解答】解:(1)1012﹣992=(101+99)×(101﹣99)=200×2=400;(2)2a2+12ab+18b2.=2(a2+6ab+9b2)=2(a+3b)2.【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.18.(8分)先化简,后求值:,其中x=,y=.【分析】先把分式的分子和分母分解因式,再约分,最后代入求出答案即可.【解答】解:==,当x=,y=时,原式====0.【点评】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.19.(8分)已知:如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE.BC=EF.(1)求证:△ABC≌△DEF;(2)若点E为BC中点,EC=6,求线段BF的长度.【分析】(1)由AB∥DE得∠B=∠DEF,已知条件中还有AB=DE,BC=EF,可以根据“SAS”判定△ABC≌△DEF;(2)若点E为BC中点,则EB=EC=6,所以BC=EF=12,由BF=EB+EF可以求出BF的长.【解答】(1)证明:如图,∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).(2)解:∵点E为BC中点,EC=6,∴EB=EC=6,∴BC=EB+EC=6+6=12,∴BC=EF=12,∴BF=EB+EF=6+12=18,∴线段BF的长度为18.【点评】此题考查全等三角形的判定与性质,找到并根据已知条件证明△ABC和△DEF全等所缺少的条件是解题的关键.20.(8分)如图,D是Rt△ABC斜边BC上的一点,连接AD,将△ACD沿AD翻折得△AFD.恰有AF⊥BC.(1)若∠C=35°,∠BAF=35°;(2)试判断△ABD的形状,并说明理由.【分析】(1)由直角三角形的性质可得出答案;(2)由折叠的性质得出∠CAD=∠F AD,证出∠ADB=∠BAD,由等腰三角形的判定可得出结论.【解答】解:(1)∵∠BAC=90°,∴∠CAF+∠BAF=90°,∵AF⊥BC,∴∠C+∠CAF=90°,∴∠BAF=∠C=35°;故答案为:35°;(2)△ABD是等腰三角形.理由:由(1)可知∠C=∠BAF,∵将△ACD沿AD翻折得△AFD.∴∠CAD=∠F AD,∵∠ADB=∠C+∠CAD,∠DAB=∠DAF+∠BAF,∴∠ADB=∠BAD,∴AB=BD,∴△ABD是等腰三角形.【点评】本题考查了折叠的性质,等腰三角形的判定,直角三角形的性质,三角形外角的性质,熟练掌握等腰三角形的判定是解题的关键.21.(10分)如图,图中的小方格都是边长为1的正方形.(1)画出△ABC关于y轴的对称图形△A1B1C1,并直接写出△A1B1C1的各顶点坐标:A1(2,1),B1(4,﹣2),C1(1,﹣1);(2)P为x轴上一动点,连接PB,PC,当PB+PC的值最小时,请在图中作出点P,(保留作图痕迹)并直接写出点P的坐标为(﹣2,0).【分析】(1)根据轴对称的性质即可画出△ABC关于y轴的对称图形△A1B1C1,并直接写出△A1B1C1的各顶点坐标;(2)在坐标系内找到点B关于x轴的对称点B′,连接B′C交x轴于点P即可.【解答】解:(1)如图,△A1B1C1即为所求;A1(2,1),B1(4,﹣2),C1(1,﹣1);故答案为:(2,1),(4,﹣2),(1,﹣1);(2)如图,点P即为所求;点P的坐标(﹣2,0).故答案为:(﹣2,0).【点评】本题考查了作图﹣轴对称变换,勾股定理,轴对称﹣最短路线问题,解决本题的关键是掌握轴对称的性质.22.(12分)杭绍台高铁开通后,相比原有的“杭甬﹣﹣甬台”铁路,全程平均速度提高了50%,温岭站到杭州东站的里程缩短了50km.行车时间减少了50分钟.测得杭绍台高铁从温岭站到杭州东站全程共skm.(1)求杭绍台铁路的平均速度(用含s的式子表示);(2)因设计原因,列车在杭甬线的平均速度与在杭绍台的平均速度相同,杭甬线与甬台线的线路里程之比为4:5,求列车在甬台线的平均速度.【分析】(1)设杭绍台铁路的平均速度为v,则“杭甬﹣﹣甬台”铁路的速度为,根据行驶时间减少50分钟,列方程求解即可;(2)设杭甬线与甬台线的线路分别为4x和5x,列车在杭甬线的平均速度与在杭绍台的平均速度都为v,列车在甬台线的平均速度为v',根据题意列方程求出v'和v的关系,进而求出v'即可.【解答】解:(1)设杭绍台铁路的平均速度为v,则“杭甬﹣﹣甬台”铁路的速度为,50分钟=时,根据题意列方程得﹣=,解得v=90+s,∴杭绍台铁路的平均速度为(90+s)千米/时;(2)设杭甬线与甬台线的线路分别为4x和5x,列车在杭甬线的平均速度与在杭绍台的平均速度都为v,列车在甬台线的平均速度为v',根据题意列方程得=+,解得v'=,由(1)知v'=×(90+s)=+s,∴列车在甬台线的平均速度为(+s)千米/时.【点评】本题主要考查分式方程的应用,熟练根据题中等量关系列出方程求解是解题的关键.23.(12分)学习了平方差、完全平方公式后,小聪同学对学习和运用数学公式非常感兴趣,他通过上网查阅,发现还有很多数学公式,如立方和公式:(a+b)(a2﹣ab+b2)=a3+b3,他发现,运用立方和公式可以解决很多数学问题,请你也来试试利用立方和公式解决以下问题:(1)【公式理解】公式中的字母可以代表任何数、字母或式子.①化简:(a﹣b)(a2+ab+b2)=a3﹣b3;②计算:(993+1)÷(992﹣99+1)=100;(2)【公式运用】已知:+x=5,求的值;(3)【公式应用】如图,将两块棱长分别为a、b的实心正方体橡皮泥揉合在一起,重新捏成一个高为的实心长方体,问这个长方体有无可能是正方体,若可能,a与b应满足什么关系?若不可能,说明理由.【分析】(1)根据立方差公式计算.(2)根据完全平方公式计算.(3)根据体积找到a,b关系.【解答】解:(1)①原式=a3+(﹣b)3=a3﹣b3.②原式=(99+1)(992﹣99×1+12)÷(992﹣99+1)=100.故答案为:a3﹣b3,100.(2)∵x+=5,∴原式=(+x)÷=×=×==x+﹣1=5﹣1=4.(3)假设长方体可能为正方体,由题意:a3+b3=∴(a+b)(a2﹣ab+b2)=.∴8a2﹣8ab+8b2=a2+2ab+b2.∴7a2﹣10ab+7b2=0.∴7×﹣10×+7=0.∵≥0∴7×﹣7×+7=7×+>0,∴7a2﹣10ab+7b2=0不成立.∴该长方体不可能是边长为的正方体.【点评】本题考查立方差和立方和公式的应用,构造使用公式的条件是求解本题的关键.24.(14分)如图1,已知AB=AC,D是AC上一个动点,E、C位于BD两侧,BD=BE,∠BAC=∠DBE.(1)当∠BAC=60°时,如图2,连接AE,求证:AE=CD;(2)当∠BAC=45°时,①若DE⊥AB,则∠CDB=67.5度;②如图4.连接AE.当∠CDB=90度时,AE最小;(3)当∠BAC=90°时,如图5,连接CE交AB于点M,求的值.【分析】(1)连接AE,可知△ABC,△BDE是等边三角形,再利用SAS证明△BCD≌△BAE,得AE=CD;(2)①利用等腰三角形两底角相等知∠BDE=67.5°,再根据平角的定义可得答案;②作BH⊥AC于H,EG⊥AB于G,利用AAS证明△BDH≌△BEG,得∠BHD=∠BGE=90°,可知点E在EG 上运动,当点E与G重合时,AE最小,此时∠BDC=∠BHC=90°;(3)作EQ⊥AB于Q,利用AAS证明△ADB≌△QBE,得AD=BQ,则CD=AQ,再利用AAS证明△AMC≌△QME,得AM=MQ,从而解决问题.【解答】(1)证明:连接AE,∵∠BAC=∠DBE=60°,BD=BE,AB=AC,∴△ABC,△BDE是等边三角形,∴∠ABC=∠DBE,∴∠CBD=∠ABE,在△BCD和△BAE中,,∴△BCD≌△BAE(SAS),∴AE=CD;(2)解:①当∠BAC=∠DBE=45°时,∵BD=BE,∴∠BDE=(180°﹣45°)÷2=67.5°,∵DE⊥AB,∴∠ADE=∠A=45°,∴∠CDB=67.5°,故答案为:67.5;②作BH⊥AC于H,EG⊥AB于G,∵∠A=45°,∴∠ABH=∠DBE=45°,∴∠DBH=∠EBG,∵∠BHD=∠BGE,BD=BE,∴△BDH≌△BEG(AAS),∴∠BHD=∠BGE=90°,∴点E在EG上运动,当点E与G重合时,AE最小,此时∠BDC=∠BHC=90°,故答案为:90;(3)解:作EQ⊥AB于Q,∵∠QEB+∠QBE=90°,∠QBE+∠ABD=90°,∴∠BEQ=∠ABD,∵BD=BE,∠DAC=∠BQE,∴△ADB≌△QBE(AAS),∴AD=BQ,∴CD=AQ,∵∠CAB=∠AQE,∠AMC=∠EMQ,∴△AMC≌△QME(AAS),∴AM=MQ,∴.【点评】本题是三角形综合题,主要考查了等边三角形的判定与性质,等腰三角形的性质,全等三角形的判定与性质等知识,作辅助线构造全等三角形是解题的关键.。
人教版八年级第一学期期末数学试卷及答案一、选择题(本大题共16个小题;1-10小题,每题3分;11-16小题,每题2分;共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,填在题后的括号内)1.若分式值为零,则()A.x=0B.x=1C.x≠0D.x≠12.下列图形具有稳定性的是()A.B.C.D.3.冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.4.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解5.2020年突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,取得了抗击疫情的巨大成就.科学研究表明,某种新型冠状病毒颗粒的直径约为125纳米,1纳米=1.0×10﹣9米,若用科学记数法表示125纳米,则正确的结果是()A.1.25×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米6.如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为()A.75°B.65°C.40°D.30°7.袁老师在课堂上组织学生用小棍摆三角形,小棍的长度有10cm,15cm,20cm和25cm四种规格,小朦同学已经取了10cm和15cm两根木棍,那么第三根木棍不可能取()A.10cm B.15cm C.20cm D.25cm8.若M=(x﹣3)(x﹣4),N=(x﹣1)(x﹣6),则M与N的大小关系为()A.M>N B.M=NC.M<N D.由x的取值而定9.如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为()A.40°B.50°C.80°D.100°10.若=,则2n﹣3m的值是()A.﹣1B.1C.2D.311.小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB12.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A.2560B.490C.70D.4913.在△ABC中给定下面几组条件:①∠ACB=30°,BC=4cm,AC=5cm②∠ABC=30°,BC=4cm,AC=3cm③∠ABC=90°,BC=4cm,AC=5cm④∠ABC=120°,BC=4cm,AC=5cm若根据每组条件画图,则△ABC不能够唯一确定的是()A.①B.②C.③D.④14.北京大兴国际机场于2019年9月25日正式投入运营.小贝和小京分别从A地和B地出发赶往机场乘坐飞机,出行方式、路径及路程如下表所示:出行方式路径路程地铁A地→大兴机场全程约43公里公交B地→大兴机场全程约54公里由于地面交通拥堵,地铁的平均速度约为公交平均速度的两倍,于是小贝比小京少用了半小时到达机场.若设公交的平均速度为x公里/时,根据题意可列方程()A.B.C.D.15.将边长为2的正五边形ABCDE沿对角线BE折叠,使点A落在正五边形内部的点M处,则下列说法正确的是()A.点E、M、C在同一条直线上B.点E、M、C不在同一条直线上C.无法判断D.以上说法都不对16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,依此类推,若OA1=1,则△A2021B2021A2022的边长为()A.2021B.4042C.22021D.22020二、填空题(本大题共4个小题,17-19小题,每小题3分,20题每空2分,共13分.请将答案写在横线上.)17.如图,图中以BC为边的三角形的个数为.18.5﹣1+50=.19.对于两个非零的实数a,b,定义运算※如下:a※b=.例如:3※4=.若x※y=2,则的值为.20.如图,直线a∥b,点M、N分别为直线a和直线b上的点,连接MN,∠DMN=70°,点P是线段MN上一动点,直线DE始终经过点P,且与直线a、b分别交于点D、E.(1)当△MPD与△NPE全等时,直接写出点P的位置:;(2)当△NPE是等腰三角形时,则∠NPE的度数为.三、解答题(本大题共7个小题,共65分.解答应写出文字说明,说理过程或演算步骤,请将解答过程写在相应位置.)21.(1)因式分解:a2(b+1)﹣4(b+1);(2)计算:(2m2n﹣1)2•3m3n﹣5;(3)先化简,再求值,其中|x|=2.22.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.23.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°,而乙同学说,θ也能取630°,甲、乙的说法对吗?若对,求出边数n;若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,请确定x的值.24.如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).(1)如图1,作出△ABC关于直线m的轴对称图形△A′B′C′;(2)如图2,在直线m上找到一点P,使PA+PB的值最小;(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影;(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.25.已知关于x的分式方程.(1)当a=5时,求方程的解;(2)若该方程去分母后所得整式方程的解不是原分式方程的解,求a的值;(3)如果关于x的分式方程的解为正数,那么a的取值范围是什么?小明说:“解这个关于x的分式方程,得到方程的解为x=a﹣2.因为解是正数,可得a﹣2>0,所以a>2”,小明说的对吗?为什么?(4)关于x的方程有整数解,直接写出整数m的值,m值为.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=°,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH 为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上27.阅读材料小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(2x+1)(3x+2)所得多项式的一次项系数为.(2)计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为.(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所得多项式的一次项系数为0,则a=.(4)若x2﹣3x+1是x4+ax2+bx+2的一个因式,则2a+b的值为.参考答案一、选择题(本大题共16个小题;1-10小题,每题3分;11-16小题,每题2分;共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,填在题后的括号内)1.若分式值为零,则()A.x=0B.x=1C.x≠0D.x≠1【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.解:∵分式值为零,∴x﹣1=0,解得:x=1.故选:B.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.2.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性判断即可.解:具有稳定性的图形是三角形,故选:A.【点评】本题考查的是三角形的性质,掌握三角形具有稳定性是解题的关键.3.冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式)判断即可.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.【点评】此题考查了因式分解.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.5.2020年突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,取得了抗击疫情的巨大成就.科学研究表明,某种新型冠状病毒颗粒的直径约为125纳米,1纳米=1.0×10﹣9米,若用科学记数法表示125纳米,则正确的结果是()A.1.25×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:125纳米=0.000000125米=1.25×10﹣7米.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为()A.75°B.65°C.40°D.30°【分析】直接利用全等三角形的性质得出对应角相等进而求出答案.解:∵△ABC≌△DCB,∠A=75°,∴∠D=∠A=75°,∵∠DBC=40°,∴∠DCB=180°﹣75°﹣40°=65°,故选:B.【点评】此题主要考查了全等三角形的性质,正确得出对应角的度数是解题关键.7.袁老师在课堂上组织学生用小棍摆三角形,小棍的长度有10cm,15cm,20cm和25cm四种规格,小朦同学已经取了10cm和15cm两根木棍,那么第三根木棍不可能取()A.10cm B.15cm C.20cm D.25cm【分析】先设第三根木棒的长为xcm,再根据三角形的三边关系求出x的取值范围,找出不符合条件的x的值即可.解:设第三根木棒的长为xcm,∵已经取了10cm和15cm两根木棍,∴15﹣10<x<15+10,即5<x<25.∴四个选项中只有D不在其范围内,符合题意.故选:D.【点评】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.8.若M=(x﹣3)(x﹣4),N=(x﹣1)(x﹣6),则M与N的大小关系为()A.M>N B.M=NC.M<N D.由x的取值而定【分析】求出M和N的展开式,计算M﹣N的正负性,即可判断M与N的大小关系.解:M=(x﹣3)(x﹣4)=x2﹣7x+12;N=(x﹣1)(x﹣6)=x2﹣7x+6;故选:A.【点评】本题主要考查了多项式乘多项式的运算,难度适中,熟练掌握多项式乘多项式的运算法则是解题的关键.9.如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为()A.40°B.50°C.80°D.100°【分析】根据线段的垂直平分线的性质得到EA=EB,根据等腰三角形的性质得到∠EBA=∠A=40°,根据三角形的外角性质计算即可.解:∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=40°,∴∠BEC=∠EBA+∠A=80°,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.若=,则2n﹣3m的值是()A.﹣1B.1C.2D.3【分析】利用幂的乘方法则和同底数幂的除法法则,先计算,再利用负整数指数幂表示出,根据两者的关系计算得结论.解:∵=33m÷32n=33m﹣2n,=3﹣1,∴3m﹣2n=﹣1.【点评】本题考查了同底数幂的除法,掌握幂的运算法则是解决本题的关键.11.小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB【分析】先利用作法得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法对各选项进行判断.解:由作图得OD=OC=OD′=OC′,CD=C′D′,则根据“SSS”可判断△C′O′D′≌△COD.故选:A.【点评】本题考查了作图﹣基本作图:基本作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了全等三角形的判定.12.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A.2560B.490C.70D.49【分析】利用面积公式得到ab=10,由周长公式得到a+b=7,所以将原式因式分解得出ab(a+b)2.将其代入求值即可.解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,∴ab=10,a+b=7,∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.故选:B.【点评】此题考查了因式分解法的应用,熟记公式结构正确将原式分解因式是解题的关键.13.在△ABC中给定下面几组条件:①∠ACB=30°,BC=4cm,AC=5cm②∠ABC=30°,BC=4cm,AC=3cm③∠ABC=90°,BC=4cm,AC=5cm④∠ABC=120°,BC=4cm,AC=5cm若根据每组条件画图,则△ABC不能够唯一确定的是()A.①B.②C.③D.④【分析】符合全等三角形的判定条件所画出的三角形是唯一的,则可对①③进行判断;根据②的条件可画出锐角三角形或钝角三角形,根据④的条件只能画出唯一的钝角三角形,则可对②④进行判断.解:①若∠ACB=30°,BC=4cm,AC=5cm,则根据“SAS”可判断画出的△ABC是唯一的;②若∠ABC=30°,BC=4cm,AC=3cm,不符合三角形全等的条件,则画出的△ABC可能为锐角三角形,也可能为钝角三角形,三角形不是唯一的;③若∠ABC=90°,BC=4cm,AC=5cm,则根据“HL”可判断画出的△ABC是唯一的;④若∠ABC=120°,BC=4cm,AC=5cm,则画出的△ABC是唯一的;故选:B.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟练掌握全等三角形的判定方法.14.北京大兴国际机场于2019年9月25日正式投入运营.小贝和小京分别从A地和B地出发赶往机场乘坐飞机,出行方式、路径及路程如下表所示:出行方式路径路程地铁A地→大兴机场全程约43公里公交B地→大兴机场全程约54公里由于地面交通拥堵,地铁的平均速度约为公交平均速度的两倍,于是小贝比小京少用了半小时到达机场.若设公交的平均速度为x公里/时,根据题意可列方程()A.B.C.D.【分析】根据地铁及公交速度间的关系,可得出地铁的平均速度为2x公里/时,利用时间=路程÷速度,结合小贝比小京少用了半小时到达机场,即可得出关于x的分式方程,此题得解.解:∵地铁的平均速度约为公交平均速度的两倍,公交的平均速度为x公里/时,∴地铁的平均速度为2x公里/时.根据题意得:+=.故选:B.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.15.将边长为2的正五边形ABCDE沿对角线BE折叠,使点A落在正五边形内部的点M处,则下列说法正确的是()A.点E、M、C在同一条直线上B.点E、M、C不在同一条直线上C.无法判断D.以上说法都不对【分析】利用正五边形的性质得出△BAE≌△EDC即可求出∠AEB=∠DEM=36°,进而即可得出结论.解:连接MC,∵五边形ABCDE是正五边形,∴∠AED=108°=∠CDE且DC=DE,∴∠DEM=36°,在△BAE和△EDC中,,∴△BAE≌△EDC(SAS),∴∠AEB=∠DEM=36°,∴∠BEM=36°,∴∠BEM=∠EBM=36°,∴B,A′和D三点共线,即E、M、C三点在同一条直线上.故选:A.【点评】此题考查了正多边形与圆,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是得出∠BEM=∠EBM=36°.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,依此类推,若OA1=1,则△A2021B2021A2022的边长为()A.2021B.4042C.22021D.22020【分析】根据等边三角形的性质和∠MON=30°,可求得∠OB1A2=90°,可求得OA2=2OA1=2,同理可求得OA n+1=2OA n=4OA n﹣1=…=2n﹣1OA2=2n OA1=2n,再结合含30°角的直角三角形的性质可求得△A n B n A n+1的边长,于是可得出答案.解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠MON=30°,∴∠A1B1O=30°,∴OA1=A1B1可求得OA2=2OA1=2,同理可求得OA n+1=2OA n=4OA n﹣1=…=2n﹣1OA2=2n OA1=2n,在△OB n A n+1中,∠O=30°,∠B n A n+1O=60°,∴∠OB n A n+1=90°,∴B n A n+1=OA n+1=×2n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,∴△A2021B2021A2022的边长为22021﹣1=22020,故选:D.【点评】本题主要考查图形变化类,等边三角形的性质和含30°角的直角三角形的性质,根据条件找到等边三角形的边长和OA1的关系是解题的关键.二、填空题(本大题共4个小题,17-19小题,每小题3分,20题每空2分,共13分.请将答案写在横线上.)17.如图,图中以BC为边的三角形的个数为4.【分析】根据三角形的定义即可得到结论.解:∵以BC为公共边的三角形有△BCD,△BCE,△BCF,△ABC,∴以BC为公共边的三角形的个数是4个.故答案为:4.【点评】此题考查了学生对三角形的认识.注意要审清题意,按题目要求解题.18.5﹣1+50=.【分析】根据负整数指数幂和零指数幂的定义解答.解:原式=+1=.故答案为.【点评】本题考查了负整数指数幂和零指数幂,掌握基本概念是解题的关键.19.对于两个非零的实数a,b,定义运算※如下:a※b=.例如:3※4=.若x※y=2,则的值为.【分析】已知等式利用题中的新定义化简,计算即可求出所求.解:根据题中的新定义化简得:﹣=2,通分化简得:=2,则=,故答案为:【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,直线a∥b,点M、N分别为直线a和直线b上的点,连接MN,∠DMN=70°,点P是线段MN上一动点,直线DE始终经过点P,且与直线a、b分别交于点D、E.(1)当△MPD与△NPE全等时,直接写出点P的位置:MN的中点;(2)当△NPE是等腰三角形时,则∠NPE的度数为40°或70°或55°或35°.【分析】(1)由全等三角形对应边相等得到MP=NP,即点P是MN的中点;(2)需要分类讨论:PN=PE、PE=NE、PN=NE、当D点在M点右侧.解:(1)∵a∥b,∴∠DMN=∠PNE.又∵∠MPD=∠NPE,∴当△MPD与△NPE全等时,即△MPD≌△NPE,∴MP=NP,即点P是MN的中点;故答案为:MN的中点;(2)∵a∥b,∴∠DMN=∠PNE=70°,①若PN=PE时,∴∠DMN=∠PNE=70°,∴∠NPE=180°﹣∠PNE﹣∠PEN=180°﹣70°﹣70°=40°;②若EP=EN时,则∠NPE=∠PNE=70°;③若NP=NE时,则∠NPE=∠NEP=55°;④当D点在M点右侧时,∠NPE=35°;综上所述,∠NPE=40°或70°或55°或35°.故答案为:40°或70°或55°或35°.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,利用分类讨论思想解决问题是解题的关键.三、解答题(本大题共7个小题,共65分.解答应写出文字说明,说理过程或演算步骤,请将解答过程写在相应位置.)21.(1)因式分解:a2(b+1)﹣4(b+1);(2)计算:(2m2n﹣1)2•3m3n﹣5;(3)先化简,再求值,其中|x|=2.【分析】(1)根据因式分解的方法分解即可;(2)根据整式运算的法则计算即可;(3)先化简分式,然后代入字母的值计算即可.解:(1)a2(b+1)﹣4(b+1)=(a2﹣4)(b+1)=(a+2)(a﹣2)(b+1);(2)(2m2n﹣1)2⋅3m3n﹣5=4m4n﹣2⋅3m3n﹣5=12m7n﹣7=;(3)====,∵|x|=2,∴x=±2,∵x﹣2≠0,∴x=﹣2,∴原式=.【点评】本题考查了因式分解,分式的化简求值,整式的化简,熟练掌握运算法则是解题的关键.22.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.【分析】由已知得出AB=ED,由平行线的性质得出∠A=∠E,由AAS证明△ABC≌△EDF,即可得出结论.【解答】证明:∵AD=BE,∴AD﹣BD=BE﹣BD,∴AB=ED,∵AC∥EF,∴∠A=∠E,在△ABC和△EDF中,,∴△ABC≌△EDF(AAS),∴BC=DF.【点评】本题考查了全等三角形的判定与性质、平行线的性质;熟练掌握平行线的性质,证明三角形全等是解题的关键.23.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°,而乙同学说,θ也能取630°,甲、乙的说法对吗?若对,求出边数n;若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,请确定x的值.【分析】(1)根据多边形内角和公式可得n边形的内角和是180°的倍数,依此即可判断,再根据多边形内角和公式即可求出边数n;(2)根据等量关系:若n边形变为(n+x)边形,内角和增加了360°,依此列出方程,解方程即可确定x.解:(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.【点评】考查了多边形内角与外角,此题需要结合多边形的内角和公式来寻求等量关系,构建方程是解题关键解.24.如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).(1)如图1,作出△ABC关于直线m的轴对称图形△A′B′C′;(2)如图2,在直线m上找到一点P,使PA+PB的值最小;(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影;(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)作点B关于直线m的对称点B',连接AB',交直线m于点P,则点P即为所求作的点;(3)如图,取格点O,计算可知S△AOC=S△BOC=S△AOB=2(平方单位).(4)如图,选择格点D、E,证明△ACD≌△BCE.于是,AC=BC.选择格点Q,证明△ACQ≌△BCQ,于是,AQ=BQ.推出CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.解:(1)如图所示,△A′B′C′即为所求作,(2)如图,点P即为所求作,(3)如图,即为所作,(4)如图,选择格点D、E,证明△ACD≌△BCE.于是,AC=BC.选择格点Q,证明△ACQ≌△BCQ,于是,AQ=BQ.∴CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.【点评】本题考查作图,轴对称变换,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题.25.已知关于x的分式方程.(1)当a=5时,求方程的解;(2)若该方程去分母后所得整式方程的解不是原分式方程的解,求a的值;(3)如果关于x的分式方程的解为正数,那么a的取值范围是什么?小明说:“解这个关于x的分式方程,得到方程的解为x=a﹣2.因为解是正数,可得a﹣2>0,所以a>2”,小明说的对吗?为什么?(4)关于x的方程有整数解,直接写出整数m的值,m值为3,4,0.【分析】(1)把a=5代入分式方程中,可得,然后按照解分式方程的步骤进行计算即可解答;(2)根据题意可得x=1,然后把x=1代入整式方程x=a﹣2中可得1=a﹣2,进行计算即可解答;(3)根据题意可得x>0且x≠1,从而可得a﹣2>0且a﹣2≠1,然后进行计算即可解答;(4)根据题意可得m﹣2=±1或m﹣2=±2,从而可得m=3,1,4,0,然后再根据分式方程的分母不能为0可得x≠2,从而可得﹣≠2,进行计算即可解答.解:(1)当a=5时,分式方程为:,5﹣3=x﹣1,解得:x=3,检验:当x=3时,x﹣1≠0,∴x=3是原方程的根;(2),去分母得:a﹣3=x﹣1,解得:x=a﹣2,∵该方程去分母后所得整式方程的解不是原分式方程的解,∴x﹣1=0∴x=1,把x=1代入x=a﹣2中得:1=a﹣2,解得:a=3,∴a的值为3;(3)小明的说法不对,理由:,去分母得:a﹣3=x﹣1,解得:x=a﹣2,∵分式方程的解是正数,∴x>0且x≠1,∴a﹣2>0且a﹣2≠1,解得:a>2且a≠3,∴a的取值范围是:a>2且a≠3;(4),去分母得:mx﹣1﹣1=2(x﹣2),整理得:(m﹣2)x=﹣2,当m≠2时,解得:x=﹣,∵方程有整数解,∴m﹣2=±1或m﹣2=±2,解得:m=3,1,4,0,∵x﹣2≠0,∴x≠2,∴﹣≠2,∴m≠1,∴m=3,4,0,故答案为:3,4,0.【点评】本题考查了解分式方程,分式方程的解,解一元一次不等式,准确熟练地进行计算是解题的关键.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=60°,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH 为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得出结论.解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.【点评】此题是三角形综合题,主要考查了角平分线的定义和角平分线定理,等边三角形的判定,全等三角形的判定和性质,旋转的性质,构造出全等三角形是解本题的关键,(3)判断三角形PHG是等边三角形的个数是解本题难点.27.阅读材料小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(2x+1)(3x+2)所得多项式的一次项系数为7.。
2022-2023学年八年级语文第一学期期末测试卷一、积累与运用(共28分)“根深则叶茂”,我们可要不断充实自己的知识宝库,重视语文基础知识的积累与运用哟!1、下列词语中加点字的读音完全正确的一项是: ( ) (2分)A、汴.京(biàn)挑衅.(xìn)杳.无消息(yǎo)B、虬.枝( qiú)颁.发(bān)恹.恹欲睡(yàn)C、要塞.(sài)摄.取(niē)潜滋暗长.(zhǎng)D、仲裁. ( cái ) 依傍.(páng)触.目伤怀(chù)2、下列词语中书写完全正确的一项是:()(2分)A、由衷青纱帐春寒料俏叱咤风云B、烦燥阻拦索锐不可当巧妙绝伦C、琐屑奥利给亭台轩榭自出心裁D、取缔搏眼球和颜悦色永垂不朽3、在下面语段的横线处补写恰当的句子,使语段语意完整连贯、逻辑严密。
(2分)书法是精神的外化,品位有高下。
好的书法作品,______________________________。
所谓正,反映在书法上是法度正、气韵正、思想正;所谓大,反映在书法上是气象宏阔、书风雄浑。
书法作品中能否生成正大气象,关键在于书法家的思想人格和创作格局。
书法家思想人格正大,才能成就书法的风骨;书法家创作格局正大,才能在严守法度的基础上,于大疏大密、变化统一、平正险绝的节奏中创造大境界,给人积极向上的审美熏陶。
4、下列各项表述不完全正确的一项是:( ) (2分)A、《史记》是我国第一部纪传体通史,对后世的传记文学有深远影响,它记述了从传说中的黄帝到汉武帝共三千余年的史事。
B、《孟子》是记录孟子及其弟子言行的著作,其作者是战国时期思想家、儒家学派代表人物之一的孟子。
C、《藤野先生》是鲁迅的一篇回忆性散文,文章重点叙述了与藤野先生的交往,歌颂了藤野先生的高尚品格,也谈及自己弃医从文的原因,洋溢着爱国之情。
D、《白杨礼赞》是一篇托物言志的散文,写于1941年。
海淀区八年级练习物理2023.1学校_____________ 班级______________ 姓名______________考生须知1.本试卷共8页,共5道大题,34道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题纸上准确填写学校名称、班级名称、姓名。
3.答案一律填涂或书写在答题纸上,在试卷上作答无效。
4.在答题纸上,选择题用2B 铅笔作答,其余题用黑色字迹签字笔作答。
5.考试结束,请将本试卷和答题纸一并交回。
一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。
共30分,每小题2分)1.在国际单位制中,质量的单位是A .米(m )B .千克(kg )C .千克/米3(kg/m 3)D .米/秒(m/s )2.用温度计测量烧杯中液体的温度,图1所示的方法中正确的是3.如图2所示的物态变化实例中,由于熔化形成的是4.如图3所示的现象中,属于光的折射现象的是图1ABCD图2立春时节冰化成的水大雪时节落在地上的雪白露时节草叶上的露珠冬至时节房檐上的冰挂ABCDA水面处“折断”的筷子汽车观后镜中的景物图3桥在水中形成的倒影墙壁上的手影BCD5.“稻花香里说丰年,听取蛙声一片”是宋朝诗人辛弃疾的诗句。
诗人能分辨出是蛙声,依据的是声音的A .音调B .响度C .音色D .频率6.随着经济的发展,我国的国防事业得到了快速发展。
如图4所示为我国“运油20”加油机为战机在空中加油时的情景,下列说法中正确的是A .以地面为参照物,加油机是静止的B .以加油机为参照物,战机是运动的C .以地面为参照物,加油机和战机都是静止的D .以战机为参照物,加油机是静止的7.关于声音的产生和传播,下列说法中正确的是 A .只要物体振动,人耳就一定能听到其发出的声音B .声音只能在空气中传播,不能在固体中传播C .考场附近禁止车辆鸣笛,是从声源处防止噪声的产生D .航天员能在太空与地面交流,说明真空也能传播声音8.航天器外壳需要使用既轻巧又耐高温的材料。
一. 基础(22分)1. 多读多背经典诗文可以提高你的文学品位,请工整、规范地默写古诗文名句。
(8分)⑴山随平野尽,□□□□□。
(李白《渡荆门送别》)(1分)⑵予独爱莲之出淤泥而不染,□□□□□□。
(周敦颐《爱莲说》)(1分)⑶□□□□□□□,松间沙路净无泥,□□□□□□□。
(苏轼《浣溪沙》)(2分)⑷八月湖水平,□□□□□。
□□□□□,波撼岳阳城。
(孟浩然《望洞庭湖赠张丞相》)(2分)⑸陶渊明《归园田居》(其三)一诗中最能表现诗人摒弃世俗、皈返自然的意愿的两句是:□□□□□,□□□□□。
(2分)2. 根据拼音写出相应的词语。
(4分)⑴日落的景象和日出同样壮观、qǐlì( ),而且神秘、迷人。
⑵到徐州见着父亲,看见满院lánɡjí()的东西,又想起祖母。
⑶北雁南飞,活跃在田间草际的昆虫也都xiāo shēnɡnìj ì()。
⑷设计者和匠师们yīn dìzhìyí(),自出心裁,修建成功的园林当然各个不同。
3.下列句中加点词语使用不恰当的一项是()。
(3分)A. 终于要砌新台阶了,父亲明明该高兴,却露出些尴尬..的笑。
B. 在自然看来,人类上下翻飞的这片巨大空间,不过是咫尺..之间而已。
C. 现在的电信诈骗案层出不穷,行骗者手段之隐蔽、蒙骗形式之多样,简直令人叹为观止....。
D. 学习知识不仅需要刻苦钻研的精神,更需要一丝不苟....的态度。
4. 下列对病句的修改不正确的一项是()。
(3分)A. 我这次考不好的原因是因为平时没有扎扎实实学好基础知识。
(删除“因为”)B. 这次受检的十余种教辅资料合格率不足10%左右。
(“不足”和“左右”删除其中一个)C. 同学们要尽量选择无异味的橡皮擦、无刺激气味的涂改液和学习用品。
(把“学习用品”改成“文具”)D. 既然你能够认真地读完课程标准推荐阅读的名著,那么,一生将受益无穷。
F
E
D
C B
A
和平区2009—2010学年度第一学期八年级数学期末质量调查试卷 二、解答题(12分,解答题应写出证明过程或演算步骤).
如图,△ABC 是等边三角形,D (与点A 、C 不重合)为AC 边上的一动点, 延长AB 到E ,使BE=CD ,连接DE 交BC 于F . (1)求证:DF=EF ;
(2)若△ABC 的边长为a ,BE 的长为b ,且a 和b 满足2231
1534222
a b a b +=+-,
求BF 的长;
(3)若△ABC 的边长为5,设CD=x ,BF=y ,求y 与x 的函数关系式,并写出自变量x 的
取值范围.
和平区2011—2012学年度第一学期八年级数学期末质量调查试卷
26.
如
图
,
△
ABC
中
,
90,
A
C B A
D A B A
D A B
∠=⊥=,BE DC ⊥于点E ,CA 的垂
线
AF 交EB 的延长线于点F ,连接CF ,求ACF ∠的度数
27.(本题14分)如图,点O 是等腰直角三角形ABC 内一点,∠ACB =90°,∠AOB =140°,
∠AOC =α.将△AOC 绕直角顶点C 按顺时针方向旋转90°得△BDC ,连接OD . (1)试说明△COD 是等腰直角三角形;
(2)当α=85°时,试判断△BOD
(3)当α等于多少度时,△BOD 是等腰三角形?
F E
C
南开区2010~2011学年度八年级上学期期末(50中学卷)
.(10分)如图,长方形ABCD 中,AB=30cm,AD=45cm,动点P 从点A 出发沿A→B→C→D→A 的方向以1cm/s 的速度作匀速直线运动,同时,动点Q 从点A 出发沿A→D→C→B→A 的方向以2cm/s 的速度作匀速运动,当P,Q 两点相遇时便停止运动。
设两点运动的时间为t ,
△APQ 的面积为Scm 2。
你能写出这个过程中S 关于t 的函数解析式吗?
24.答案: 相遇: 501
22
)4530(=+⨯+相遇在BC 上,距离B 点20cm 的E 处。
P :A→B
1
30
=30 B →E 50
Q :A→D 245
=22.5
D→C
2
30
45+=37.5 C→E 50
2t S = 5.220≤<t t t S 5.22452
1
==
305.22≤<t )275)(75(302
1
)452(4521)30(30214530t t t t S -------⨯= 5.3730≤<t [])3045302(45302
1
-+---=
y t S 505.37≤<t 37.如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运动(0<x<3),
过点P 作直线m 与x 轴垂直.
(1)求点C 的坐标,并回答当x 取何值时y
1>y 2? (2)设△COB 中位于直线m 左侧部分的面积为s ,
求出s 与x 之间函数关系式.
(3)当x 为何值时,直线m 平分△COB 的面积?
河北区2011-2012学年度第一学期期中八年级质量检测
22.两张透明的三角形胶片完全重合摆放,如图1,所示ABC ∆和DEF ∆,将DEF ∆沿着公共边翻折180︒,得到如图2,再把DEF ∆绕点()B E 按顺时针方向旋转,对应边AC 与DF 所在直线交于O
(1)当DEF ∆旋转至图3的位置即点(),,B E F A 在同一条直线上,判断AFD ∠与
DCA ∠是否相等,并予以证明;
(2)当D EF ∆旋转至(),,B E F A 不共线时,画出其中一种图形,再判断(1)中结论是否还成立?并说明理由.
22答案. (1)相等; (2)
如图,证明:DEC ABF ∆≅∆即可
河西区2011-2012期中测试题(25)题
(25)如图①,ABC ∆是正三角形,BDC ∆是顶角120BDC ︒∠=的等腰三角形,以D 为顶点作一个60︒角,角两边分别交,AB AC 边于,M N 两点,连接MN . (I )探究:线段,,BM MN NC 之间的关系,并加以证明。
(1) 若点M 是AB 的延长线上的一点,N 是CA 的延长线上的点,其它条件不变,请你再
探线段,,BM MN NC 之间的关系,在图中画出图形,并说明理由
.
南开区2013-2014学年度的一学期八年级数学期末测试卷参考答案 一选择题
1 B
2 C
3 D
4 D
5 C
6 D
7 B
8 D
9 D 10 A
二、填空题 11、 51.2110-⨯ 12、 3a-1 13、 4 14、18
15、 5 16、 12 17、 1 18、 3
三、解答题
19 (1)222m - (2) 221x +
20、 (1)32
2
9(124)a x a ax -- (2)
22(2)(2)x x +-
21、 x=-1 经检验不是原分式方程的解 所以原分式方程无解
22、证△ABC ≌△CDO (H L) 因为OB=2 所以DO=OB=2
所以 点 D 的坐标为(-2,0)
23、根据题意列方程为
30018030018012
1.2x y y
--=+ 解之的27x=30y 所以
10
9
x y = 答甲乙两队速度的比为10:9
24、若221x mx +-能分解为(21)(1)x x +-
如图:已知B (m ,0)C (-m ,0)A 是y 轴上一点, 点D 在第二象限的一动点,E 在BD 的延长线上, CD 交AB 于F ,且∠BDC=∠BAC (1) 求证:∠ABD=∠ACD
(2) 求证:DA 平分∠CDE
(3) 若在点D 运动的过程中,始终保持DC=DA+DB
并∠BAC 始终等于n 度,求,点(m ,n )关于 y 轴对称点的坐标。
(1)利用对顶三角形 可证出
∠BAC=∠BDC (如图中显示的阴影三角形)
(24题第一问图)
(2)
由221x mx +-能分解为(21)(1)x x +-知道m=-1, 所以B(-1,0) C(1,0) 又知A 在y 轴上, 所以AO 是BC 垂直平分BC ,AB=AC
过A 做A M ⊥CD,AN ⊥BE ,可证△AMC ≌△ANB (AAS) (3)
在CD 上截取CP=BD ,可证△APC ≌△ADB (SAS) 可得AD=AP
又因为 CD=AD+BD 所以DP=AD 所以AP=AD=PD
得△ADP 是等边三角形 所以∠DAP=60度 又因为∠DAB=∠PAC
所以∠BAC=∠DAP=60度 得n=60 所以点(m,n )即点(-1,60)
关于Y 轴对称的点的坐标是(1,60)。