最新第35届全国中学生物理竞赛复赛理论考试试题(word版)
- 格式:docx
- 大小:2.00 MB
- 文档页数:8
第35届全国中学生物理竞赛预赛试卷一、选择题。
本题共5小题,每小题6分,在每小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意。
把符合题意的选项前面英文字母写在每小题后面方括号内。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分。
1.居里夫人发现了元素钋(Po),其衰变核反应方程式为ac 206e b d 82f Po αPb γ→++其中,a 、b 、c 、d 、e 、f 的值依次为( )A .211、84、4、2、1、0B .210、84、4、2、0、0C .207、84、1、1、0、1D .207、83、1、1、0、02.如图,一劲度系数为k 的轻弹簧上端固定在天花板上,下端连接一质量为m 的小球,以小球的平衡位置O 作为坐标原点,x 轴正方向朝下。
若取坐标原点为系统势能的零点,则当小球位于坐标为0x 的位置时,系统的总势能为( )A .20012kx mgx - B .2001()2mg k x mgx k +-C .201()2mg k x k +D .2012kx 3.库伦扭摆装置如图所示,在细银丝下悬挂一根绝缘棒,棒水平静止;棒的两端各固定一相同的金属小球a 和b ,另一相同的金属小球c 固定在插入的竖直杆上,三个小球位于同一水平圆周上,圆心为棒的悬点O 。
细银丝自然悬挂时,a 、c 球对O 点的张角4α=o。
现在使a 和c 带相同电荷,库伦力使细银丝扭转,张角α增大,反向转动细银丝上端旋钮可使张角α变小;若将旋钮缓慢反向转过角度30β=o ,可使小球a最终回到原来位置,这时细银丝的扭力矩与球a 所受球c 的静电力的力矩平衡。
设细银丝的扭转回复力矩与银丝转角β成正比。
为使最后a 、c 对O 点的张角2α=o ,旋钮相对于原自然状态反向转过的角度应为( )A .45β=oB .60β=oC .90β=oD .120β=o 4.霍尔传感器的结构如图所示,图中H 为一块长方体半导体薄片,外加磁场的磁感应强度B 和外加电流I 的方向如相应箭头所示(B 与长方体的前后两个表面及电流I 均垂直),电压表(可判断直流电压的正负)按图中方式与H 的上下表面相连。
全国中学生物理竞赛复赛试卷姓名()总分()本卷共九题,满分160 分.计算题的解答应写出必要的文字说明、方程式和重要的演算环节.只写出最后结果的不能得分.有数字计算的题.答案中必须明确写出数值和单位.填空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程.一、(15 分)蛇形摆是一个用于演示单摆周期与摆长关系的实验仪器(见图).若干个摆球位于同一高度并等间距地排成一条直线,它们的悬挂点在不同的高度上,摆长依次减小.设重力加速度g = 9 . 80 m/ s2 ,1 .试设计一个包含十个单摆的蛇形摆(即求出每个摆的摆长),规定满足:( a )每个摆的摆长不小于0 . 450m ,不大于1.00m ; ( b )初始时将所有摆球由平衡点沿x 轴正方向移动相同的一个小位移xo ( xo <<0.45m ) ,然后同时释放,通过40s 后,所有的摆可以同时回到初始状态.2 .在上述情形中,从所有的摆球开始摆动起,到它们的速率初次所有为零所通过的时间为________________________________________.二、(20 分)距离我们为L 处有一恒星,其质量为M ,观测发现其位置呈周期性摆动,周期为T ,摆动范围的最大张角为△θ.假设该星体的周期性摆动是由于有一颗围绕它作圆周运动的行星引起的,试给出这颗行星的质量m所满足的方程.若L=10 光年,T =10 年,△θ= 3 毫角秒,M = Ms (Ms为太阳质量),则此行星的质量和它运动的轨道半径r各为多少?分别用太阳质量Ms 和国际单位AU (平均日地距离)作为单位,只保存一位有效数字.已知1 毫角秒=11000角秒,1角秒=13600度,1AU=1.5×108km,光速 c = 3.0×105km/s.三、(22 分)如图,一质量均匀分布的刚性螺旋环质量为m,半径为R ,螺距H =πR ,可绕竖直的对称轴OO′,无摩擦地转动,连接螺旋环与转轴的两支撑杆的质量可忽略不计.一质量也为m 的小球穿在螺旋环上并可沿螺旋环无摩擦地滑动,一方面扶住小球使其静止于螺旋环上的某一点A ,这时螺旋环也处在静止状态.然后放开小球,让小球沿螺旋环下滑,螺旋环便绕转轴O O′,转动.求当小球下滑到离其初始位置沿竖直方向的距离为h 时,螺旋环转动的角速度和小球对螺旋环作用力的大小.四、( 12 分)如图所示,一质量为m、电荷量为 q ( q > 0 )的粒子作角速度为ω、半径为 R 的匀速圆周运动.一长直细导线位于圆周所在的平面内,离圆心的距离为d ( d > R ) ,在导线上通有随时间变化的电流I, t= 0 时刻,粒子速度的方向与导线平行,离导线的距离为d+ R .若粒子做圆周运动的向心力等于电流 i ,的磁场对粒子的作用力,试求出电流 i 随时间的变化规律.不考虑变化的磁场产生的感生电场及重力的影响.长直导线电流产生的磁感应强度表达式中的比例系数 k 已知.五、(20分)如图所示,两个固定的均匀带电球面,所带电荷量分别为+Q和-Q (Q >0) ,半径分别为R和R/2,小球面与大球面内切于C点,两球面球心O和O’的连线MN沿竖直方在MN与两球面的交点B、0和C 处各开有足够小的孔因小孔损失的电荷量忽略不计,有一质量为m,带电荷为q(q>0的质点自MN线上离B点距离为R的A点竖直上抛。
全国中学生物理竞赛复赛试卷(本题共七大题,满分160分)一、(20分)如图所示,一块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹簧的下端与地面固定连接。
平板被限制在两条竖直光滑的平行导轨之间(图中未画出竖直导轨),从而只能地竖直方向运动。
平板与弹簧构成的振动系统的振动周期s T 00.2=。
一小球B 放在光滑的水平台面上,台面的右侧边缘正好在平板P 端的正上方,到P 端的距离为m h 80.9=。
平板静止在其平衡位置。
水球B 与平板PQ 的质量相等。
现给小球一水平向右的速度0μ,使它从水平台面抛出。
已知小球B 与平板发生弹性碰撞,碰撞时间极短,且碰撞过程中重力可以忽略不计。
要使小球与平板PQ 发生一次碰撞而且只发生一次碰撞,0μ的值应在什么范围内?取2/8.9s m g =二、(25分)图中所示为用三角形刚性细杆AB 、BC 、CD 连成的平面连杆结构图。
AB 和CD 杆可分别绕过A 、D 的垂直于纸面的固定轴转动,A 、D 两点位于同一水平线上。
BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。
当AB 杆绕A 轴以恒定的角速度ω转到图中所示的位置时,AB 杆处于竖直位置。
BC 杆与CD 杆都与水平方向成45°角,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。
求此时C 点加速度c a 的大小和方向(用与CD 杆之间的夹角表示)三、(20分)如图所示,一容器左侧装有活门1K ,右侧装有活塞B ,一厚度可以忽略的隔板M 将容器隔成a 、b 两室,M 上装有活门2K 。
容器、隔板、活塞及活门都是绝热的。
隔板和活塞可用销钉固定,拔掉销钉即可在容器内左右平移,移动时不受摩擦作用且不漏气。
整个容器置于压强为P 0、温度为T 0的大气中。
初始时将活塞B 用销钉固定在图示的位置,隔板M 固定在容器PQ 处,使a 、b 两室体积都等于V 0;1K 、2K 关闭。
第35届全国中学生物理竞赛决赛训练试题第01套解答【第一题】40分如图所示,一均匀杆AB ,质量为m ,长为2b ,中点记为C . 初始时刻,杆静止,其两端点,A B 分别用一轻绳系在其竖直上方的固定悬点,P Q 上,=1AP l 、=2BQ l . 现突然给杆一绕C 的角速度ω(角速度矢量沿竖直方向),求两绳中的张力12,T T , (1)(15分)若==12l l l ;(2)(25分)若>12l l .解答:(1) 杆两端的线速度:v b ω= [1] 杆两端在竖直方向加速度为向心加速度:222A B v b a a l l ω=== [2]22C A B b a a a lω===[3]由对称性和竖直方向受力平衡:12T T = [4] 12C T T mg ma +-= [5]解得:22121()2b T T m g lω==+ [6][1][2][4][5]各2分 [3]3分 [6]4分(2) 同(1)的第一步:22211A v b a l l ω== [7]22222B v b a l l ω== [8]设:A C a a b β=- [9]BC a a b β=+[10]可解得:2212122C l l a b l l ω+=[11]212122l l b l l βω-=[12]平衡和牛顿第二定律:21T b T b I β-=[13] 2211(2)123I m b mb ==[14] 12C T T mg ma +-=[15]解得:221211221(b )23l l T m g l l ω+=+[16]221221221(b )23l l T m g l l ω+=+[17][7][8][11][12][13][15]各2分[9][10][14]各1分 [16][17]各5分【第二题】40分如图,这时是一种三角打孔机的结构。
其中持钻架A被限制平行运动,A中间有一个正三角形的内孔,边长为l。
第 35 届全国中学生物理竞赛决赛理论考试试题(上海交大)1、( 35 分)如图,半径为R、质量为 M的半球静置于光滑水平桌面上,在半球顶点上有一质量为m、半径为r 的匀质小球。
某时刻,小球收到微扰由静止开始沿半球表面运动。
在运动过程中,小球相对半球的位置由角位置描述,为两球心连线与竖直线的夹角。
己知小球绕其对称轴的转动惯量为2mr 2,小球与半球5间的动摩擦因数为,假定最大静摩擦力等于滑动摩擦力。
重力加速度大小为 g。
(1)( 15 分)小球开始运动后在一段时间内做纯滚动,求在此过程中,当小球的角位置为的速度大小 V M ( 1) 和加速度大小a M ( 1) ;1 时,半球运动(2)( 15分)当小球纯滚动到角位置2 时开始相对于半球滑动,求 2 所满足的方程(用半球速度大小V M ( 2 )和加速度大小a M ( 2 ) 以及题给条件表示);(3)( 5 分)当小球刚好运动到角位置3时脱离半球,求此时小球质心相对于半球运动速度的大小v m ( 3 ) 2、( 35 分)平行板电容器极板 1 和 2 的面积均为S,水平固定放置,它们之间的距离为d,接入如图所示的电路中,电源的电动势记为U。
不带电的导体薄平板3(厚度忽略不计)的质量为m、尺寸与电容器极板相同。
平板 3 平放在极板 2 的正上方,且与极板 2 有良好的电接触。
整个系统置于真空室内,真空的介电常量为0 。
合电键K 后,平板 3 与极板 1 和2 相继碰撞,上下往复运动。
假设导体板间的电场均可视为匀强电场;导线电阻和电源内阻足够小,充放电时间可忽略不计;平板 3 与极板 1 或2 碰撞后立即在极短时间内达到静电干衡;所有碰撞都是完全非弹性的。
重力加速度大小为g。
(1)( 17 分)电源电动势 U至少为多大?(2)( 18 分)求平板 3 运动的周期(用 U 和题给条件表示)。
已知积分公式dx1ln 2ax b 2 a ax2bx C ,其中a>0,C为积分常数。
全国中学生物理竞赛复赛试题参考解答、评分标准一、参考解答令 表达质子的质量, 和 分别表达质子的初速度和到达a 球球面处的速度, 表达元电荷, 由能量守恒可知2201122mv mv eU =+ (1)由于a 不动, 可取其球心 为原点, 由于质子所受的a 球对它的静电库仑力总是通过a 球的球心, 所以此力对原点的力矩始终为零, 质子对 点的角动量守恒。
所求 的最大值相应于质子到达a 球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。
以 表达 的最大值, 由角动量守恒有 max 0mv l mvR = (2)由式(1)、(2)可得20max 1/2eU l R mv =- (3) 代入数据, 可得max 22l R = (4) 若把质子换成电子, 则如图复解20-1-2所示, 此时式(1)中 改为 。
同理可求得 max 62l R =(5)评分标准: 本题15分。
式(1)、(2)各4分, 式(4)2分, 式(5)5分。
二、参考解答在温度为 时, 气柱中的空气的压强和体积分别为, (1)1C V lS = (2)当气柱中空气的温度升高时, 气柱两侧的水银将被缓慢压入A 管和B 管。
设温度升高届时 , 气柱右侧水银刚好所有压到B 管中, 使管中水银高度增大C BbS h S ∆= (3) 由此导致气柱中空气体积的增大量为C V bS '∆= (4)与此同时, 气柱左侧的水银也有一部分进入A 管, 进入A 管的水银使A 管中的水银高度也应增大 , 使两支管的压强平衡, 由此导致气柱空气体积增大量为A V hS ''∆=∆ (5)所以, 当温度为 时空气的体积和压强分别为21V V V V '''=+∆+∆ (6)21p p h =+∆ (7)由状态方程知112212p V p V T T = (8) 由以上各式, 代入数据可得2347.7T =K (9)此值小于题给的最终温度 K, 所以温度将继续升高。
第35届全国中学生物理竞赛决赛试题(word版)35届全国中学生物理竞赛决赛理论考试试题(XXX)1、(35分)如图,半径为R、质量为M的半球静置于光滑水平桌面上,在半球顶点上有一质量为m、半径为r的匀质小球。
某时刻,小球收到微扰由静止开始沿半球表面运动。
在运动过程中,小球相对半球的位置由角位置$\theta$描述,$\theta$为两球心连线与竖直线的夹角。
已知小球绕其对称轴的转动惯量为$\frac{2}{5}mr^2$,小球与半球间的动摩擦因数为$\mu$,假定最大静摩擦力等于滑动摩擦力。
重力加速度大小为g。
1)(15分)小球开始运动后在一段时间内做纯滚动,求在此过程中,当小球的角位置为$\theta_1$时,半球运动的速度大小$V_M(\theta_1)$和加速度大小$a_M(\theta_1)$;2)(15分)当小球纯滚动到角位置$\theta_2$时开始相对于半球滑动,求$\theta_2$所满足的方程(用半球速度大小$V_M(\theta_2)$和加速度大小$a_M(\theta_2)$以及题给条件表示);3)(5分)当小球刚好运动到角位置$\theta_3$时脱离半球,求此时小球质心相对于半球运动速度的大小$v_m(\theta_3)$。
2、(35分)平行板电极板1和2的面积均为S,水平固定放置,它们之间的距离为d,接入如图所示的电路中,电源的电动势记为U。
不带电的导体薄平板3(厚度忽略不计)的质量为m、尺寸与电极板相同。
平板3平放在极板2的正上方,且与极板2有良好的电接触。
整个系统置于真空室内,真空的介电常量为$\epsilon$。
合电键K后,平板3与极板1和2相继碰撞,上下往复运动。
假设导体板间的电场均可视为匀强电场;导线电阻和电源内阻足够小,充放电时间可忽略不计;平板3与极板1或2碰撞后立即在极短时间内达到静电干衡;所有碰撞都是完全非弹性的。
重力加速度大小为g。
1)(17分)电源电动势U至少为多大?2)(18分)求平板3运动的周期(用U和题给条件表示)。
2018 年第 35 届全国中学生物理竞赛复赛理论考试试题2018 年 9 月 22 日一,(40 分)假设地球是一个质量分布各向同性的球体。
从地球上空离地面高度为h 的空间站发射一个小物体,该物体相对于地球以某一初速度运动,初速度方向与其到地心的连线垂直。
已知地球半径为R,质量为M,引力常量为G。
地球自转及地球大气的影响可忽略。
(1)若该物体能绕地球做周期运动,其初速度的大小应满足什么条件?(2 )若该物体的初速度大小为v0 ,且能落到地面,求其落地时速度的大小和方向(即速度与其水平分量之间的夹角),以及它从开始发射直至落地所需的时间。
2已知对于c 0, b 4ac 0 有xdx a bx cx 2 b 2cx ba xbdxxcx2a bcx cx2(bc)32 arcsin2cx bC式中C 为积分常数。
二,(40 分)如图,一劲度系数为k 的轻弹簧左端固定,右端连一质量为m 的小球,弹簧水平水平,它处于自然状态时小球位于坐标原点O;小球课在水平地面上滑动,它与地面之间的摩擦因数为。
初始时小球速度为0,将此时弹簧相对于其原长的伸长记为-A0(A0>0但是它并不是已知量)。
重力加速度大小为g,假设最大静摩擦力等于滑动摩擦力(1 )如果小球至多只能向右运动,求小球最终静止的位置,和此种情形下A0 应满足的条件;(2)如果小球完成第一次向右运动至原点右边后,至多只能向左运动,求小球最终静止的位置,和此种情形下A0 应满足的条件;(3 )如果小球只能完成n 次往返运动(向右经过原点,然后向左经过原点,算1 次往返)(4 )如果小球只能完成n 次往返运动,求小球从开始运动直至最终静止的过程中运动的总路程。
三、(40 分)如图,一质量为M 、长为l 的匀质细杆AB 自由悬挂于通过坐标原点O 点的水平光滑转轴上(此时,杆的上端A 未在图中标出,可视为与O 点重合),杆可绕通过O 点的轴在竖直平面(即x-y 平面,x 轴正方向水平向右)内转动;O 点相对于地面足够高,初始时杆自然下垂;一质量为m 的弹丸以大小为v0 的水平速度撞击杆的打击中心(打击过程中轴对杆的水平作用力为零)并很快嵌入杆中。
第三十五届中学生物理竞赛复赛一、竞赛概况第三十五届中学生物理竞赛复赛是面向全国中学生的一项重要竞赛活动。
该竞赛由中国物理学会主办,旨在激发青少年对物理学的兴趣,培养物理学科的学习和研究能力,提高中学生的科学素养。
二、竞赛时间和地点竞赛将于2022年4月10日举行,地点为各省市的指定考点。
具体考点信息将在竞赛前公布。
三、竞赛内容1.笔试–备选试题范围:高中物理课程内容–考试形式:选择题、填空题、解答题–考试时间:上午9:00-11:00–考试时间分配:选择题40分钟,填空题40分钟,解答题40分钟2.实验–实验内容:根据指定题目进行实验和分析–实验设备提供:实验器材、实验仪器–实验时间:下午14:00-16:00四、竞赛评分标准1.笔试评分:–选择题:每题2分,答错扣1分,不答不扣分–填空题:每题4分,答错不得分–解答题:总分50分,根据答案完整程度、推理合理性、解题思路等综合评定2.实验评分:–实验操作:操作正确得满分,操作不完全得部分分,操作错误不得分–实验分析:分析合理得满分,分析一般得部分分,分析不完整不得分–结果处理:正确处理得满分,处理不正确得部分分,处理错误不得分五、竞赛奖项1.复赛全部参赛选手将获得参赛证书。
2.复赛获得一、二、三等奖的选手将获得获奖证书和奖品。
3.根据成绩,评选出全国复赛前50名的选手,晋级至全国总决赛。
六、注意事项1.参赛选手须携带有效证件和考试所需文具,不得携带任何与考试无关的物品。
2.考试时间为正式开始后不得迟到、早退,违者视为弃权。
3.考试期间需保持考场安静,不得交谈、传递纸条等。
4.考试过程中如有疑问,可向监考老师提问,但问题应与考试内容相关。
5.实验期间需保持实验室秩序,注意安全操作,遵守实验室规章制度。
以上是关于第三十五届中学生物理竞赛复赛的基本信息,精心准备,希望广大中学生参赛选手能够充分发挥自己的能力,取得优异的成绩!加油!。
全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v . (2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4)[(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得220sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。
由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v . (4’)将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v . (5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为22max 0max 2sin sin 20gR gR θθ+-=v . (6)其解为20maxsin 14gR θ⎫=-⎪⎪⎭v . (7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=v v ,(8) 考虑到(4)式有max ==v评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C2l r =v v . (1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v . (2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3) 由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)[代替 (3) 式,可利用弹性碰撞特点0D A =-v v v . (3’) 同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则22(2)2mr m l l r x m αα++==++. (7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8) 轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9) 由此得2022(2)28r l r F t m l r-∆=+v . (10) 方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r -'∆=-+v ,(11) 方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0=v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为k E k L αβγλω= (1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为 1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---==== (2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为 ()[]q q q = (3)式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为 ()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4)在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5) [][][][]k E L αβγλω= (6)将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8)所以23k E k L λω= (9)2. 由题意,杆的动能为,c ,r k k k E E E =+ (10)其中, 22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为 32,r2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13)由此解得16k = (14)于是E k =16lw 2L 3. (15)3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭(16) 由(15)、(16)式得w =以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=- (19) ()()sin n N L r g L r a λθλ--=- (20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4ct L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==. (22) 由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg L θ--= (23)()()253sin 2L r L r N mg L θ-+=(24)评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1) 式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为 21(2)(2)2()Qq h R m mg h R kh R R-=---v . (2) 从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有 max (2)(2)0()Q q h R mg h R kh R R---=-. (3)由此得 max ()mg h R RQ kq-=. (4)容器的最高电势为maxmax Q V kR= (5) 由(4) 和 (5)式得 max ()mg h R V q-=(6) 评分标准:本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)xy z E E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )参考解答:1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1) 在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+-(2) 两参考系中电荷、合力和速度的变换关系为 ,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足 ()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v . (6) 为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+-(7) 利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得 00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故 0(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9) 可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-. (10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v . (11)评分标准:本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1)1121()l l T T α∆=- (2) 式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆ (3)2221()l l T T α∆=- (4) 联立以上各式得2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯-- (5)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b) 参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1) 的均匀介质的光程相同,即2111112nh h bh δ==+ (2)x忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=- (3)于是()212112y h bh δδδ=+=+. (4)由几何关系有1tan h y θ=. (5)故()22tan 2b y h y δθ=+. (6)从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处. 对于0y =处,由上式得d 0()=h . (7)y 处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=. (8)由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ==. (9)由此得y A θθ===. (10) 除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A . (11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m =,其中m 为任意正整数,则49,,,m m m y y y ===. (12),光线在焦点处依然相互加强而形成亮纹. 评分标准:本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知 m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,ee E p E p γγ''''. 由能量守恒有 E e +E g =¢E e +¢E g . (1)由动量守恒有cos cos ,sin sin .e eep p p p p p γγγαθαθ''+=+''=. (2)式中,α和θ分别是散射后的电子和光子相对于碰撞前电子的夹角. 光子的能量和动量满足E g =p g c ,¢E g =¢p g c . (3)电子的能量和动量满足22224e e e E p c m c -=,22224e e e E p c m c ''-= (4)由(1)、(2)、(3)、(4)式解得e E E E γγ'=[由(2)式得22222()2()cos ee e p c p c p c p c p c p c p c γγγγθ'''=++-+此即动量p '、ep '和e p p γ+满足三角形法则. 将(3)、(4)式代入上式,并利用(1)式,得 22(2)()22cos 2e e e E E E E E E E E E E E γγγγγγγγθθ''+-+=+--此即(5)式. ]当0θ→时有e E E E γγ'=(6)2. 为使能量从电子转移到光子,要求¢E g >E g . 由(5)式可见,需有E E γγ'-=>此即E γ 或 e p p γ>(7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E γ>>,因而e p p p γγ+>>,由(5)式可知p p γγ'>>,因此有0θ≈. 又242e e em cE E -. (8)将(8)式代入(6)式得¢E g »2E e E g2E g +m e 2c 42E e. (9) 代入数据,得¢E g »29.7´106eV . (10)评分标准:本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 或(6)式2分; 第2问5分,(7) 式5分;第3问5分,(8) 式2分, (9) 式1分, (10) 式2分.。
2018年第35届全国中学生物理竞赛复赛理论考试试题
2018年9月22日
一,(40分)假设地球是一个质量分布各向同性的球体。
从地球上空离地面高度为h 的空间站发射一个小物体,该物体相对于地球以某一初速度运动,初速度方向与其到地心的连线垂直。
已知地球半径为R ,质量为M ,引力常量为G 。
地球自转及地球大气的影响可忽略。
(1)若该物体能绕地球做周期运动,其初速度的大小应满足什么条件?
(2)若该物体的初速度大小为v 0,且能落到地面,求其落地时速度的大小和方向(即速度与其水平分量之间的夹角),以及它从开始发射直至落地所需的时间。
已知对于2040c b ac <∆=->, 有
322()b C c =-+- ,式中
C 为积分常数。
二,(40分)如图,一劲度系数为k的轻弹簧左端固定,右端连一质量为m的小球,弹簧水平水平,它处于自然状态时小球位于坐标原点O;小球课在水平地面上滑动,它与地面之间的摩擦因数为 。
初始时小球速度为0,将此时弹簧相对于其原长的伸长记为-A0(A0>0但是它并不是已知量)。
重力加速度大小为g,假设最大静摩擦力等于滑动摩擦力
(1)如果小球至多只能向右运动,求小球最终静止的位置,和此种情形下A0应满足的条件;
(2)如果小球完成第一次向右运动至原点右边后,至多只能向左运动,求小球最终静止的位置,和此种情形下A0应满足的条件;
(3)如果小球只能完成n次往返运动(向右经过原点,然后向左经过原点,算1 次往返)
(4)如果小球只能完成n次往返运动,求小球从开始运动直至最终静止的过程中运动的总路程。
三、(40 分)如图,一质量为M 、长为l 的匀质细杆AB 自由悬挂于通过坐标原点O 点的水平光滑转轴上(此时,杆的上端A 未在图中标出,可视为与O 点重合),杆可绕通过O 点的轴在竖直平面(即 x -y 平面, x 轴正方向水平向右)内转动;O 点相对于地面足够高,初始时杆自然下垂;一质量为m 的弹丸以大小为v 0 的水平速度撞击杆的打击中心(打击过程中轴对杆的水平作用力为零)并很快嵌入杆中。
在杆转半圈至竖直状态时立即撤除转轴。
重力加速度大小为 g 。
(1)求杆的打击中心到O 点的距离;
(2)求撤除转轴前,杆被撞击后转过θ (0θ
π<< )角时转轴对杆的作用力 (3)以撤除转轴的瞬间为计时零点,求撤除转轴后直至杆着地前,杆端 B 的位置随时间t 变化的表达
式 ()B x t 和 ()B y t ;
(4)求在撤除转轴后,杆再转半圈时O 、B 两点的高度差。
四、(40 分)Ioffe-Pritchard 磁阱可用来束缚原子的运动,其主要部分如图所示。
四根均通有恒定电流 I 的长直导线 1、2、3、4 都垂直于 x -y 平面,它们与 x -y 平面的交点是边长为2a 、中心在原点O 的正方形的顶点,导线 1、2 所在平面与 x 轴平行,各导线中电流方向已在图中标出。
整个装置置于匀强磁场00B B k = (k 为 z 轴正方向单位矢量)中。
已知真空磁导率为0μ 。
(2)电流在原点附近产生的总磁场的近似表达式,保留至线性项;
(3)将某原子放入磁阱中,该原子在磁阱中所受磁作用的束缚势能正比于其所在位置的总磁感应强度tot B 的大小,即磁作用束缚势能tot V B μ= ,μ 为正的常量。
求该原子在原点O 附近所受磁场的作用力;
(4)在磁阱中运动的原子最容易从 x -y 平面上什么位置逸出?求刚好能够逸出磁阱的原子的动能 。
五、(40 分)塞曼发现了钠光D 线在磁场中分裂成三条,洛仑兹根据经典电磁理论对此做出了解释,他们因此荣获 1902 年诺贝尔物理学奖。
假定原子中的价电子(质量为m ,电荷量为
e ,0e > )受到一指向原子中心的等效线性回复力20m r ω-(r 为价电子相对于原子中心的位矢)作用,做固有圆频率为0 的简谐振动,发出圆频率为0 的光。
现将该原子置于沿 z 轴正方向的匀强磁场中,磁感应强度大小为 B (为方便起见,将 B 参数化为2L m B e
ω= ) (1)选一绕磁场方向匀角速转动的参考系,使价电子在该参考系中做简谐振动,导出该电子运动的动力学方程在直角坐标系中的分量形式并求出其解
(2)将(1)问中解在直角坐标系中的分量形式变换至实验室参考系的直角坐标系;
(3)证明在实验室参考系中原子发出的圆频率为0 的谱线在磁场中一分为三;并对弱磁场(即
0L
ωω)情形,求出三条谱线的频率间隔。
已知:在转动角速度为ω的转动参考系中,运动电子受到的惯性力除惯性离心力外还受到科里奥利力作用,当电子相对于转动参考系运动速度为v 时,作用于电子的科里奥利力为2c f m v ω'=-⨯。
六、(40 分)如图,太空中有一由同心的内球和球壳构成的实验装置,内球和球壳内表面之间为真空。
内球半径为r = 0.200 m ,温度保持恒定,比辐射率为e =0.800 ;球壳的导热系数为
21111.0010J m s K κ----=⨯⋅⋅⋅ ,内、外半径分别为 R 1 =0.900m 、 R 2 = 1.00 m ,外表面可视为黑体;该实验装置已处于热稳定状态,此时球壳内表面比辐射率为 E= 0.800 。
斯特藩常量为
8245.6710s W m K ---=⋅⨯⋅,宇宙微波背景辐射温度为T =2.73K 。
若单位时间内由球壳内表面传递到球壳外表面的热量为Q =44.0W ,求(1)球壳外表面温度T 2 ;(2)球壳内表面温度T 1 ;(3)内球温度T 0 。
已知:物体表面单位面积上的辐射功率与同温度下的黑体在该表面单位面积上的辐射功率之比称为比辐射率。
当辐射照射到物体表面时,物体表面单位面积吸收的辐射功率与照射到物体单位面积上的辐射功率之比称为吸收比。
在热平衡状态下,物体的吸收比恒等于该物体在同温度下的比辐射率。
当物体内某处在 z 方向(热流方向)每单位距离温度的增量为
dT dz 时,物体内该处单位时间在 z 方向每单位面积流过的热量为dT K dz
-,此即傅里叶热传导定律
七、(40 分)用波长为633 nm 的激光水平照射竖直圆珠笔中的小弹簧,在距离弹簧4.2 m 的光屏(与激光水平照射方向垂直)上形成衍射图像,如图a 所示。
其右图与1952 年拍摄的首张DNA 分子双螺旋结构X 射线衍射图像(图b)十分相似。
利用图a 右图中给出的尺寸信息,通过测量估算弹簧钢丝的直径d1、弹簧圈的半径R和弹簧的螺距p;图b 是用波长为0.15 nm 的平行X 射线照射DNA 分子样品后,在距离样品9.0 cm 的照相底片上拍摄的。
假设DNA 分子与底片平行,且均与X 射线照射方向垂直。
根据图b 中给出的尺寸信息,试估算DNA 螺旋结构的半径R ' 和螺距p 。
说明:由光学原理可知,弹簧上两段互成角度的细铁丝的衍射、干涉图像与两条成同样角度、相同宽度的狭缝的衍射、干涉图像一致。
八、(40 分)1958 年穆斯堡尔发现的原子核无反冲共振吸收效应(即穆斯堡尔效应)可用于测量光子频率极微小的变化,穆斯堡尔因此荣获 1961 年诺贝尔物理学奖。
类似于原子的能级结构,原子核也具有分立的能级,并能通过吸收或放出光子在能级间跃迁。
原子核在吸收和放出光子时会有反冲,部分能量转化为原子核的动能(即反冲能)。
此外,原子核的激发态相对于其基态的能量差并不是一个确定值,而是在以 E 0 为中心、宽度为2Γ 的范围内取值的。
对于 57Fe 从第一激发态到基态的跃迁,
150 2.3110E J -=⨯ ,1303.210E -Γ=⨯ 。
已知质量269.510Fe m kg -=⨯ ,普朗克常量
346.610h J s -=⨯⋅ ,真空中的光速c= 3.0ⅹ108 m/ s 。
(1)忽略激发态的能级宽度,求反冲能,以及在考虑核反冲和不考虑核反冲的情形下,57Fe 从第一激发态跃迁到基态发出的光子的频率之差;
(2)忽略激发态的能级宽度,求反冲能,以及在考虑核反冲和不考虑核反冲的情形下,57Fe 从基态跃迁到激发态吸收的光子的频率之差;
(3)考虑激发态的能级宽度,处于第一激发态的静止原子核57 Fe * 跃迁到基态时发出的光子能否被另一个静止的基态原子核57 Fe 吸收而跃迁到第一激发态57 Fe * (如发生则称为共振吸收)?并说明理由。
(4)现将 57Fe 原子核置于晶体中,该原子核在跃迁过程中不发生反冲。
现有两块这样的晶体,其中一块静止晶体中处于第一激发态的原子核57 Fe * 发射光子,另一块以速度V 运动的晶体中处于基态的原子核 57Fe 吸收光子。
当速度V 的大小处于什么范围时,会发生共振吸收?如果由于某种原因,到达吸收晶体处的光子频率发生了微小变化,其相对变化为10-10 ,试设想如何测量这个变化(给出原理和相关计算)?。