2018-2019学年高中数学人教A版选修2-2:课时跟踪检测(十五)综合法和分析法-含解析
- 格式:doc
- 大小:93.50 KB
- 文档页数:4
第一章 导数及其应用1.5 定积分的概念 1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程课时跟踪检测一、选择题1.在计算y =6x 2与直线x =1,x =3,y =0围成的图形的面积时,把区间[1,3]n 等分,则每个小区间的长度为( )A.1n B .2n C.3nD.12n解析:每个小区间的长度为3-1n =2n . 答案:B2.求由曲线y =12x 2与直线x =1,x =2,y =0所围成的平面图形面积时,把区间5等分,则面积的近似值(取每个小区间的左端点)是( )A .1.02B .2.02C .2.52D.1.52解析:S =15×⎣⎢⎡ 12×12+12×⎝ ⎛⎭⎪⎫652+12×⎝ ⎛⎭⎪⎫752+⎦⎥⎤12×⎝ ⎛⎭⎪⎫852+12×⎝ ⎛⎭⎪⎫952 =15×25+36+49+64+8150=255250=1.02.答案:A3.(2019·吉林省实验中学高二期中)设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑ni =1f (ξi )Δx (其中Δx 为小区间的长度),那么S n 的大小( )A .与f (x )、区间[a ,b ]有关,与分点的个数n 和ξi 的取法无关B .与f (x )、区间[a ,b ]和分点的个数n 有关,与ξi 的取法无关C .与f (x )、区间[a ,b ]、分点的个数n 和ξi 的取法都有关D .与f (x )、区间[a ,b ]和ξi 的取法有关,与分点的个数n 无关解析:因为S n =∑ni =1f (ξi )Δx =∑ni =1f (ξi )·b -an ,所以S n 的大小与f (x )、区间、分点的个数和变量的取法都有关.故选C.答案:C4.下列关于函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 的端点处的函数值的说法正确的是( )A .f (x )的值变化很小B .f (x )的值变化很大C .f (x )的值不变化D .当n 很大时,f (x )的值变化很小 答案:D5.在等分区间的情况下,f (x )=11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式正确的是( )A.lim n →∞∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·2n B.lim n →∞∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n C.lim n →∞∑ni =1 ⎝ ⎛⎭⎪⎫11+i 2·1n D.lim n →∞∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·n 解析:若将区间[0,2] n 等分,则每一区间的长度为2n ,第i 个区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n ,若取每一区间的右端点进行近似代替,则和式极限形式为lim n →∞∑n i =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n . 答案:B6.(2019·鄂东南九校高二上学期期中)若做变速直线运动的物体v (t )=t 2,在0≤t ≤a 内经过的路程为9,则a 的值为( )A .1B .2C .3D.4解析:将区间[0,a ] n 等分,记第i 个区间为a (i -1)n ,ain (i =1,2,…,n ),此区间长为a n ,用小矩形面积ai n 2·a n近似代替相应的小曲边梯形的面积,则∑n i =1 ⎣⎢⎡⎦⎥⎤ai n 2·a n =a 3n 3·(12+22+…+n 2)=a 331+1n 1+12n 近似地等于速度曲线v (t )=t 2与直线t =0,t =a ,t 轴围成的曲边梯形的面积.依题意得lim n →∞ a 331+1n 1+12n =9,所以a 33=9,解得a =3.答案:C 二、填空题7.(2019·泉港一中高二期中)对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是________.解析:将区间[0,1]三等分为0,13,13,23,23,1,各小矩形的面积和为S 1=03·13+133·13+233·13=19.答案:198.已知某物体运动的速度v =2t -1,t ∈[0,10]若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.解析:若把区间[0,10]进行10等分,则第i 个小区间为[i -1,i ](i =1,2,…,10),其右端点为i ,那么物体运动的路程的近似值为s =∑10i =1 (2i -1)=2∑10i =1i -10=2×(1+10)×102-10=100.答案:1009.由直线x =1,x =2,y =0与曲线y =1x 所围成的曲边梯形,将区间[1,2]等分成4份,将曲边梯形较长的边近似看作高,则曲边梯形的面积是________.解析:将区间[1,2]等分成4份,将曲边梯形较长的边近似看作高,则高分别为1,45,23,47,∴曲边梯形的面积是14×⎝ ⎛⎭⎪⎫1+45+23+47=319420. 答案:319420 三、解答题10.利用分割、近似代替、求和、取极限的方法求函数y =1+x ,x =1,x =2的图象与x 轴围成的梯形的面积,并用梯形的面积公式加以验证.解:f (x )=1+x 在区间[1,2]上连续,将区间[1,2]分成n 等份,则每个区间的长度为Δx i =1n ,在[x i -1,x i ]=⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n 上取ξi =x i -1=1+i -1n (i =1,2,3,…,n ), 于是f (ξi )=f (x i -1)=1+1+i -1n =2+i -1n , 从而S n =∑i =1nf (ξi )Δx i =∑i =1n⎝ ⎛⎭⎪⎫2+i -1n ·1n =∑i =1n ⎝ ⎛⎭⎪⎫2n +i -1n 2=2n ·n +1n 2[0+1+2+…+(n -1)]= 2+1n 2·n (n -1)2=2+n -12n =52-12n . ∴S =lim n →∞S n =lim n →∞ ⎝ ⎛⎭⎪⎫52-12n =52. 验证如下:由梯形的面积公式得 S =12×(2+3)×1=52.11.(2019·榆林二中高二月考)一辆汽车做变速直线运动,设汽车在时刻t 的速度v (t )=6t 2(t 的单位:h ,v 的单位:km/h),求汽车在t =1到t =2这段时间内运动的路程s (单位:km).解:把区间[1,2]等分成n 个小区间n +i -1n ,n +in (i =1,2,…,n ),每个区间的长度Δt =1n ,每个时间段行驶的路程记为Δs i (i =1,2,…,n ).故路程和s n =∑ni =1Δs i . Δs i ≈v n +i -1n ·Δt =6·n n +i -12·1n=61+i -1n2·1n =6n (n +i -1)2 ≈6n(n +i -1)(n +i )(i =1,2,3,…,n ).s n =∑ni =16n(n +i -1)(n +i )=6n (1n -1n +1+1n +1-1n +2+…+12n -1-12n )=6n (1n -12n ).s =lim n →∞s n =lim n →∞6n 1n -12n =3. 12.求由直线x =0,x =1,y =0及曲线y =x 2+2x 所围成的图形的面积S . 解:①分割在区间[0,1]上等间隔地插入n -1个点,将它等分为n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,⎣⎢⎡⎦⎥⎤2n ,3n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,记第i 个区间为⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n ),其长度为Δx =i n -i -1n =1n .分别过上述n -1个分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形(如图),它们的面积记作:ΔS 1,ΔS 2,…,ΔS n ,则小曲边梯形面积的和为S =∑ni =1ΔS i .②近似代替记f (x )=x 2+2x ,当n 很大,即Δx 很小时,在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上,可以认为f (x )的值变化很小,不妨用f ⎝ ⎛⎭⎪⎫i n 来近似地作为f (x )在该区间上的函数值.从图形上看就是用平行于x 轴的直线段近似地代替小曲边梯形的曲边,这样在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上,用小矩形的面积ΔS i ′近似地代替ΔS i ,则有ΔS i ≈ΔS i ′=f ⎝ ⎛⎭⎪⎫i n ·Δx =1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2·i n . ③求和小曲边梯形的面积和S n =∑ni =1ΔS i ≈∑ni =1ΔS i ′ =∑n i =1 1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2·i n =1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12n 2+22n 2+…+n 2n 2+2⎝ ⎛⎭⎪⎫1n +2n +…+n n=(n +1)(2n +1)6n 2+n +1n=16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +⎝ ⎛⎭⎪⎫1+1n .④取极限分别将区间[0,1]等分成8,16,20,…等份时,S n 越来越趋向于S ,从而有 S =lim n →∞S n =lim n →∞ ⎣⎢⎡⎦⎥⎤16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +⎝ ⎛⎭⎪⎫1+1n =43.即由直线x =0,x =1,y =0及曲线y =x 2+2x 所围成的图形的面积等于43.13.(2019·张家口模拟)由直线x =0,x =2,y =0与曲线y =x 2+1围成的曲边梯形,将区间[0,2]5等分,按照区间左端点和右端点估计梯形面积分别为________、________.解析:将区间[0,2]5等分,每个区间长度为0.4,按照区间左端点和右端点对应的小曲边梯形的面积近似为小矩形的面积,所以按照区间左端点和右端点估计梯形面积分别为0.4×(0.42+1)×5和0.4×(22+1)×5,即为2.32 和10.答案:2.32 10。
课时跟踪检测〔十五〕 反证法一、题组对点训练对点练一 用反证法证明“否认性〞命题1.应用反证法推出矛盾的推理过程中,可作为条件使用的是( ) ①结论的否认;②条件;③公理、定理、定义等;④原结论. A .①② B .②③ C .①②③D .①②④解析:选C 根据反证法的根本思想,应用反证法推出矛盾的推导过程中可把“结论的否认〞、“条件〞、“公理、定理、定义〞等作为条件使用.2.用反证法证明“一个三角形不能有两个直角〞有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°. 上述步骤的正确顺序为________. 答案:③①②3.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)设公差为d ,由得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,解得d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,那么b 2q =b p b r , 即(q +2)2=(p +2)(r +2), 所以(q 2-pr )+(2q -p -r )2=0.又p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.所以⎝⎛⎭⎪⎫p +r 22=pr .(p -r )2=0,所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列. 对点练二 用反证法证明“至多〞、“至少〞型命题4.用反证法证明命题:“三角形的内角中至少有一个不大于60°〞时,假设正确的选项是( )A .假设三内角都不大于60°B .假设三内角都大于60°C .假设三内角至少有一个大于60°D .假设三内角至多有两个大于60°解析:选B “至少有一个〞即“全部中最少有一个〞.5.设实数a 、b 、c 满足a +b +c =1,那么a 、b 、c 中至少有一个数不小于________. 解析:假设a 、b 、c 都小于13,那么a +b +c <1与a +b +c =1矛盾.故a 、b 、c 中至少有一个不小于13.答案:136.假设x ,y ,z 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,那么a ,b ,c 中是否至少有一个大于0?请说明理由.解:是.假设a ,b ,c 都不大于0, 即a ≤0,b ≤0,c ≤0,那么a +b +c ≤0.而a +b +c =x 2-2y +π2+y 2-2z +π3+z 2-2x +π6=(x -1)2+(y -1)2+(z -1)2+π-3,因为π-3>0,且无论x ,y ,z 为何实数,(x -1)2+(y -1)2+(z -1)2≥0,所以a +b +c >0.这与假设a +b +c ≤0矛盾. 因此,a ,b ,c 中至少有一个大于0. 对点练三 用反证法证明“唯一性〞命题7.用反证法证明命题“关于x 的方程ax =b (a ≠0)有且只有一个解〞时,反设是关于x 的方程ax =b (a ≠0)( )A .无解B .有两解C .至少有两解D .无解或至少有两解解析:选D “唯一〞的否认上“至少两解或无解〞. 8.“自然数a ,b ,c 中恰有一个偶数〞的否认正确的为( )A .a ,b ,c 都是奇数B .a ,b ,c 都是偶数C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数解析:选D 自然数a ,b ,c 的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数.所以否认正确的选项是a ,b ,c 中都是奇数或至少有两个偶数.9.求证:两条相交直线有且只有一个交点.证明:因为两直线为相交直线,故至少有一个交点,假设两条直线a ,b 不只有一个交点,那么至少有两个交点A 和B ,这样同时经过点A ,B 的直线就有两条,这与“经过两点有且只有一条直线〞相矛盾.综上所述,两条相交直线有且只有一个交点. 二、综合过关训练1.用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除〞,那么假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a 不能被5整除D .a ,b 有1个不能被5整除解析:选B 用反证法只否认结论即可,而“至少有一个〞的反面是“一个也没有〞,故B 正确.2.有以下结论:①p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下说法中正确的选项是( )A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确;②的假设错误D .①的假设错误;②的假设正确解析:选D 用反证法证题时一定要将对立面找准.在①中应假设p +q ①的假设是错误的,而②的假设是正确的.3.设a 、b 、c 都是正数,那么三个数a +1b ,b +1c ,c +1a( )A .都大于2B .至少有一个大于2C .至少有一个不大于2D .至少有一个不小于2解析:选D 因为a 、b 、c 都是正数,那么有⎝⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫b +1c +⎝⎛⎭⎪⎫c +1a =⎝⎛⎭⎪⎫a +1a +⎝⎛⎭⎪⎫b +1b +⎝⎛⎭⎪⎫c +1c ≥6.故三个数中至少有一个不小于2.4.数列{a n},{b n}的通项公式分别为a n=an+2,b n=bn+1(a,b是常数),且a>b,那么两个数列中序号与数值均一样的项的个数有( )A.0个B.1个C.2个D.无穷多个解析:选A 假设存在序号和数值均相等的项,即存在n使得a n=b n,由题意a>b,n∈N*,那么恒有an>bn,从而an+2>bn+1恒成立,∴不存在n使得a n=b n.5.平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a,求证:b与c 是异面直线,假设利用反证法证明,那么应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交,∴应假设b与c平行或相交.答案:b与c平行或相交6.完成反证法证题的全过程.题目:设a1,a2,…,a7是1,2,…,7的一个排列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.证明:假设p为奇数,那么________均为奇数.①因奇数个奇数之和为奇数,故有奇数=________②=________③=0.这与0为偶数矛盾,说明p为偶数.解析:证明过程应为:假设p为奇数,那么有a1-1,a2-2,…,a7-7均为奇数,因为奇数个奇数之和为奇数,故有奇数=(a1-1)+(a2-2)+…+(a7-7)=(a1+a2+…+a7)-(1+2+…+7)=0.这与0为偶数矛盾,说明p为偶数.答案:a1-1,a2-2,…,a7-7(a1-1)+(a2-2)+…+(a7-7)(a1+a2+...+a7)-(1+2+ (7)7.求证方程2x=3有且只有一个根.证明:因为2x=3,所以x=log23,这说明方程2x=3有根.下面用反证法证明方程2x=3的根是唯一的:假设方程2x=3至少有两个根b 1,b 2(b 1≠b 2), 那么2b 1=3,2b 2=3, 两式相除得2b 1-b 2=1.假设b 1-b 2>0,那么2b 1-b 2>1,这与2b 1-b 2=1相矛盾. 假设b 1-b 2<0,那么2b 1-b 2<1,这也与2b 1-b 2=1相矛盾. 所以b 1-b 2=0,那么b 1=b 2. 所以假设不成立,从而原命题得证.8.用反证法证明:对于直线l :y =x +k ,不存在这样的非零实数k ,使得l 与双曲线C :3x 2-y 2=1的交点A 、B 关于直线y =-x 对称.证明:假设存在非零实数k ,使得A 、B 关于直线y =-x 对称,设A (x 1,y 1)、B (x 2,y 2), 那么线段AB 的中点M ⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22在直线y =-x 上,由⎩⎪⎨⎪⎧y =x +k ,y 2=3x 2-1得2x 2-2kx -1-k 2=0.∴x 1+x 2=k ,可得M ⎝ ⎛⎭⎪⎫k 2,3k 2.这与M 在直线y =-x 上矛盾. 所以假设不成立,故不存在非零实数k ,使得A 、B 关于直线y =-x 对称.。
课时跟踪检测(五) 组合与组合数公式层级一 学业水平达标1.C 58+C 68的值为( )A .36B .84C .88D .504解析:选A C 58+C 68=C 69=C 39=9×8×73×2×1=84. 2.以下四个命题,属于组合问题的是( )A .从3个不同的小球中,取出2个排成一列B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开两辆车从甲地到乙地解析:选C 选项A 是排列问题,因为2个小球有顺序;选项B 是排列问题,因为甲、乙位置互换后是不同的排列方式;选项C 是组合问题,因为2位观众无顺序;选项D 是排列问题,因为两位司机开哪一辆车是不同的.选C .3.方程C x 14=C 2x -414的解集为( )A .4B .14C .4或6D .14或2解析:选C 由题意知⎩⎪⎨⎪⎧ x =2x -4,2x -4≤14,x ≤14或⎩⎪⎨⎪⎧ x =14-(2x -4),2x -4≤14,x ≤14,解得x =4或6.4.平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这12个点中的每三个作圆,共可作圆( )A.220个B.210个C.200个D.1 320个解析:选A C312=220,故选A.5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( )A.60种B.48种C.30种D.10种解析:选C 从5名志愿者中选派2人参加星期六的公益活动有C25种方法,再从剩下的3人中选派2人参加星期日的公益活动有C23种方法,由分步乘法计数原理可得不同的选派方法共有C25·C23=30种.故选C.6.C03+C14+C25+…+C1821的值等于________.解析:原式=C04+C14+C25+…+C1821=C15+C25+…+C1821=C1721+C1821=C1822=C422=7 315.答案:7 3157.若已知集合P={1,2,3,4,5,6},则集合P的子集中含有3个元素的子集数为________.解析:由于集合中的元素具有无序性,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C36=20种.答案:208.不等式C 2n -n<5的解集为________.解析:由C 2n -n<5,得n (n -1)2-n<5,∴n 2-3n -10<0. 解得-2<n<5.由题设条件知n ≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}.答案:{2,3,4}9.(1)解方程:A 3m =6C 4m ;(2)解不等式:C x -18>3C x 8.解:(1)原方程等价于m(m -1)(m -2)=6×m (m -1)(m -2)(m -3)4×3×2×1,∴4=m -3,m =7. (2)由已知得:⎩⎪⎨⎪⎧ x -1≤8,x ≤8,∴x ≤8,且x ∈N *, ∵C x -18>3C x 8,∴8!(x -1)!(9-x )!>3×8!x !(8-x )!. 即19-x >3x ,∴x>3(9-x),解得x>274, ∴x =7,8.∴原不等式的解集为{7,8}.10.某区有7条南北向街道,5条东西向街道.(如图)。
课时跟踪检测(五)综合法和分析法层级一学业水平达标1.要证明a+a+7<a+3+a+4(a≥0)可选择的方法有多种,其中最合理的是()A.综合法B.类比法C.分析法D.归纳法解析:选C直接证明很难入手,由分析法的特点知用分析法最合理.2.命题“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”,其过程应用了()A.分析法B.综合法C.综合法、分析法综合使用D.间接证法解析:选B结合分析法及综合法的定义可知B正确.3.在不等边三角形中,a为最大边,要想得到∠A为钝角的结论,三边a,b,c应满足什么条件()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:选C由cos A=b2+c2-a22bc<0,得b2+c2<a2.4.若a=ln 22,b=ln 33,c=ln 55,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c解析:选C利用函数单调性.设f(x)=ln xx,则f′(x)=1-ln xx2,∴0<x<e时,f′(x)>0,f(x)单调递增;x>e时,f′(x)<0,f(x)单调递减.又a=ln 44,∴b>a>c.5.已知m>1,a=m+1-m,b=m-m-1,则以下结论正确的是() A.a>b B.a<bC.a=b D.a,b大小不定解析:选B∵a=m+1-m=1m+1+m,b=m-m-1=1m+m-1.而m +1+m >m +m -1>0(m >1), ∴1m +1+m <1m +m -1,即a <b . 6.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 取导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:该证明过程符合综合法的特点.答案:综合法7.如果a a +b b >a b +b a ,则正数a ,b 应满足的条件是________.解析:∵a a +b b -(a b +b a )=a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b ).∴只要a ≠b ,就有a a +b b >a b +b a .答案:a ≠b8.若不等式(-1)n a <2+(-1)n +1n 对任意正整数n 恒成立,则实数a 的取值范围是________.解析:当n 为偶数时,a <2-1n ,而2-1n ≥2-12=32,所以a <32,当n 为奇数时,a >-2-1n ,而-2-1n <-2,所以a ≥-2.综上可得,-2≤a <32. 答案:⎣⎡⎭⎫-2,32 9.求证:2cos(α-β)-sin(2α-β)sin α=sin βsin α. 证明:要证原等式,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin [(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α=cos(α-β)sin α-sin(α-β)cos α=sin β.所以①成立,所以原等式成立.10.已知数列{a n }的首项a 1=5,S n +1=2S n +n +5,(n ∈N *).(1)证明数列{a n +1}是等比数列.(2)求a n .解:(1)证明:由条件得S n =2S n -1+(n -1)+5(n ≥2)①又S n +1=2S n +n +5,②②-①得a n +1=2a n +1(n ≥2),所以a n +1+1a n +1=(2a n +1)+1a n +1=2(a n +1)a n +1=2. 又n =1时,S 2=2S 1+1+5,且a 1=5,所以a 2=11,所以a 2+1a 1+1=11+15+1=2, 所以数列{a n +1}是以2为公比的等比数列.(2)因为a 1+1=6,所以a n +1=6×2n -1=3×2n , 所以a n =3×2n -1.层级二 应试能力达标1.使不等式1a <1b成立的条件是( ) A .a >bB .a <bC .a >b 且ab <0D .a >b 且ab >0解析:选D 要使1a <1b ,须使1a -1b <0,即b -a ab<0. 若a >b ,则b -a <0,ab >0;若a <b ,则b -a >0,ab <0.2.对任意的锐角α,β,下列不等式中正确的是( )A .sin(α+β)>sin α+sin βB .sin(α+β)>cos α+cos βC . cos(α+β)>sin α+sin βD .cos(α+β)<cos α+cos β解析:选D 因为α,β为锐角,所以0<α<α+β<π,所以cos α>cos(α+β).又cos β>0,所以cos α+cos β>cos(α+β).3.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B ∵x >0,y >0,1x +4y =1,∴x +y 4=⎝⎛⎭⎫x +y 4⎝⎛⎭⎫1x +4y =2+y 4x +4x y≥2+2y 4x ·4x y =4,等号在y =4x ,即x =2,y =8时成立,∴x +y 4的最小值为4,要使不等式m 2-3m >x +y 4有解,应有m 2-3m >4,∴m <-1或m >4,故选B.4.下列不等式不成立的是( )A .a 2+b 2+c 2≥ab +bc +ca B.a +b >a +b (a >0,b >0) C.a -a -1<a -2-a -3(a ≥3) D.2+10>2 6解析:选D 对A ,∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,∴a 2+b 2+c 2≥ab +bc +ca ;对B ,∵(a +b )2=a +b +2ab ,(a +b )2=a +b ,∴a +b >a +b ;对C ,要证 a -a -1<a -2-a -3(a ≥3)成立,只需证明a +a -3<a -2+a -1,两边平方得2a -3+2a (a -3)<2a -3+2(a -2)(a -1),即a (a -3)<(a -2)(a -1),两边平方得a 2-3a <a 2-3a +2,即0<2.因为0<2显然成立,所以原不等式成立;对于D ,(2+10)2-(26)2=12+45-24=4(5-3)<0,∴2+10<26,故D 错误.5.已知函数f (x )=2x ,a ,b 为正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系是________.解析:∵a +b 2≥ab (a ,b 为正实数),2ab a +b ≤ab ,且f (x )=2x 是增函数,∴f ⎝⎛⎭⎫2ab a +b ≤f (ab )≤f ⎝⎛⎭⎫a +b 2,即C ≤B ≤A .答案:C ≤B ≤A6.如图所示,四棱柱ABCD - A 1B 1C 1D 1的侧棱垂直于底面,满足________时,BD ⊥A 1C (写上一个条件即可).解析:要证BD ⊥A 1C ,只需证BD ⊥平面AA 1C .因为AA 1⊥BD ,只要再添加条件AC ⊥BD ,即可证明BD ⊥平面AA 1C ,从而有BD ⊥A 1C .答案:AC ⊥BD (答案不唯一)7.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C .证明:在锐角三角形ABC 中,∵A +B >π2,∴A >π2-B . ∴0<π2-B <A <π2, 又∵在⎝⎛⎭⎫0,π2内正弦函数y =sin x 是单调递增函数,∴sin A >sin ⎝⎛⎭⎫π2-B =cos B , 即sin A >cos B .①同理sin B >cos C ,②sin C >cos A .③由①+②+③,得:sin A +sin B +sin C >cos A +cos B +cos C .8.已知n ∈N ,且n >1,求证:log n (n +1)>log n +1(n +2).证明:要证明log n (n +1)>log n +1(n +2),即证明log n (n +1)-log n +1(n +2)>0.(*)∵log n (n +1)-log n +1(n +2)=1log n +1n-log n +1(n +2) =1-log n +1n ·log n +1(n +2)log n +1n . 又∵当n >1时,log n +1n >0,且log n +1(n +2)>0,log n +1n ≠log n +1(n +2),∴log n +1n ·log n +1(n +2)<14[log n +1n +log n +1(n +2)]2=14log 2n +1[n (n +2)]=14log 2n +1(n 2+2n )<14log 2n +1(n +1)2=1, 故1-log n +1n ·log n +1(n +2)>0,∴1-log n +1n ·log n +1(n +2)log n +1n>0. 这说明(*)式成立,∴log n (n +1)>log n +1(n +2).。
课时跟踪检测(五) 综合法和分析法一、选择题1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是间接证明法;⑤分析法是逆推法.其中正确的语句有( )A .2个B .3个C .4个D .5个解析:选C ①②③⑤正确.2.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是() A .f (x )=1x B .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:选A 本题就是找哪一个函数在(0,+∞)上是减函数,A 项中,f ′(x )=⎝ ⎛⎭⎪⎫1x ′=-1x2<0,∴f (x )=1x 在(0,+∞)上为减函数.3.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1 D.14解析:选B 3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0, 所以ab ≤a +b 2=12⇒ab ≤14,所以1a +1b =a +b ab =1ab ≥114=4.4.A ,B 为△ABC 的内角,A >B 是sin A >sin B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 若A >B ,则a >b ,又a sin A =b sin B ,∴sin A >sin B ;若sin A >sin B ,则由正弦定理得a >b ,∴A >B .5.已知f (x )=a x +1,0<a <1,若x 1,x 2∈R ,且x 1≠x 2,则( )A.+2≤f⎝⎛⎭⎪⎫x1+x22B.+2=f⎝⎛⎭⎪⎫x1+x22C.+2≥f⎝⎛⎭⎪⎫x1+x22D.+2>f⎝⎛⎭⎪⎫x1+x22解析:选D 因为x1≠x2,所以+2=ax1+1+ax2+12>ax1+1·ax2+1=a x1+x22+1=f⎝⎛⎭⎪⎫x1+x22,所以+2>f⎝⎛⎭⎪⎫x1+x22.二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x取导得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”应用了______________的证明方法.解析:该证明过程符合综合法的特点.答案:综合法7.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b8.已知sin θ+cos θ=15且π2≤θ≤3π4,则cos 2θ=________.解析:因为sin θ+cos θ=1 5,所以1+sin 2θ=1 25,所以sin 2θ=-2425. 因为π2≤θ≤3π4, 所以π≤2θ≤3π2. 所以cos 2θ=-1-sin22θ=-725. 答案:-725三、解答题9.求证:2cos(α-β)-s α-βsin α=sin βsin α. 证明:要证原等式成立,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)·sin α =cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以原等式成立.10.(天津高考)已知{a n }是各项均为正数的等差数列,公差为d ,对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d ,T n =∑k =12n (-1)k b 2k ,n ∈N *,求证:∑k =1n 1Tk <12d2. 证明:(1)由题意得b 2n =a n a n +1, c n =b 2n +1-b 2n =a n +1a n +2-a n a n +1=2da n +1.因此c n +1-c n =2d (a n +2-a n +1)=2d 2,所以{c n }是等差数列.(2)T n =(-b 21+b 2)+(-b 23+b 24)+…+(-b 2n -1+b 2n)=2d (a 2+a 4+…+a 2n )=2d ·+2 =2d 2n (n +1).所以∑k =1n 1Tk =12d2∑k =1n 1+ =12d2∑k =1n ⎝ ⎛⎭⎪⎫1k -1k +1 =12d2·⎝ ⎛⎭⎪⎫1-1n +1 <12d2.。
课时跟踪检测(一) 两个计数原理及其简单应用层级一 学业水平达标1.某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有( )A.24种 B.9种C.3种 D.26种解析:选B 不同的杂志本数为4+3+2=9种,从其中任选一本阅读,共有9种选法. 2.已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是( )A.1 B.3C.6 D.9解析:选D 这件事可分为两步完成:第一步,在集合{2,3,7}中任取一个值x有3种方法;第二步,在集合{-31,-24,4}中任取一个值y有3种方法.根据分步乘法计数原理知,有3×3=9个不同的点.3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( ) A.30个 B.42个C.36个 D.35个解析:选C 要完成这件事可分两步,第一步确定b(b≠0)有6种方法,第二步确定a 有6种方法,故由分步乘法计数原理知共有6×6=36个虚数.4.5名同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A.10种 B.20种C.25种 D.32种解析:选D 每位同学限报其中的一个小组,各有2种报名方法,根据分步乘法计数原理,不同的报名方法共有25=32种.5.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( )A.60 B.48C.36 D.24解析:选B 长方体的6个表面构成的“平行线面组”有6×6=36(个),另外含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12(个),所以共有36+12=48(个). 6.已知a∈{2,4,6,8},b∈{3,5,7,9},能组成log a b>1的对数值有________个.解析:分四类,当a=2时,b取3,5,7,9四种情况;当a=4时,b取5,7,9三种情况;当a=6时,b取7,9两种情况;当a=8时,b取9一种情况,所以总共有4+3+2+1=10种,又log23=log49,所以对数值有9个.答案:97.用0到9这十个数字,可以组成没有重复数字的三位偶数的个数为________. 解析:由题意知本题是一个分类计数问题,若个位数字为0,前两位的排法种数为9×8=72;若个位数字不为0,则确定个位数字有4种方法,确定百位数字有8种方法,确定十位数字有8种方法,所以排法种数为4×8×8=256.所以可以组成256+72=328个没有重复数字的三位偶数.答案:3288.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.解析:按照焊接点脱落的个数进行分类:第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种.根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.答案:139.用0,1,2,3,4,5这6个数字组成无重复数字的四位数,若把每位数字比其左邻的数字小的数叫做“渐降数”,求上述四位数中“渐降数”的个数.解:分三类:第一类,千位数字为3时,要使四位数为“渐降数”,则四位数只有3 210,共1个;第二类,千位数字为4时,“渐降数”有4 321,4 320,4 310,4 210,共4个;第三类,千位数字为5时,“渐降数”有5 432,5 431,5 430,5 421,5 420,5 410,5 321,5 320,5 310,5 210,共10个.由分类加法计数原理,得共有1+4+10=15个“渐降数”.10.现有高一四个班的学生34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以共有不同的选法N=7+8+9+10=34(种).(2)分四步:第一、二、三、四步分别从一、二、三、四班学生中选一人任组长.所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步:从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以,共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).层级二 应试能力达标1.由数字1,2,3,4可以组成有重复数字的三位奇数的个数为( )A.12 B.24C.48 D.32解析:选D 依据分步乘法计数原理,由数字1,2,3,4组成有重复数字的三位奇数共有2×4×4=32个.2.(2016·全国卷Ⅰ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24 B.18C.12 D.9解析:选B 由题意可知E→F有6种走法,F→G有3种走法,由分步乘法计数原理知,共6×3=18种走法.3.将3个不同的小球放入4个盒子中,则不同放法种数有( )A.81 B.64C.14 D.12解析:选B 对于第一个小球有4种不同的放法,第二个小球也有4种不同的放法,第三个小球也有4种不同的放法,即每个小球都有4种可能的放法,根据分步乘法计数原理知共有4×4×4=64种放法.4.定义集合A与B的运算A*B如下:A*B={(x,y)|x∈A,y∈B}.若A={a,b,c},B={a,c,d,e},则集合A*B的元素个数为( )A.34 B.43C.12 D.以上都不对解析:选C 由分步乘法计数原理可知,A*B中有3×4=12个元素.5.圆周上有2n个等分点(n大于2),任取3个点可得一个三角形,恰为直角三角形的个数为________.解析:先在圆周上找一点,因为有2n个等分点,所以应有n条直径,不过该点的直径应有n-1条,这n-1条直径都可以与该点形成直角三角形,即一个点可形成n-1个直角三角形,而这样的点有2n个,所以一共可形成2n(n-1)个符合条件的直角三角形. 答案:2n(n-1)6.某运动会上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种. 解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排,共有4×3×2=24种方法;第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,共有5×4×3×2×1=120种方法.所以安排这8人的方式共有24×120=2 880种.答案:2 8807.某校高二共有三个班,各班人数如下表.男生人数 女生人数 总人数高二(1)班 30 20 50高二(2)班 30 30 60高二(3)班 35 20 55(1)从三个班中选1名学生任学生会主席,有多少种不同的选法?(2)从高二(1)班、(2)班男生中或从高二(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?解:(1)从三个班中选1名学生任学生会主席,共有3类不同的方案:第1类,从高二(1)班中选出1名学生,有50种不同的选法;第2类,从高二(2)班中选出1名学生,有60种不同的选法;第3类,从高二(3)班中选出1名学生,有55种不同的选法.根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165种不同的选法.(2)从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:第1类,从高二(1)班男生中选出1名学生,有30种不同的选法;第2类,从高二(2)班男生中选出1名学生,有30种不同的选法;第3类,从高二(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80种不同的选法.8.标号为A,B,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球的颜色不同,有多少种取法?(2)若取出的两个小球颜色相同,有多少种取法?解:(1)若两个球颜色不同,则应在A,B袋中各取1个,或A,C袋中各取1个,或B,C袋中各取1个,共有1×2+1×3+2×3=11种取法.(2)若两个球颜色相同,则应在B袋中取出两个,或在C袋中取出两个,共有1+3=4种取法.。
课时跟踪检测(五) 函数的单调性与导数层级一 学业水平达标1.下列函数中,在(0,+∞)内为增函数的是( )A .y =sin xB .y =x e xC .y =x 3-xD .y =ln x -x解析:选B B 中,y ′=(x e x )′=e x +x e x =e x (x +1)>0在(0,+∞)上恒成立,∴y =x e x 在(0,+∞)上为增函数.对于A 、C 、D 都存在x >0,使y ′<0的情况.2.若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( ) A.⎝⎛⎭⎫13,+∞B.⎝⎛⎦⎤-∞,13C.⎣⎡⎭⎫13,+∞D.⎝⎛⎭⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13. 3.函数y =x 4-2x 2+5的单调递减区间为( )A .(-∞,-1)和(0,1)B .[-1,0]和[1,+∞)C .[-1,1]D .(-∞,-1]和[1,+∞)解析:选A y ′=4x 3-4x ,令y ′<0,即4x 3-4x <0,解得x <-1或0<x <1,所以函数的单调递减区间为(-∞,-1)和(0,1),故应选A.4.函数y =x ln x 在(0,5)上的单调性是( )A .单调递增B .单调递减C .在⎝⎛⎭⎫0, 1e 上单调递减,在⎝⎛⎭⎫1e , 5上单调递增 D .在⎝⎛⎭⎫0, 1e 上单调递增,在⎝⎛⎭⎫1e , 5上单调递减 解析:选C 由已知得函数的定义域为(0,+∞).∵y ′=ln x +1,令y ′>0,得x >1e. 令y ′<0,得x <1e. ∴函数 y =x ln x 在⎝⎛⎭⎫0, 1e 上单调递减,在⎝⎛⎭⎫1e , 5上单调递增.5.若函数y =a (x 3-x )的单调减区间为⎝⎛⎭⎫-33, 33,则a 的取值范围是( ) A .(0,+∞)B .(-1,0)C .(1,+∞)D .(0,1) 解析:选A y ′=a (3x 2-1)=3a ⎝⎛⎭⎫x -33⎝⎛⎭⎫x +33. 当-33<x <33时,⎝⎛⎭⎫x -33⎝⎛⎭⎫x +33<0, 要使y =a (x 3-x )在⎝⎛⎭⎫-33, 33上单调递减, 只需y ′<0,即a >0. 6.函数f (x )=cos x +32x 的单调递增区间是________. 解析:因为f ′(x )=-sin x +32>0,所以f (x )在R 上为增函数. 答案:(-∞,+∞)7.若函数y =13ax 3-12ax 2-2ax (a ≠0)在[-1,2]上为增函数,则a ∈________. 解析:y ′=ax 2-ax -2a =a (x +1)(x -2)>0,∵当x ∈(-1,2)时,(x +1)(x -2)<0,∴a <0.答案:(-∞,0)8.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是 . 解析:∵y ′=-4x 2+a ,且y 有三个单调区间,∴方程y ′=-4x 2+a =0有两个不等的实根,∴Δ=02-4×(-4)×a >0,∴a >0.答案:(0,+∞)9.已知函数f (x )=13x 3+ax 2+bx ,且f ′(-1)=-4,f ′(1)=0. (1)求a 和b ;(2)试确定函数f (x )的单调区间.解:(1)∵f (x )=13x 3+ax 2+bx , ∴f ′(x )=x 2+2ax +b ,由⎩⎪⎨⎪⎧ f ′(-1)=-4,f ′(1)=0,得⎩⎪⎨⎪⎧1-2a +b =-4,1+2a +b =0.解得a =1,b =-3.(2)由(1)得f (x )=13x 3+x 2-3x . f ′(x )=x 2+2x -3=(x -1)(x +3).由f ′(x )>0得x >1或x <-3;由f ′(x )<0得-3<x <1.∴f (x )的单调递增区间为(-∞,-3),(1,+∞),单调递减区间为(-3,1).10.已知a ≥0,函数f (x )=(x 2-2ax )e x .设f (x )在区间[-1,1]上是单调函数,求a 的取值范围.解:f ′(x )=(2x -2a )e x +(x 2-2ax )e x=e x [x 2+2(1-a )x -2a ].令f ′(x )=0,即x 2+2(1-a )x -2a =0.解得x 1=a -1-1+a 2,x 2=a -1+1+a 2, 令f ′(x )>0,得x >x 2或x <x 1,令f ′(x )<0,得x 1<x <x 2.∵a ≥0,∴x 1<-1,x 2≥0.由此可得f (x )在[-1,1]上是单调函数的充要条件为x 2≥1,即a -1+1+a 2≥1,解得a ≥34. 故所求a 的取值范围为⎣⎡⎭⎫34,+∞.层级二 应试能力达标1.已知函数f (x )=x +ln x ,则有( )A .f (2)<f (e)<f (3)B .f (e)<f (2)<f (3)C .f (3)<f (e)<f (2)D .f (e)<f (3)<f (2) 解析:选A 在(0,+∞)内,f ′(x )=12x+1x >0,所以f (x )在(0,+∞)内是增函数,所以有f (2)<f (e)<f (3).2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能的是( )解析:选C 由f ′(x )的图象知,x ∈(-∞,0)时,f ′(x )>0,f (x )为增函数,x ∈(0,2)时,f ′(x )<0,f (x )为减函数,x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数.只有C 符合题意,故选C.3.(全国Ⅱ卷)若函数f (x )=kx -ln x 在区间(1,+∞)内单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.4.设函数F (x )=f (x )e x是定义在R 上的函数,其中f (x )的导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 016)>e 2 016f (0)B .f (2)<e 2f (0),f (2 016)>e 2 016f (0)C .f (2)<e 2f (0),f (2 016)<e 2 016f (0)D .f (2)>e 2f (0),f (2 016)<e 2 016f (0)解析:选C ∵函数F (x )=f (x )e x 的导数F ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x <0, ∴函数F (x )=f (x )e x 是定义在R 上的减函数, ∴F (2)<F (0),即f (2)e 2<f (0)e 0,故有f (2)<e 2f (0). 同理可得f (2 016)<e 2 016f (0).故选C.5.已知函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为____________.解析:设g (x )=f (x )-2x -4,则g ′(x )=f ′(x )-2.∵对任意x ∈R ,f ′(x )>2,∴g ′(x )>0. ∴g (x )在R 上为增函数.又g (-1)=f (-1)+2-4=0,∴x >-1时,g (x )>0.∴由f (x )>2x +4,得x >-1.答案:(-1,+∞)6.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是_____________.解析:∵f (x )在(-1,+∞)上为减函数,∴f ′(x )≤0在(-1,+∞)上恒成立,∵f ′(x )=-x +b x +2,∴-x +b x +2≤0, ∵b ≤x (x +2)在(-1,+∞)上恒成立,g (x )=x (x +2)=(x +1)2-1,∴g (x )min =-1,∴b ≤-1.答案:(-∞,-1]7.已知x >0,证明不等式ln(1+x )>x -12x 2成立. 证明:设f (x )=ln(1+x )-x +12x 2, 其定义域为(-1,+∞),则f ′(x )=11+x -1+x =x 21+x. 当x >-1时,f ′(x )>0,则f (x )在(-1,+∞)内是增函数.∴当x >0时,f (x )>f (0)=0.∴当x >0时,不等式ln(1+x )>x -12x 2成立.8.已知函数f (x )=x 3-ax -1.(1)是否存在实数a ,使f (x )在(-1,1)上单调递减?若存在,求出a 的取值范围;若不存在,说明理由.(2)证明:f(x)=x3-ax-1的图象不可能总在直线y=a的上方.解:(1)已知函数f(x)=x3-ax-1,∴f′(x)=3x2-a,由题意知3x2-a≤0在(-1,1)上恒成立,∴a≥3x2在x∈(-1,1)上恒成立.但当x∈(-1,1)时,0<3x2<3,∴a≥3,即当a≥3时,f(x)在(-1,1)上单调递减.(2)证明:取x=-1,得f(-1)=a-2<a,即存在点(-1,a-2)在f(x)=x3-ax-1的图象上,且在直线y=a的下方.即f(x)的图象不可能总在直线y=a的上方.。
课时跟踪检测(十五) 综合法和分析法层级一 学业水平达标1.要证明a +a +7<a +3+a +4(a ≥0)可选择的方法有多种,其中最合理的是( )A .综合法B .类比法C .分析法D .归纳法解析:选C 直接证明很难入手,由分析法的特点知用分析法最合理.2.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ ”,其过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证法解析:选B 结合分析法及综合法的定义可知B 正确.3.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足什么条件( )A .a 2<b 2+c 2B .a 2=b 2+c 2C .a 2>b 2+c 2D .a 2≤b 2+c 2 解析:选C 由cos A =b 2+c 2-a 22bc<0,得b 2+c 2<a 2. 4.若a =ln 22,b =ln 33,c =ln 55,则( ) A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析:选C 利用函数单调性.设f (x )=ln x x ,则f ′(x )=1-ln x x 2,∴0<x <e 时,f ′(x )>0,f (x )单调递增;x >e 时,f ′(x )<0,f (x )单调递减.又a =ln 44,∴b >a >c . 5.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:选A 由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.6.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 取导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:该证明过程符合综合法的特点.答案:综合法7.如果a a +b b >a b +b a ,则正数a ,b 应满足的条件是________.解析:∵a a +b b -(a b +b a )=a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b ).∴只要a ≠b ,就有a a +b b >a b +b a .答案:a ≠b8.若不等式(-1)n a <2+(-1)n +1n 对任意正整数n 恒成立,则实数a 的取值范围是________.解析:当n 为偶数时,a <2-1n ,而2-1n ≥2-12=32,所以a <32,当n 为奇数时,a >-2-1n ,而-2-1n <-2,所以a ≥-2.综上可得,-2≤a <32. 答案:⎣⎢⎡⎭⎪⎫-2,32 9.求证:2cos(α-β)-sin(2α-β)sin α=sin βsin α. 证明:要证原等式,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,① 因为①左边=2cos (α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α=cos(α-β)sin α-sin(α-β)cos α=sin β.所以①成立,所以原等式成立.10.已知数列{a n }的首项a 1=5,S n +1=2S n +n +5,(n ∈N *).(1)证明数列{a n +1}是等比数列.(2)求a n .解:(1)证明:由条件得S n =2S n -1+(n -1)+5(n ≥2)①又S n +1=2S n +n +5,②②-①得a n +1=2a n +1(n ≥2),所以a n +1+1a n +1=(2a n +1)+1a n +1=2(a n +1)a n +1=2. 又n =1时,S 2=2S 1+1+5,且a 1=5,所以a 2=11,所以a 2+1a 1+1=11+15+1=2, 所以数列{a n +1}是以2为公比的等比数列.(2)因为a 1+1=6,所以a n +1=6×2n -1=3×2n , 所以a n =3×2n -1.层级二 应试能力达标1.使不等式1a <1b成立的条件是( ) A .a >bB .a <bC .a >b 且ab <0D .a >b 且ab >0解析:选D 要使1a <1b ,须使1a -1b <0,即b -a ab<0. 若a >b ,则b -a <0,ab >0;若a <b ,则b -a >0,ab <0.2.对任意的锐角α,β,下列不等式中正确的是( )A .sin(α+β)>sin α+sin βB .si n(α+β)>cos α+cos βC .cos(α+β)>sin α+sin βD .cos(α+β)<cos α+cos β解析:选D 因为α,β为锐角,所以0<α<α+β<π,所以cos α>cos(α+β).又cos β>0,所以cos α+cos β>cos(α+β).3.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选 B ∵x >0,y >0,1x +4y =1,∴x +y 4=⎝ ⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫1x +4y =2+y 4x +4x y≥2+2y 4x ·4x y =4,等号在y =4x ,即x =2,y =8时成立,∴x +y 4的最小值为4,要使不等式m 2-3m >x +y 4有解,应有m 2-3m >4,∴m <-1或m >4,故选B.4.下列不等式不成立的是( )A .a 2+b 2+c 2≥ab +bc +ca B.a +b >a +b (a >0,b >0) C.a -a -1<a -2-a -3(a ≥3) D.2+10>2 6解析:选 D 对A ,∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,∴a 2+b 2+c 2≥ab +bc +ca ;对B ,∵(a +b )2=a +b +2ab ,(a +b )2=a +b ,∴a +b >a +b ;对C ,要证 a -a -1<a -2-a -3(a ≥3)成立,只需证明a +a -3<a -2+a -1,两边平方得2a -3+2a (a -3)<2a -3+2(a -2)(a -1),即a (a -3)<(a -2)(a -1),两边平方得a 2-3a <a 2-3a +2,即0<2.因为0<2显然成立,所以原不等式成立;对于D ,(2+10)2-(26)2=12+45-24=4(5-3)<0,∴2+10<26,故D 错误.5.已知函数f (x )=2x ,a ,b 为正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系是________.解析:∵a +b 2≥ab (a ,b 为正实数),2ab a +b ≤ab ,且f (x )=2x 是增函数,∴f ⎝ ⎛⎭⎪⎫2ab a +b ≤f (ab )≤f ⎝ ⎛⎭⎪⎫a +b 2,即C ≤B ≤A . 答案:C ≤B ≤A6.如图所示,四棱柱ABCD A 1B 1C 1D 1的侧棱垂直于底面,满足________时,BD ⊥A 1C (写上一个条件即可).解析:要证BD ⊥A 1C ,只需证BD ⊥平面AA 1C .因为AA 1⊥BD ,只要再添加条件AC ⊥BD ,即可证明BD ⊥平面AA 1C ,从而有BD ⊥A 1C .答案:AC ⊥BD (答案不唯一)7.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C .证明:在锐角三角形ABC 中,∵A +B >π2,∴A >π2-B . ∴0<π2-B <A <π2,又∵在⎝⎛⎭⎪⎫0,π2内正弦函数y =sin x 是单调递增函数, ∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B , 即sin A >cos B .①同理sin B >cos C ,②sin C >cos A .③由①+②+③,得: sin A +sin B +sin C >cos A +cos B +cos C .8.已知n ∈N,且n >1,求证:log n (n +1)>log n +1(n +2).证明:要证明log n (n +1)>log n +1(n +2),即证明log n (n +1)-log n +1(n +2)>0.(*)∵log n (n +1)-log n +1(n +2)=1log n +1n-log n +1(n +2) =1-log n +1n ·log n +1(n +2)log n +1n . 又∵当n >1时,log n +1n >0,且log n +1(n +2)>0,log n +1n ≠log n +1(n +2),∴log n +1n ·log n +1(n +2)<14[log n +1n +log n +1(n +2)]2=14log 2n +1[n (n +2)]=14log 2n +1(n 2+2n )<14log 2n +1(n +1)2=1, 故1-log n +1n ·log n +1(n +2)>0,∴1-log n +1n ·log n +1(n +2)log n +1n>0. 这说明(*)式成立,∴log n (n +1)>log n +1(n +2).。
课时跟踪检测(三) 几个常用函数的导数和基本初等函数的导数公式层级一 学业水平达标1.已知函数f (x )=x 3的切线的斜率等于3,则切线有( ) A .1条 B .2条 C .3条D .不确定解析:选B ∵f ′(x )=3x 2=3,解得x =±1.切点有两个,即可得切线有2条. 2.曲线y =e x 在点A (0,1)处的切线斜率为( ) A .1 B .2 C .eD.1e解析:选A 由条件得y ′=e x ,根据导数的几何意义,可得k =y ′|x =0=e 0=1. 3.已知f (x )=-3x 53,则f ′(22)=( ) A .10 B .-5x 23C .5D .-10解析:选D ∵f ′(x )=-5x 53,∴f ′(22)=-5×223×23=-10,故选D.4.已知f (x )=x α,若f ′(-1)=-2,则α的值等于( ) A .2 B .-2 C .3D .-3解析:选A 若α=2,则f (x )=x 2,∴f ′(x )=2x , ∴f ′(-1)=2×(-1)=-2适合条件.故应选A. 5. 曲线y =13x 3在x =1处切线的倾斜角为( )A .1B .-π4C.π4D.5π4解析:选C ∵y ′=x 2,∴y ′|x =1=1,∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=π4.6.曲线y =ln x 在点M (e,1)处的切线的斜率是________,切线方程为____________. 解析:∵y ′=(ln x )′=1x ,∴y ′|x =e =1e.∴切线方程为y -1=1e (x -e),即x -e y =0.答案:1ex -e y =07.已知f (x )=a 2(a 为常数),g (x )=ln x ,若2x [f ′(x )+1]-g ′(x )=1,则x =________. 解析:因为f ′(x )=0,g ′(x )=1x , 所以2x [f ′(x )+1]-g ′(x )=2x -1x =1.解得x =1或x =-12,因为x >0,所以x =1.答案:18.设坐标平面上的抛物线C :y =x 2,过第一象限的点(a ,a 2)作抛物线C 的切线l ,则直线l 与y 轴的交点Q 的坐标为________.解析:显然点(a ,a 2)为抛物线C :y =x 2上的点,∵y ′=2x ,∴直线l 的方程为y -a 2=2a (x -a ).令x =0,得y =-a 2,∴直线l 与y 轴的交点的坐标为(0,-a 2). 答案:(0,-a 2) 9.求下列函数的导数:(1)y =x 8;(2)y =4x ;(3)y =log 3x ; (4)y =sin ⎝⎛⎭⎫x +π2;(5)y =e 2. 解:(1)y ′=(x 8)′=8x 8-1=8x 7. (2)y ′=(4x )′=4x ln 4. (3)y ′=(log 3x )′=1x ln 3. (4)y ′=(cos x )′=-sin x . (5)y ′=(e 2)′=0.10.已知P (-1,1),Q (2,4)是曲线y =x 2上的两点, (1)求过点P ,Q 的曲线y =x 2的切线方程. (2)求与直线PQ 平行的曲线y =x 2的切线方程.解:(1)因为y ′=2x ,P (-1,1),Q (2,4)都是曲线y =x 2上的点. 过P 点的切线的斜率k 1=y ′|x =-1=-2,过Q 点的切线的斜率k 2=y ′|x =2=4,过P 点的切线方程:y -1=-2(x +1),即2x +y +1=0. 过Q 点的切线方程:y -4=4(x -2),即4x -y -4=0. (2)因为y ′=2x ,直线PQ 的斜率k =4-12+1=1,切线的斜率k =y ′|x =x 0=2x 0=1, 所以x 0=12,所以切点M ⎝⎛⎭⎫12,14, 与PQ 平行的切线方程为: y -14=x -12,即4x -4y -1=0. 层级二 应试能力达标1.质点沿直线运动的路程s 与时间t 的关系是s =5t ,则质点在t =4时的速度为( ) A.12523B.110523C.25523 D.110523 解析:选B ∵s ′=15t -45.∴当t =4时,s ′=15·1544=110523.2.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( )A .2B .ln 2+1C .ln 2-1D .ln 2解析:选C ∵y =ln x 的导数y ′=1x , ∴令1x =12,得x =2,∴切点为(2,ln 2).代入直线y =12x +b ,得b =ln 2-1.3.在曲线f (x )=1x 上切线的倾斜角为34π的点的坐标为( )A .(1,1)B .(-1,-1)C .(-1,1)D .(1,1)或(-1,-1)解析:选D 因为f (x )=1x ,所以f ′(x )=-1x 2,因为切线的倾斜角为34π,所以切线斜率为-1,即f ′(x )=-1x 2=-1,所以x =±1,则当x =1时,f (1)=1;当x =-1时,f (1)=-1,则点坐标为(1,1)或(-1,-1).4.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n的值为( )A. 1nB.1n +1C.n n +1D .1解析:选B 对y =x n +1(n ∈N *)求导得y ′=(n +1)x n . 令x =1,得在点(1,1)处的切线的斜率k =n +1,∴在点(1,1)处的切线方程为y -1=(n +1)(x n -1).令y =0,得x n =nn +1,∴x 1·x 2·…·x n =12×23×34×…×n -1n ×n n +1=1n +1, 故选B.5.与直线2x -y -4=0平行且与曲线y =ln x 相切的直线方程是________. 解析:∵直线2x -y -4=0的斜率为k =2, 又∵y ′=(ln x )′=1x ,∴1x =2,解得x =12.∴切点的坐标为⎝⎛⎭⎫12,-ln 2. 故切线方程为y +ln 2=2⎝⎛⎭⎫x -12. 即2x -y -1-ln 2=0. 答案:2x -y -1-ln 2=06.若曲线y =x 在点P (a ,a )处的切线与两坐标轴围成的三角形的面积为2,则实数a 的值是________________.解析:∵y ′=12x ,∴切线方程为y -a =12a (x -a ),令x =0,得y =a 2,令y =0,得x =-a ,由题意知12·a2·a =2,∴a =4.答案:47.已知曲线方程为y =f (x )=x 2,求过点B (3,5)且与曲线相切的直线方程. 解:设切点P 的坐标为(x 0,x 20). ∵y =x 2,∴y ′=2x ,∴k =f ′(x 0)=2x 0, ∴切线方程为y -x 20=2x 0(x -x 0).将点B (3,5)代入上式,得5-x 20=2x 0(3-x 0), 即x 20-6x 0+5=0,∴(x 0-1)(x 0-5)=0, ∴x 0=1或x 0=5,∴切点坐标为(1,1)或(5,25),故所求切线方程为y -1=2(x -1)或y -25=10(x -5), 即2x -y -1=0或10x -y -25=0.8.求证:双曲线xy =a 2上任意一点处的切线与两坐标轴围成的三角形的面积等于常数. 证明:设P (x 0,y 0)为双曲线xy =a 2上任一点. ∵y ′=⎝⎛⎭⎫a 2x ′=-a 2x 2. ∴过点P 的切线方程为y -y 0=-a 2x 20(x -x 0).令x =0,得y =2a 2x 0;令y =0,得x =2x 0.则切线与两坐标轴围成的三角形的面积为S =12·⎪⎪⎪⎪2a 2x 0·|2x 0|=2a 2. 即双曲线xy =a 2上任意一点处的切线与两坐标轴围成的三角形的面积为常数2a 2.。
课时跟踪检测(十五) 综合法和分析法一、选择题1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是间接证明法;⑤分析法是逆推法.其中正确的语句有( )A .2个B .3个C .4个D .5个解析:选C ①②③⑤正确.2.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1) 解析:选A 本题就是找哪一个函数在(0,+∞)上是减函数,A 项中,f ′(x )=⎝⎛⎭⎫1x ′=-1x 2<0,∴f (x )=1x 在(0,+∞)上为减函数. 3.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为( ) A .8B .4C .1D.14 解析:选B 3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14,所以1a +1b =a +b ab =1ab ≥114=4. 4.A ,B 为△ABC 的内角,A >B 是sin A >sin B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 若A >B ,则a >b .又∵a sin A =b sin B , ∴sin A >sin B .若sin A >sin B ,则由正弦定理得a >b ,∴A >B .5.已知f (x )=a x +1,0<a <1,若x 1,x 2∈R ,且x 1≠x 2,则( )A.f (x 1)+f (x 2)2≤f ⎝⎛⎭⎫x 1+x 22B.f (x 1)+f (x 2)2=f ⎝⎛⎭⎫x 1+x 22C.f (x 1)+f (x 2)2≥f ⎝⎛⎭⎫x 1+x 22D.f (x 1)+f (x 2)2>f ⎝⎛⎭⎫x 1+x 22解析:选D 因为x 1≠x 2,所以f (x 1)+f (x 2)2=ax 1+1+ax 2+12> ax 1+1·ax 2+1=a x 1+x 22+1=f ⎝⎛⎭⎫x 1+x 22,所以f (x 1)+f (x 2)2>f ⎝⎛⎭⎫x 1+x 22.二、填空题6.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 取导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:该证明过程符合综合法的特点.答案:综合法7.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________.解析:a a +b b >a b +b a⇔a a -a b >b a -b b⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可.答案:a ≥0,b ≥0且a ≠b8.已知sin θ+cos θ=15且π2≤θ≤3π4,则cos 2θ=________. 解析:因为sin θ+cos θ=15,所以1+sin 2θ=125,所以sin 2θ=-2425.因为π2≤θ≤3π4,所以π≤2θ≤3π2, 所以cos 2θ=-1-sin 22θ=-725. 答案:-725三、解答题9.求证:2cos(α-β)-sin(2α-β)sin α=sin βsin α.证明:要证原等式成立,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α=cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以等式成立.10.设f(x)=ln x+x-1,证明:(1)当x>1时,f(x)<32(x-1);(2)当1<x<3时,f(x)<9(x-1) x+5.证明:(1)记g(x)=ln x+x-1-32(x-1),则当x>1时,g′(x)=1x+12x-32<0.又因为g(1)=0,故g(x)<0,即f(x)<32(x-1).(2)记h(x)=f(x)-9(x-1) x+5,则h′(x)=1x+12x-54(x+5)2=2+x2x-54(x+5)2<x+54x-54(x+5)2=(x+5)3-216x 4x(x+5)2.令p(x)=(x+5)3-216x,则当1<x<3时,p′(x)=3(x+5)2-216<0,因此p(x)在(1,3)内单调递减.又因为p(1)=0,则p(x)<0,故h′(x)<0,因此h(x)在(1,3)内单调递减.又因为h(1)=0,则h(x)<0,故当1<x<3时,f(x)<9(x-1) x+5.。
课时跟踪检测三一、题组对点训练 对点练一 排列概念的理解 1.下列问题是排列问题的是( )A .从10名同学中选取2名去参加知识竞赛,共有多少种不同的选取方法?B .10个人互相通信一次,共写了多少封信?C .平面上有5个点,任意三点不共线,这5个点最多可确定多少条直线?D .从1,2,3,4四个数字中,任选两个相加,其结果共有多少种?解析:选B 排列问题是与顺序有关的问题,四个选项中只有B 中的问题是与顺序相关的,其他问题都与顺序无关,所以选B.2.从3个不同的数字中取出2个:①相加;②相减;③相乘;④相除;⑤一个为被开方数,一个为根指数.则上述问题为排列问题的个数为( )A .2B .3C .4D .5解析:选B 排列与顺序有关,故②④⑤是排列. 对点练二 利用排列数公式进行计算或证明 3.已知A 2n =132,则n 等于( ) A .11 B .12 C .13D .14解析:选B A 2n =n (n -1)=132,即n 2-n -132=0, 解得n =12或n =-11(舍去). 4.A 312-A 310的值是( ) A .480 B .520 C .600D .1 320解析:选C A 312=12×11×10=1 320, A 310=10×9×8=720, 故A 312-A 310=1 320-720=600. 5.下列等式中不成立的是( ) A .A 3n =(n -2)A 2n B.1nA n n +1=A n -1n +1C .n A n -2n -1=A nn D.nn -mA m n -1=A mn解析:选B A 中,右边=(n -2)(n -1)n =A 3n 成立;C 中,左边=n ×(n -1)×…×2=n ×(n -1)×(n -2)×…×2×1=A nn 成立;D 中,左边=nn -m ×(n -1)!(n -m -1)!=n !(n -m )!=A mn 成立;经验证只有B 不正确.6.计算下列各题: (1)A 66;(2)2A 58+7A 48A 88-A 59;(3)若3A 3n =2A 2n +1+6A 2n ,求n .解:(1)A 66=6!=6×5×4×3×2×1=720.(2)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5=1.(3)由3A 3n =2A 2n +1+6A 2n ,得3n (n -1)(n -2)=2(n +1)n +6n (n -1). 因为n ≥3且n ∈N *, 所以3n 2-17n +10=0. 解得n =5或n =23(舍去).所以n =5.对点练三 简单的排列问题7.若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同工作,则选派方案共有( )A .180种B .360种C .15种D .30种解析:选B 问题为6选4的排列即A 46=360.8.由数字1,2,3,4,5组成无重复数字的四位偶数的个数是( ) A .12 B .24 C .36D .48解析:选D 从2,4中取一个数作为个位数字,有2种取法,再从其余四个数中取出三个数排在前三位,有A 34种,由分步乘法计数原理知组成无重复数字的四位偶数的个数为2×A 34=48.9.沪宁高铁线上有六个大站:上海、苏州、无锡、常州、镇江、南京,铁路部门应为沪宁线上的六个大站(这六个大站之间)准备的不同的火车票的种数为( )A .15B .30C .12D .36解析:选B 只需分析每两个大站之间需要的火车票的种数即可.对于两个大站A 和B ,从A 到B 的火车票与从B 到A 的火车票不同,因为每张车票对应一个起点站和一个终点站,因此,每张火车票对应从6个不同元素(大站)中取出2个不同元素(起点站和终点站)的一种排列,所以问题归结为求从6个不同元素中每次抽出2个不同元素的排列数,故不同的火车票有A26=6×5=30(种).10.将A、B、C、D四名同学按一定顺序排成一行,要求自左向右,且A不排在第一,B 不排在第二,C不排在第三,D不排在第四.试写出他们四人所有不同的排法.解:由于A不排在第一,所以第一只能排B、C、D中的一个,据此可分为三类.由此可写出所有的排法为:BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA.11.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示多少种不同的信号?解:第1类,挂1面旗表示信号,有A13种不同方法;第2类,挂2面旗表示信号,有A23种不同方法;第3类,挂3面旗表示信号,有A33种不同方法.根据分类加法计数原理,可以表示的信号种数为A13+A23+A33=3+3×2+3×2×1=15.二、综合过关训练1.89×90×91×…×100可表示为( )A.A10100B.A11100C.A12100D.A13100解析:选C 最大数为100,共有12个连续整数的乘积,由排列数公式的定义可以得出.2.与A310·A77不相等的是( )A.A910B.81A88C.10A99D.A1010解析:选B A310·A77=10×9×8×7!=A910=10A99=A1010,81A88=9A99≠A1010,故选B.3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有( )A.12种B.24种C.48种D.120种解析:选B ∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A44=24(种).4.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从2,3,4,5,6,9这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有( ) A.120个B.80个C.40个D.20个解析:选C 由题意知可按十位数字的取值进行分类:第一类,十位数字取9,有A25个;第二类,十位数字取6,有A24个;第三类,十位数字取5,有A23个;第四类,十位数字取4,有A22个.所以“伞数”的个数为A25+A24+A23+A22=40.故选C.5.由0,1,2,…,9这十个数字组成的无重复数字的四位数中,十位数字与千位数字之差的绝对值等于7的四位数的个数是________.解析:当十位数字为0,千位数字为7时,四位数的个数是A28;当十位数字与千位数字为1,8或8,1时,四位数的个数是A28A22;当十位数字与千位数字为2,9或9,2时,四位数的个数是A28A22.故所求的四位数的个数是A28+A28A22+A28A22=280.答案:2806.有3名大学毕业生,到5家公司应聘,若每家公司至多招聘1名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答) 解析:将5家公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题,所以不同的招聘方案共有A35=5×4×3=60(种).答案:607.有三张卡片,正面分别写着1,2,3三个数字,反面分别写着0,5,6三个数字,问这三张卡片可组成多少个三位数?解:先排列三张卡片,有A33×2×2×2种排法,0排在首位的个数为A22×2×2,则这三张卡片可以组成A33×2×2×2-A22×2×2=40个三位数.8.某国的篮球职业联赛共有16支球队参加.(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?解:(1)任意两队之间要进行一场主场比赛及一场客场比赛,对应于从16支球队任取两支的一个排列,比赛的总场次是A216=16×15=240.(2)由(1)中的分析,比赛的总场次是A28×2+1=8×7×2+1=113.。
姓名,年级:时间:第二章推理与证明2。
2 直接证明与间接证明2.2。
2 反证法课时跟踪检测一、选择题1.用反证法证明命题“若a>2,则方程x2+ax+1=0至少有一个实根”时,应假设()A.方程x2+ax+1=0没有实根B.方程x2+ax+1=0至多有一个实根C.方程x2+ax+1=0至多有两个实根D.方程x2+ax+1=0恰好有两个实根解析:“至少有一个”的否定为“一个也没有",故选A.答案:A2.(2019·山西大学附属中学高二月考)若下列关于x的方程x2+4ax-4a+3=0(a为常数),x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是( )解析:假设三个方程都没有实数根,则错误!解得-错误!〈a<-1,故三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根时,实数a的取值范围为a≤-错误!或a≥-1。
故选B。
答案:B3.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b中至少有一个能被3整除”时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除解析:“至少有一个的”否定是“一个也没有”,故选B。
答案:B4.已知f(x)是R上的增函数,a,b∈R,下列四个命题:①若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b);②若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0;③若a+b<0,则f(a)+f(b)<f(-a)+f(-b);④若f(a)+f(b)<f(-a)+f(-b),则a+b<0.其中真命题的个数为()A.1 B.2C.3 D.4解析:易知①③正确.②用反证法:假设a+b<0,则a<-b,b<-a,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b)与条件矛盾,故a +b≥0,从而②为真命题,④类似于②用反证法.故选D。
课时跟踪检测(一)变化率问题导数的概念层级一学业水平达标1.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆B.抛物线C.椭圆D.直线解析:选D 当f(x)=b时,瞬时变化率li m△x-0ΔyΔx=li m△x-0b-bΔx=0,所以f(x)的图象为一条直线.2.设函数y=f(x)=x2-1,当自变量x由1变为1.1时,函数的平均变化率为( ) A.2.1 B.1.1C.2 D.0解析:选A ΔyΔx=f 1.1 -f 11.1-1=0.210.1=2.1.3.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则( )A.f′(x)=a B.f′(x)=bC.f′(x0)=a D.f′(x0)=b解析:选C f′(x0)=li m△x-0f x0+Δx -f x0Δx=li m△x-0(a+b²Δx)=a.4.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( ) A.6 B.18C.54 D.81解析:选B ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-3²32=18Δt+3(Δt)2.∴ΔsΔt=18+3Δt.∴li m△x-0ΔsΔt=li m△x-0(18+3Δt)=18,故应选B.5.已知f(x)=x2-3x,则f′(0)=( )A.Δx-3 B.(Δx)2-3Δx C.-3 D.0解析:选C f′(0)=li m△x-0 0+Δx 2-3 0+Δx -02+3³0Δx=li m△x-0 Δx 2-3ΔxΔx=li m△x-0(Δx-3)=-3.故选C.6.设f (x )=ax +4,若f ′(1)=2,则a =________. 解析:∵f ′(1)=li m △x -0 f 1+Δx -f 1Δx=li m △x -0a 1+Δx +4- a +4Δx=a ,∴a =2.答案:27.汽车行驶的路程s 和时间t 之间的函数图象如图,在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系为________.解析:v 1=k OA ,v 2=k AB ,v 3=k BC , 由图象知k OA <k AB <k BC . 答案:v 1<v 2<v 38.球的半径从1增加到2时,球的体积平均膨胀率为______. 解析:∵Δy =43π³23-43π³13=28π3,∴Δy Δx =28π32-1=28π3. 答案:28π39.质点按规律s (t )=at 2+1做直线运动(s 单位:m ,t 单位:s).若质点在t =2时的瞬时速度为8 m /s ,求常数a 的值.解:∵Δs =s (2+Δt )-s (2)=[a (2+Δt )2+1]-(a ³22+1)=4a Δt +a (Δt )2,∴Δs Δt =4a +a Δt ,∴在t =2时,瞬时速度为li m △x -0ΔsΔt=4a,4a =8,∴a =2. 10.已知函数f (x )=⎩⎪⎨⎪⎧-1x ,x >0,1+x 2,x ≤0求f ′(4)²f ′(-1)的值.解:当x =4时,Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx 4+Δx +2.∴Δy Δx =124+Δx 4+Δx +2. ∴li m Δx →0 Δy Δx =li m Δx →0124+Δx 4+Δx +2 =12³4³ 4+2 =116.∴f ′(4)=116.当x =-1时,Δy Δx =f -1+Δx -f -1Δx=1+ -1+Δx 2-1- -12Δx =Δx -2,由导数的定义,得f ′(-1)=li m Δx →0 (Δx -2)=-2, ∴f ′(4)²f ′(-1)=116³(-2)=-18.层级二 应试能力达标1.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则ΔyΔx等于( ) A .4 B .4x C .4+2ΔxD .4+2(Δx )2解析:选 C Δy Δx =f 1+Δx -f 1 Δx =2 1+Δx 2-4+2Δx =2 Δx 2+4ΔxΔx =2Δx +4.2.甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,则在[0,t 0]这个时间段内,甲、乙两人的平均速度v 甲,v 乙的关系是( )A .v 甲>v 乙B .v 甲<v 乙C .v 甲=v 乙D .大小关系不确定解析:选B 设直线AC ,BC 的斜率分别为k AC ,k BC ,由平均变化率的几何意义知,s 1(t )在[0,t 0]上的平均变化率v 甲=k AC ,s 2(t )在[0,t 0]上的平均变化率v 乙=k BC .因为k AC <k BC ,所以v 甲<v 乙.3.若可导函数f (x )的图象过原点,且满足li m Δx →0 f ΔxΔx=-1,则f ′(0)=( ) A .-2B .-1C .1D .2解析:选B ∵f (x )图象过原点,∴f (0)=0, ∴f ′(0)=li m Δx →0 f 0+Δx -f 0 Δx =li m Δx →0 f ΔxΔx=-1, ∴选B.4.已知f (x )=2x ,且f ′(m )=-12,则m 的值等于( )A .-4B .2C .-2D .±2解析:选D f ′(x )=li m △x -0f x +Δx -f x Δx =-2x 2,于是有-2m 2=-12,m 2=4,解得m =±2.5.已知函数f (x )=-x 2+x 在区间[t,1]上的平均变化率为2,则t =________. 解析:∵Δy =f (1)-f (t )=(-12+1)-(-t 2+t )=t 2-t , ∴Δy Δx =t 2-t 1-t =-t . 又∵ΔyΔx =2,∴t =-2. 答案:-26.一物体的运动方程为s =7t 2+8,则其在t =________时的瞬时速度为1. 解析:Δs Δt =7 t 0+Δt 2+8- 7t 20+8 Δt =7Δt +14t 0,当li m Δx →0 (7Δt +14t 0)=1时,t =t 0=114. 答案:1147.枪弹在枪筒中运动可以看作匀加速运动,如果它的加速度是5.0³105m/s 2,枪弹从枪口射出时所用时间为1.6³10-3s ,求枪弹射出枪口时的瞬时速度.解:位移公式为s =12at 2,∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2,∴Δs Δt =at 0+12a Δt ,∴li m Δx →0 Δs Δt =li m Δx →0 ⎝ ⎛⎭⎪⎫at 0+12a Δt =at 0, 已知a =5.0³105m/s 2,t 0=1.6³10-3s ,∴at 0=800 m/s. 所以枪弹射出枪口时的瞬时速度为800 m/s.8.设函数f (x )在x 0处可导,求下列各式的值.(1) li m Δx →0 f x 0-m Δx -f x 0Δx;(2li m Δx →0f x 0+4Δx -f x 0+5ΔxΔx.解:(1) li m Δx →0 f x 0-m Δx -f x 0Δx=-m li m Δx →0 f x 0-m Δx -f x 0-m Δx=-mf ′(x 0).(2)原式 =li m Δx →0 f x 0+4Δx -f x 0 -[f x 0+5Δx -f x 0 ]Δx=li m Δx →0f x 0+4Δx -f x 0 Δx -li m Δx →0 f x 0+5Δx -f x 0Δx =4li m Δx →0f x 0+4Δx -f x 0 4Δx -5li m Δx →0 f x 0+5Δx -f x 0 5Δx=4f ′(x 0)-5f ′(x 0)=-f ′(x 0).课时跟踪检测(二) 导数的几何意义层级一 学业水平达标1.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处切线的斜率,当切线垂直于x 轴时,切线的斜率不存在,但存在切线.2.曲线f (x )=-2x在点M (1,-2)处的切线方程为( )A .y =-2x +4B .y =-2x -4C .y =2x -4D .y =2x +4解析:选C Δy Δx =-21+Δx +2Δx =21+Δx ,所以当Δx →0时,f ′(1)=2,即k =2.所以直线方程为y +2=2(x -1).即y =2x -4.故选C.3.曲线y =13x 3-2在点⎝ ⎛⎭⎪⎫1,-53处切线的倾斜角为( )A .1B.π4C.5π4 D .-π4解析:选B ∵y ′=li m Δx →0 ⎣⎢⎡⎦⎥⎤13 x +Δx 3-2-⎝ ⎛⎭⎪⎫13x 3-2Δx=li m Δx →0 ⎣⎢⎡⎦⎥⎤x 2+x Δx +13 Δx 2=x 2,∴切线的斜率k =y ′|x =1=1. ∴切线的倾斜角为π4,故应选B.4.曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B.12 C .-12D .-1解析:选A ∵y ′|x =1=li m Δx →0 a 1+Δx 2-a ³12Δx= li m Δx →0 2a Δx +a Δx2Δx =li m Δx →0 (2a +a Δx )=2a , ∴2a =2,∴a =1.5.过正弦曲线y =sin x 上的点⎝ ⎛⎭⎪⎫π2,1的切线与y =sin x 的图象的交点个数为( ) A .0个 B .1个 C .2个D .无数个解析:选D 由题意,y =f (x )=sin x , 则f ′⎝ ⎛⎭⎪⎫π2=li m Δx →0 sin ⎝ ⎛⎭⎪⎫π2+Δx -sinπ2Δx=li m Δx →0 cos Δx -1Δx . 当Δx →0时,cos Δx →1,∴f ′⎝ ⎛⎭⎪⎫π2=0.∴曲线y =sin x 的切线方程为y =1,且与y =sin x 的图象有无数个交点. 6.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.解析:由导数的几何意义得f ′(1)=12,由点M 在切线上得f (1)=12³1+2=52,所以f (1)+f ′(1)=3.答案:37.已知曲线f (x )=x ,g (x )=1x过两曲线交点作两条曲线的切线,则曲线f (x )在交点处的切线方程为____________________.解析:由⎩⎪⎨⎪⎧y =xy =1x,得⎩⎪⎨⎪⎧x =1,y =1,∴两曲线的交点坐标为(1,1). 由f (x )=x , 得f ′(x )=li m △x →01+Δx -1Δx =li m Δx →0 11+Δx +1=12, ∴y =f (x )在点(1,1)处的切线方程为y -1=12(x -1).即x -2y +1=0, 答案:x -2y +1=08.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________. 解析:设f (x )=y =x 2-3x ,切点坐标为(x 0,y 0), f ′(x 0)=li m Δx →0 x 0+Δx 2-3 x 0+Δx -x 20+3x 0Δx =li m Δx →0 2x 0Δx -3Δx + Δx 2Δx=2x 0-3=1,故x 0=2, y 0=x 20-3x 0=4-6=-2,故切点坐标为(2,-2).答案:(2,-2)9.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离. 解:根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 2),则y ′|x =x 0=li m Δx →0 x 0+Δx 2-x 2Δx=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14, 切点到直线x -y -2=0的距离d =12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728.10.已知直线l :y =4x +a 和曲线C :y =x 3-2x 2+3相切,求a 的值及切点的坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0),∵Δy Δx = x 0+Δx 3-2 x 0+Δx 2+3- x 30-2x 20+3 Δx =(Δx )2+(3x 0-2)Δx +3x 20-4x 0.∴当Δx →0时,Δy Δx →3x 20-4x 0,即f ′(x 0)=3x 20-4x 0,由导数的几何意义,得3x 20-4x 0=4, 解得x 0=-23或x 0=2.∴切点的坐标为⎝ ⎛⎭⎪⎫-23,4927或(2,3), 当切点为⎝ ⎛⎭⎪⎫-23,4927时, 有4927=4³⎝ ⎛⎭⎪⎫-23+a ,∴a =12127, 当切点为(2,3)时,有3=4³2+a ,∴a =-5, 当a =12127时,切点为⎝ ⎛⎭⎪⎫-23,4927;a =-5时,切点为(2,3).层级二 应试能力达标1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B )B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选B.2.已知曲线y =2x 3上一点A (1,2),则点A 处的切线斜率等于( ) A .0 B .2 C .4D .6解析:选 D Δy =2(1+Δx )3-2³13=6Δx +6(Δx )2+2(Δx )3,li m Δx →0ΔyΔx =li m Δx →0[2(Δx )2+6Δx +6]=6,故选D.3.设f (x )存在导函数,且满足li m Δx →0f 1 -f 1-2Δx2Δx=-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2解析:选B li m Δx →0 f 1 -f 1-2Δx2Δx=li m Δx →0 f 1-2Δx -f 1-2Δx=f ′(x )=-1.4.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b为( ) A.13 B.23 C .-23D .-13解析:选D 由导数的定义可得y ′=3x 2,∴y =x 3在点P (1,1)处的切线斜率k =y ′|x=1=3,由条件知,3³a b =-1,∴a b =-13.5.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则li m Δx →0f 1+Δx -f 1Δx=______.解析:由导数的概念和几何意义知, li m Δx →0f 1+Δx -f 1 Δx =f ′(1)=k AB =0-42-0=-2.答案:-26.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则f 1f ′ 0的最小值为________.解析:由导数的定义,得f ′(0)=li m Δx →0f Δx -f 0Δx=li m Δx →0 a Δx 2+b Δx +c -cΔx=li m Δx →0 (a ²Δx +b )=b . 又因为对于任意实数x ,有f (x )≥0,则⎩⎪⎨⎪⎧Δ=b 2-4ac ≤0,a >0,所以ac ≥b 24,所以c >0.所以f 1f ′ 0=a +b +c b ≥b +2ac b ≥2bb=2. 答案:27.已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx ,若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值.解:∵f ′(x )=li m Δx →0 Δy Δx =li m Δx →0 a x +Δx 2+1- ax 2+1Δx =2ax , ∴f ′(1)=2a ,即切线斜率k 1=2a .∵g ′(x )=li m Δx →0 Δy Δx =li m Δx →0 x +Δx 3+b x +Δx - x 3+bx Δx =3x 2+b ,∴g ′(1)=3+b ,即切线斜率k 2=3+b . ∵在交点(1,c )处有公共切线,∴2a =3+b .又∵a +1=1+b ,即a =b ,故可得⎩⎪⎨⎪⎧a =3,b =3.8.已知曲线y =x 2+1,是否存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.解:∵Δy Δx = x +Δx 2+1-x 2-1Δx =2x +Δx ,∴y ′=li m Δx →0ΔyΔx =li m Δx →0(2x +Δx )=2x . 设切点为P (x 0,y 0),则切线的斜率为k =y ′|x =x 0=2x 0,由点斜式可得所求切线方程为y -y 0=2x 0(x -x 0).又∵切线过点(1,a ),且y 0=x 20+1, ∴a -(x 20+1)=2x 0(1-x 0), 即x 20-2x 0+a -1=0.∵切线有两条, ∴Δ=(-2)2-4(a -1)>0,解得a <2.故存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线,a 的取值范围是 (-∞,2).课时跟踪检测(三)几个常用函数的导数和基本初等函数的导数公式层级一 学业水平达标1.已知函数f (x )=x 3的切线的斜率等于3,则切线有( ) A .1条 B .2条 C .3条D .不确定解析:选B ∵f ′(x )=3x 2=3,解得x =±1.切点有两个,即可得切线有2条. 2.曲线y =e x在点A (0,1)处的切线斜率为( )A .1B .2C .eD.1e解析:选A 由条件得y ′=e x,根据导数的几何意义,可得k =y ′|x =0=e 0=1.3.已知f (x )=-3x 53,则f ′(22)=( ) A .10 B .-5x 23C .5D .-10解析:选D ∵f ′(x )=-5x 53,∴f ′(22)=-5³223³23=-10,故选D.4.已知f (x )=x α,若f ′(-1)=-2,则α的值等于( ) A .2 B .-2 C .3D .-3解析:选A 若α=2,则f (x )=x 2,∴f ′(x )=2x , ∴f ′(-1)=2³(-1)=-2适合条件.故应选A. 5. 曲线y =13x 3在x =1处切线的倾斜角为( )A .1B .-π4C.π4D.5π4解析:选C ∵y ′=x 2,∴y ′|x =1=1,∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=π4.6.曲线y =ln x 在点M (e,1)处的切线的斜率是________,切线方程为____________. 解析:∵y ′=(ln x )′=1x ,∴y ′|x =e =1e .∴切线方程为y -1=1e (x -e),即x -e y =0.答案:1ex -e y =07.已知f (x )=a 2(a 为常数),g (x )=ln x ,若2x [f ′(x )+1]-g ′(x )=1,则x =________.解析:因为f ′(x )=0,g ′(x )=1x,所以2x [f ′(x )+1]-g ′(x )=2x -1x=1.解得x =1或x =-12,因为x >0,所以x =1.答案:18.设坐标平面上的抛物线C :y =x 2,过第一象限的点(a ,a 2)作抛物线C 的切线l ,则直线l 与y 轴的交点Q 的坐标为________.解析:显然点(a ,a 2)为抛物线C :y =x 2上的点,∵y ′=2x ,∴直线l 的方程为y -a 2=2a (x -a ).令x =0,得y =-a 2,∴直线l 与y 轴的交点的坐标为(0,-a 2). 答案:(0,-a 2) 9.求下列函数的导数:(1)y =x 8;(2)y =4x;(3)y =log 3x ;(4)y =sin ⎝⎛⎭⎪⎫x +π2;(5)y =e 2.解:(1)y ′=(x 8)′=8x8-1=8x 7.(2)y ′=(4x)′=4x ln 4. (3)y ′=(log 3x )′=1x ln 3. (4)y ′=(cos x )′=-sin x . (5)y ′=(e 2)′=0.10.已知P (-1,1),Q (2,4)是曲线y =x 2上的两点, (1)求过点P ,Q 的曲线y =x 2的切线方程. (2)求与直线PQ 平行的曲线y =x 2的切线方程.解:(1)因为y ′=2x ,P (-1,1),Q (2,4)都是曲线y =x 2上的点. 过P 点的切线的斜率k 1=y ′|x =-1=-2, 过Q 点的切线的斜率k 2=y ′|x =2=4,过P 点的切线方程:y -1=-2(x +1),即2x +y +1=0. 过Q 点的切线方程:y -4=4(x -2),即4x -y -4=0. (2)因为y ′=2x ,直线PQ 的斜率k =4-12+1=1,切线的斜率k =y ′|x =x 0=2x 0=1, 所以x 0=12,所以切点M ⎝ ⎛⎭⎪⎫12,14, 与PQ 平行的切线方程为:y -14=x -12,即4x -4y -1=0.层级二 应试能力达标1.质点沿直线运动的路程s 与时间t 的关系是s =5t ,则质点在t =4时的速度为( ) A.12523B.110523C.25523D.110523解析:选B ∵s ′=15t -45.∴当t =4时,s ′=15²1544=110523 .2.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( )A .2B .ln 2+1C .ln 2-1D .ln 2解析:选C ∵y =ln x 的导数y ′=1x,∴令1x =12,得x =2,∴切点为(2,ln 2).代入直线y =12x +b ,得b =ln 2-1.3.在曲线f (x )=1x 上切线的倾斜角为34π的点的坐标为( )A .(1,1)B .(-1,-1)C .(-1,1)D .(1,1)或(-1,-1)解析:选D 因为f (x )=1x ,所以f ′(x )=-1x 2,因为切线的倾斜角为34π,所以切线斜率为-1,即f ′(x )=-1x2=-1,所以x =±1,则当x =1时,f (1)=1;当x =-1时,f (1)=-1,则点坐标为(1,1)或(-1,-1). 4.设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1²x 2²…²x n 的值为( )A. 1nB.1n +1C.nn +1D .1解析:选B 对y =xn +1(n ∈N *)求导得y ′=(n +1)x n. 令x =1,得在点(1,1)处的切线的斜率k =n +1,∴在点(1,1)处的切线方程为y -1=(n +1)(x n -1).令y =0,得x n =nn +1,∴x 1²x 2²…²x n =12³23³34³…³n -1n ³n n +1=1n +1, 故选B.5.与直线2x -y -4=0平行且与曲线y =ln x 相切的直线方程是________. 解析:∵直线2x -y -4=0的斜率为k =2, 又∵y ′=(ln x )′=1x ,∴1x =2,解得x =12.∴切点的坐标为⎝ ⎛⎭⎪⎫12,-ln 2. 故切线方程为y +ln 2=2⎝ ⎛⎭⎪⎫x -12.即2x -y -1-ln 2=0. 答案:2x -y -1-ln 2=06.若曲线y =x 在点P (a ,a )处的切线与两坐标轴围成的三角形的面积为2,则实数a 的值是________________.解析:∵y ′=12x ,∴切线方程为y -a =12a (x -a ),令x =0,得y =a2,令y =0,得x =-a ,由题意知12²a2²a =2,∴a =4.答案:47.已知曲线方程为y =f (x )=x 2,求过点B (3,5)且与曲线相切的直线方程. 解:设切点P 的坐标为(x 0,x 20).∵y =x 2,∴y ′=2x ,∴k =f ′(x 0)=2x 0, ∴切线方程为y -x 20=2x 0(x -x 0).将点B (3,5)代入上式,得5-x 20=2x 0(3-x 0), 即x 20-6x 0+5=0,∴(x 0-1)(x 0-5)=0, ∴x 0=1或x 0=5,∴切点坐标为(1,1)或(5,25),故所求切线方程为y -1=2(x -1)或y -25=10(x -5), 即2x -y -1=0或10x -y -25=0.8.求证:双曲线xy =a 2上任意一点处的切线与两坐标轴围成的三角形的面积等于常数. 证明:设P (x 0,y 0)为双曲线xy =a 2上任一点.∵y ′=⎝ ⎛⎭⎪⎫a 2x ′=-a 2x 2. ∴过点P 的切线方程为y -y 0=-a 2x 20(x -x 0).令x =0,得y =2a2x 0;令y =0,得x =2x 0.则切线与两坐标轴围成的三角形的面积为 S =12²⎪⎪⎪⎪⎪⎪2a 2x 0²|2x 0|=2a 2. 即双曲线xy =a 2上任意一点处的切线与两坐标轴围成的三角形的面积为常数2a 2.课时跟踪检测(四) 导数的运算法则层级一 学业水平达标1.已知函数f (x )=ax 2+c ,且f ′(1)=2,则a 的值为( ) A .1 B. 2 C .-1D .0解析:选A ∵f (x )=ax 2+c ,∴f ′(x )=2ax , 又∵f ′(1)=2a ,∴2a =2,∴a =1.2.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4解析:选D y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′=2(x +1)²(x -1)+(x +1)2=3x 2+2x -1,∴y ′|x =1=4.3.曲线f (x )=x ln x 在点x =1处的切线方程为( ) A .y =2x +2 B .y =2x -2 C .y =x -1D .y =x +1解析:选C ∵f ′(x )=l n x +1,∴f ′(1)=1,又f (1)=0,∴在点x =1处曲线f (x )的切线方程为y =x -1.4. 已知物体的运动方程为s =t 2+3t(t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194B.174C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.5.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 6.曲线y =x 3-x +3在点(1,3)处的切线方程为________. 解析:∵y ′=3x 2-1,∴y ′|x =1=3³12-1=2. ∴切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=07.已知曲线y 1=2-1x与y 2=x 3-x 2+2x 在x =x 0处切线的斜率的乘积为3,则x 0=________.解析:由题知y ′1=1x 2,y ′2=3x 2-2x +2,所以两曲线在x =x 0处切线的斜率分别为1x 20,3x 2-2x 0+2,所以3x 20-2x 0+2x 2=3,所以x 0=1. 答案:18.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________. 解析:∵f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4³22+22,得f ′⎝ ⎛⎭⎪⎫π4=2-1.∴f (x )=(2-1)cos x +sin x .∴f ⎝ ⎛⎭⎪⎫π4=1. 答案:19.求下列函数的导数: (1)y =x sin 2x ;(2)y =e x+1e x -1;(3)y =x +cos xx +sin x;(4)y =cos x ²sin 3x .解:(1)y ′=(x )′sin 2x +x (sin 2x )′=sin 2x +x ²2sin x ²(sin x )′=sin 2x +x sin 2x .(2)y ′= e x +1 ′ e x -1 - e x +1 e x-1 ′e x -1 2=-2e xe x -12 . (3)y ′= x +cos x ′ x +sin x - x +cos x x +sin x ′x +sin x 2= 1-sin x x +sin x - x +cos x 1+cos xx +sin x 2=-x cos x -x sin x +sin x -cos x -1x +sin x2. (4)y ′=(cos x ²sin 3x )′=(cos x )′sin 3x +cos x (sin 3x )′ =-sin x sin 3x +3cos x cos 3x =3cos x cos 3x -sin x sin 3x .10.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求f (x )的解析式.解:∵f (x )的图象过点P (0,1),∴e =1. 又∵f (x )为偶函数,∴f (-x )=f (x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e . ∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2, ∴切点为(1,-1).∴a +c +1=-1. ∵f ′(x )|x =1=4a +2c ,∴4a +2c =1. ∴a =52,c =-92.∴函数f (x )的解析式为f (x )=52x 4-92x 2+1.层级二 应试能力达标1.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0解析:选B ∵f ′(x )=4ax 3+2bx 为奇函数,∴f ′(-1)=-f ′(1)=-2. 2.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:选C 函数的导数为f ′(x )=ex -1+x ex -1=(1+x )ex -1,当x =1时,f ′(1)=2,即曲线y =x e x -1在点(1,1)处切线的斜率k =f ′(1)=2,故选C.3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e -1B .-1C .-e -1D .-e解析:选C ∵f (x )=2xf ′(e)+ln x , ∴f ′(x )=2f ′(e)+1x,∴f ′(e)=2f ′(e)+1e ,解得f ′(e)=-1e ,故选C.4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞)D .(-1,0)解析:选C ∵f (x )=x 2-2x -4ln x , ∴f ′(x )=2x -2-4x>0,整理得 x +1 x -2 x>0,解得-1<x <0或x >2,又因为f (x )的定义域为(0,+∞),所以x >2.5.已知直线y =2x -1与曲线y =ln(x +a )相切,则a 的值为________________. 解析:∵y =ln(x +a ),∴y ′=1x +a ,设切点为(x 0,y 0), 则y 0=2x 0-1,y 0=ln(x 0+a ),且1x 0+a=2, 解之得a =12ln 2.答案:12ln 26.曲线y =x2x -1在点(1,1)处的切线为l ,则l 上的点到圆x 2+y 2+4x +3=0上的点的最近距离是____________.解析:y ′=-12x -12,则y ′| x =1=-1,∴切线方程为y -1=-(x -1),即x+y -2=0,圆心(-2,0)到直线的距离d =22,圆的半径r =1,∴所求最近距离为22-1.答案:22-17.已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.(1)求a ,b 的值;(2)如果曲线y =f (x )的某一切线与直线l :y =-14x +3垂直,求切点坐标与切线的方程.解:(1)∵f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a , 由题意可得f ′(2)=12+a =13,f (2)=8+2a +b =-6, 解得a =1,b =-16.(2)∵切线与直线y =-14x +3垂直,∴切线的斜率k =4. 设切点的坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14, 或y 0=-1-1-16=-18.则切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.8.设f n (x )=x +x 2+…+x n-1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎝ ⎛⎭⎪⎫0, 23内有且仅有一个零点(记为a n ),且0<a n -12<2n3n +1. 解:(1)由题设f n ′(x )=1+2x +…+nx n -1.所以f n ′(2)=1+2³2+…+(n -1)2n -2+n ²2n -1,①则2f n ′(2)=2+2³22+…+(n -1)2n -1+n ²2n,②①-②得,-f n ′(2)=1+2+22+…+2n -1-n ²2n=1-2n1-2-n ²2n =(1-n )²2n-1, 所以f n ′(2)=(n -1)²2n+1. (2)因为f (0)=-1<0,f n ⎝ ⎛⎭⎪⎫23=23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n 1-23-1=1-2³⎝ ⎛⎭⎪⎫23n ≥1-2³⎝ ⎛⎭⎪⎫232>0,因为x ≥0,n ≥2.所以f n (x )=x +x 2+…+x n-1为增函数,所以f n (x )在⎝ ⎛⎭⎪⎫0, 23内单调递增, 因此f n (x )在⎝⎛⎭⎪⎫0, 23内有且仅有一个零点a n . 由于f n (x )=x -x n +11-x-1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23.所以0<a n -12=12a n +1n <12³⎝ ⎛⎭⎪⎫23n +1=2n 3n +1.课时跟踪检测(五) 函数的单调性与导数层级一 学业水平达标1.下列函数中,在(0,+∞)内为增函数的是( ) A .y =sin x B .y =x e xC .y =x 3-xD .y =ln x -x解析:选B B 中,y ′=(x e x)′=e x+x e x=e x(x +1)>0在(0,+∞)上恒成立,∴y =x e x 在(0,+∞)上为增函数.对于A 、C 、D 都存在x >0,使y ′<0的情况.2.若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎝ ⎛⎦⎥⎤-∞,13C.⎣⎢⎡⎭⎪⎫13,+∞ D.⎝⎛⎭⎪⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13.3.函数y =x 4-2x 2+5的单调递减区间为( ) A .(-∞,-1)和(0,1) B .[-1,0]和[1,+∞) C .[-1,1]D .(-∞,-1]和[1,+∞)解析:选A y ′=4x 3-4x ,令y ′<0,即4x 3-4x <0,解得x <-1或0<x <1,所以函数的单调递减区间为(-∞,-1)和(0,1),故应选A.4.函数y =x ln x 在(0,5)上的单调性是( ) A .单调递增 B .单调递减C .在⎝ ⎛⎭⎪⎫0, 1e 上单调递减,在⎝ ⎛⎭⎪⎫1e , 5上单调递增D .在⎝ ⎛⎭⎪⎫0, 1e 上单调递增,在⎝ ⎛⎭⎪⎫1e , 5上单调递减 解析:选C 由已知得函数的定义域为(0,+∞). ∵y ′=ln x +1,令y ′>0,得x >1e .令y ′<0,得x <1e.∴函数y =x ln x 在⎝ ⎛⎭⎪⎫0, 1e 上单调递减,在⎝ ⎛⎭⎪⎫1e , 5上单调递增. 5.若函数y =a (x 3-x )的单调减区间为⎝ ⎛⎭⎪⎫-33, 33,则a 的取值范围是( ) A .(0,+∞) B .(-1,0) C .(1,+∞)D .(0,1)解析:选A y ′=a (3x 2-1)=3a ⎝ ⎛⎭⎪⎫x -33⎝ ⎛⎭⎪⎫x +33. 当-33<x <33时,⎝⎛⎭⎪⎫x -33⎝ ⎛⎭⎪⎫x +33<0, 要使y =a (x 3-x )在⎝ ⎛⎭⎪⎫-33, 33上单调递减, 只需y ′<0,即a >0.6.函数f (x )=cos x +32x 的单调递增区间是________.解析:因为f ′(x )=-sin x +32>0,所以f (x )在R 上为增函数.答案:(-∞,+∞)7.若函数y =13ax 3-12ax 2-2ax (a ≠0)在[-1,2]上为增函数,则a ∈________.解析:y ′=ax 2-ax -2a =a (x +1)(x -2)>0, ∵当x ∈(-1,2)时,(x +1)(x -2)<0,∴a <0. 答案:(-∞,0)8.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是 .解析:∵y ′=-4x 2+a ,且y 有三个单调区间, ∴方程y ′=-4x 2+a =0有两个不等的实根, ∴Δ=02-4³(-4)³a >0,∴a >0.答案:(0,+∞)9.已知函数f (x )=13x 3+ax 2+bx ,且f ′(-1)=-4,f ′(1)=0.(1)求a 和b ;(2)试确定函数f (x )的单调区间. 解:(1)∵f (x )=13x 3+ax 2+bx ,∴f ′(x )=x 2+2ax +b ,由⎩⎪⎨⎪⎧f ′ -1 =-4,f ′ 1 =0,得⎩⎪⎨⎪⎧1-2a +b =-4,1+2a +b =0.解得a =1,b =-3.(2)由(1)得f (x )=13x 3+x 2-3x .f ′(x )=x 2+2x -3=(x -1)(x +3).由f ′(x )>0得x >1或x <-3; 由f ′(x )<0得-3<x <1.∴f (x )的单调递增区间为(-∞,-3),(1,+∞),单调递减区间为(-3,1). 10.已知a ≥0,函数f (x )=(x 2-2ax )e x.设f (x )在区间[-1,1]上是单调函数,求a 的取值范围.解:f ′(x )=(2x -2a )e x +(x 2-2ax )e x=e x [x 2+2(1-a )x -2a ].令f ′(x )=0,即x 2+2(1-a )x -2a =0. 解得x 1=a -1-1+a 2,x 2=a -1+1+a 2, 令f ′(x )>0,得x >x 2或x <x 1, 令f ′(x )<0,得x 1<x <x 2. ∵a ≥0,∴x 1<-1,x 2≥0.由此可得f (x )在[-1,1]上是单调函数的充要条件为x 2≥1,即a -1+1+a 2≥1,解得a ≥34.故所求a 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞. 层级二 应试能力达标1.已知函数f (x )=x +ln x ,则有( ) A .f (2)<f (e)<f (3) B .f (e)<f (2)<f (3) C .f (3)<f (e)<f (2)D .f (e)<f (3)<f (2)解析:选A 在(0,+∞)内,f ′(x )=12x +1x >0,所以f (x )在(0,+∞)内是增函数,所以有f (2)<f (e)<f (3).2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能的是( )解析:选C 由f ′(x )的图象知,x ∈(-∞,0)时,f ′(x )>0,f (x )为增函数,x ∈(0,2)时,f ′(x )<0,f (x )为减函数,x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数.只有C 符合题意,故选C.3.(全国Ⅱ卷)若函数f (x )=kx -ln x 在区间(1,+∞)内单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x.因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.故选D.4.设函数F (x )=f xex是定义在R 上的函数,其中f (x )的导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 016)>e 2 016f (0)B .f (2)<e 2f (0),f (2 016)>e2 016f (0) C .f (2)<e 2f (0),f (2 016)<e 2 016f (0) D .f (2)>e 2f (0),f (2 016)<e2 016f (0) 解析:选C ∵函数F (x )=f xex的导数F ′(x )=f ′ x e x -f x e xe x2=f ′ x -f xex<0,∴函数F (x )=f xex是定义在R 上的减函数,∴F (2)<F (0),即f 2 e2<f 0e,故有f (2)<e 2f (0).同理可得f (2 016)<e2 016f (0).故选C.5.已知函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为____________.解析:设g (x )=f (x )-2x -4,则g ′(x )=f ′(x )-2.∵对任意x ∈R ,f ′(x )>2,∴g ′(x )>0. ∴g (x )在R 上为增函数.又g (-1)=f (-1)+2-4=0,∴x >-1时,g (x )>0.∴由f (x )>2x +4,得x >-1. 答案:(-1,+∞)6.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是_____________.解析:∵f (x )在(-1,+∞)上为减函数, ∴f ′(x )≤0在(-1,+∞)上恒成立, ∵f ′(x )=-x +b x +2,∴-x +bx +2≤0, ∵b ≤x (x +2)在(-1,+∞)上恒成立,g (x )=x (x +2)=(x +1)2-1,∴g (x )min =-1,∴b ≤-1. 答案:(-∞,-1]7.已知x >0,证明不等式ln(1+x )>x -12x 2成立.证明:设f (x )=ln(1+x )-x +12x 2,其定义域为(-1,+∞),则f ′(x )=11+x -1+x =x21+x .当x >-1时,f ′(x )>0, 则f (x )在(-1,+∞)内是增函数. ∴当x >0时,f (x )>f (0)=0.∴当x >0时,不等式ln(1+x )>x -12x 2成立.8.已知函数f (x )=x 3-ax -1.(1)是否存在实数a ,使f (x )在(-1,1)上单调递减?若存在,求出a 的取值范围;若不存在,说明理由.(2)证明:f (x )=x 3-ax -1的图象不可能总在直线y =a 的上方. 解:(1)已知函数f (x )=x 3-ax -1, ∴f ′(x )=3x 2-a ,由题意知3x 2-a ≤0在(-1,1)上恒成立, ∴a ≥3x 2在x ∈(-1,1)上恒成立. 但当x ∈(-1,1)时,0<3x 2<3,∴a ≥3, 即当a ≥3时,f (x )在(-1,1)上单调递减. (2)证明:取x =-1,得f (-1)=a -2<a ,即存在点(-1,a -2)在f (x )=x 3-ax -1的图象上,且在直线y =a 的下方. 即f (x )的图象不可能总在直线y =a 的上方.课时跟踪检测(六) 函数的极值与导数层级一 学业水平达标1.已知函数y =f (x )在定义域内可导,则函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件解析:选B 根据导数的性质可知,若函数y =f (x )在这点处取得极值,则f ′(x )=0,即必要性成立;反之不一定成立,如函数f (x )=x 3在R 上是增函数,f ′(x )=3x 2,则f ′(0)=0,但在x =0处函数不是极值,即充分性不成立.故函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的必要不充分条件,故选B.2.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D 由f ′(x )=-2x 2+1x =1x ⎝ ⎛⎭⎪⎫1-2x =0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减;当x >2时,f ′(x )>0,f (x )单调递增.故x =2为f (x )的极小值点.3.已知函数f (x )=2x 3+ax 2+36x -24在x =2处有极值,则该函数的一个递增区间是( )A .(2,3)B .(3,+∞)C .(2,+∞)D .(-∞,3)解析:选B 因为函数f (x )=2x 3+ax 2+36x -24在x =2处有极值,又f ′(x )=6x 2+2ax +36,所以f ′(2)=0解得a =-15.令f ′(x )>0,解得x >3或x <2,所以函数的一个递增区间是(3,+∞).4.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )解析:选C 由题意可得f ′(-2)=0,而且当x ∈(-∞,-2)时,f ′(x )<0,此时xf ′(x )>0;排除B 、D ,当x ∈(-2,+∞)时,f ′(x )>0,此时若x ∈(-2,0),xf ′(x )<0,若x ∈(0,+∞),xf ′(x )>0,所以函数y =xf ′(x )的图象可能是C.5.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A.427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0得,⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427.当x =1时f (x )取极小值0.6.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点,则常数a =______________.解析:∵f ′(x )=ax +2bx +1,由题意得⎩⎪⎨⎪⎧a +2b +1=0,a2+4b +1=0.∴a =-23.答案:-237.函数f (x )=ax 2+bx 在x =1a处有极值,则b 的值为________.解析:f ′(x )=2ax +b ,∵函数f (x )在x =1a处有极值,∴f ′⎝ ⎛⎭⎪⎫1a =2a ²1a+b =0,即b =-2.答案:-28.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0).如图,则下列说法中不正确的是________.(填序号)①当x =32时,函数f (x )取得最小值;②f (x )有两个极值点;③当x =2时函数值取得极小值; ④当x =1时函数取得极大值.解析:由图象可知,x =1,2是函数的两极值点,∴②正确;又x ∈(-∞,1)∪(2,+∞)时,y >0;x ∈(1,2)时,y <0,∴x =1是极大值点,x =2是极小值点,故③④正确.答案:①9.设a 为实数,函数f (x )=e x-2x +2a ,x ∈R ,求f (x )的单调区间与极值. 解:由f (x )=e x-2x +2a ,x ∈R 知f ′(x )=e x-2,x ∈R.令f ′(x )=0,得x =ln 2. 于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞); 且f (x )在x =ln 2处取得极小值.极小值为f (ln 2)=2(1-ln 2+a ),无极大值.10.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a ,b ,c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由. 解:(1)由已知,f ′(x )=3ax 2+2bx +c ,且f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32.(2)由(1)知f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数. ∴当x =-1时,函数取得极大值f (-1)=1; 当x =1时,函数取得极小值f (1)=-1.层级二 应试能力达标1.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( ) A .1,-3 B .1,3 C .-1,3D .-1,-3解析:选A ∵f ′(x )=3ax 2+b ,由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.2.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围是( ) A .(-1,2)B .(-3,6)C .(-∞,-3)∪(6,+∞)D .(-∞,-1)∪(2,+∞)解析:选C f ′(x )=3x 2+2ax +a +6,∵f (x )有极大值与极小值,∴f ′(x )=0有两不等实根,∴Δ=4a 2-12(a +6)>0,∴a <-3或a >6.3.设a ∈R ,若函数y =e x+ax (x ∈R)有大于零的极值点,则( ) A .a <-1 B .a >-1 C .a <-1eD .a >-1e解析:选A ∵y =e x+ax ,∴y ′=e x+a .令y ′=e x+a =0,则e x=-a ,∴x =ln(-a ).又∵x >0,∴-a >1,即a <-1.4.已知函数f (x )=e x(sin x -cos x ),x ∈(0,2 017π),则函数f (x )的极大值之和为( )A.e 2π1-e 2 018πe 2π-1B.e π 1-e 2 016π1-e 2πC.e π 1-e 1 008π1-e2πD.e π1-e 1 008π1-eπ解析:选 B f ′(x )=2e xsin x ,令f ′(x )=0得sin x =0,∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增,当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减,∴当x =(2k +1)π时,f (x )取到极大值,∵x ∈(0,2 017π),∴0<(2k +1)π<2 017π,∴0≤k <1 008,k ∈Z. ∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2。
课时跟踪检测(十) 反证法层级一学业水平达标1.用反证法证明命题:“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③② D.②③①解析:选B 根据反证法的三个基本步骤“反设—归谬—结论"可知顺序应为③①②.2.用反证法证明命题“如果a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为( )A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除解析:选B “至少有一个"的否定是“一个也没有”,即“a,b都不能被5整除”,故选B。
3.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是() A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角解析:选B “至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为( )A.一定是异面直线 B.一定是相交直线C.不可能是平行直线 D.不可能是相交直线解析:选C 假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故应选C.5.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件解析:选 B ∵c>d,∴-c<-d,a>b,∴a-c与b-d的大小无法比较.可采用反证法,当a-c>b-d成立时,假设a≤b,∵-c<-d,∴a-c<b-d,与题设矛盾,∴a>b.综上可知,“a>b”是“a-c>b-d”的必要不充分条件.6.否定“自然数a,b,c中恰有一个偶数"时,正确的反设是________.答案:自然数a,b,c中至少有两个偶数或都是奇数7.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.答案:a≠1或b≠18.和两条异面直线AB,CD都相交的两条直线AC,BD的位置关系是____________.解析:假设AC与BD共面于平面α,则A,C,B,D都在平面α内,∴AB⊂α,CD⊂α,这与AB,CD异面相矛盾,故AC与BD异面.答案:异面9.求证:1,3,2不能为同一等差数列的三项.证明:假设1,错误!,2是某一等差数列的三项,设这一等差数列的公差为d,则1=错误!-md,2=错误!+nd,其中m,n为两个正整数,由上面两式消去d,得n+2m=错误!(n+m).因为n+2m为有理数,而错误!(n+m)为无理数,所以n+2m≠错误!(n+m),矛盾,因此假设不成立,即1,错误!,2不能为同一等差数列的三项.10.已知函数f(x)在R上是增函数,a,b∈R。
姓名,年级:时间:第二章推理与证明2。
3 数学归纳法课时跟踪检测一、选择题1.在数列{a n}中,a n=1-错误!+错误!-错误!+…+错误!-错误!,则a k+1=() A.a k+错误!B.a k+错误!-错误!C.a k+错误! D.a k+错误!-错误!解析:a k+1=1-错误!+错误!-错误!+错误!-错误!+错误!-错误!=a k+错误!-错误!,故选D.答案:D2.已知n为正整数用数学归纳法证明f(n)=1+3+5+…+(2n-1)=n2时,假设n=k(k∈N*)时命题为真,即f(k)=k2成立,则当n=k+1时,需要用到的f(k +1)与f(k)之间的关系式是()A.f(k+1)=f(k)+2k-3B.f(k+1)=f(k)+2k-1C.f(k+1)=f(k)+2k+1D.f(k+1)=f(k)+2k+3解析:因为f(n)=1+3+5+…+(2n-1),所以f(k)=1+3+5+…+(2k-1),f(k+1)=1+3+5+…+(2k-1)+(2k+1),所以f(k+1)=f(k)+2k+1,故选C.答案:C3.在数列{a n}中,a1=2,a n+1=错误!(n∈N*),依次计算a2,a3,a4,归纳猜想出数列{a n}的通项公式为( )A.错误!B.错误!C。
错误!D。
错误!解析:∵a1=2,∴a2=a13a1+1=错误!,a3=错误!,a4=错误!,∴猜出a n=错误!.故选B。
答案:B4.已知n为正偶数,用数学归纳法证明1-错误!+错误!-错误!+…+错误!=2错误!时,若已知假设n=k(k≥2且k为偶数)时命题为真,则还需要再证()A.n=k+1时等式成立B.n=k+2时等式成立C.n=2k+2时等式成立 D.n=2(k+2)时等式成立解析:因为假设n=k(k≥2且k为偶数),故下一个偶数为k+2.故选B.答案:B5.对于不等式错误!〈n+1(n∈N*),某同学应用数学归纳法的证明过程如下:(1)当n=1时,12+1〈1+1,不等式成立;(2)假设当n=k(k∈N*)时,不等式成立,即错误!〈k+1。
高中数学课时跟踪检测十一数学归纳法新人教A版选修2_2层级一学业水平达标1.设Sk=+++…+,则Sk+1为( )B.Sk++1A.Sk+2k+2D.Sk+-1C.Sk+-2k+1解析:选C 因式子右边各分数的分母是连续正整数,则由Sk=++…+,①得Sk+1=++…+++.②由②-①,得Sk+1-Sk=+-1k+1=-.故Sk+1=Sk+-. 2.利用数学归纳法证明不等式1+++…+<n(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了( )B.k项A.1项D.2k项C.2k-1项解析:选D 当n=k时,不等式左边的最后一项为,而当n=k+1时,最后一项为=,并且不等式左边和式的分母的变化规律是每一项比前一项加1,故增加了2k项.3.一个与正整数n有关的命题,当n=2时命题成立,且由n=k 时命题成立可以推得n=k+2时命题也成立,则( )A.该命题对于n>2的自然数n都成立B.该命题对于所有的正偶数都成立C.该命题何时成立与k取值无关D.以上答案都不对解析:选B 由n=k时命题成立可推出n=k+2时命题也成立,又n=2时命题成立,根据逆推关系,该命题对于所有的正偶数都成立,故选B. 4.对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即<k+1,则当n=k+1时,=<==(k+1)+1,∴n=k+1时,不等式成立,则上述证法( )A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确解析:选D 在n=k+1时,没有应用n=k时的归纳假设,故选D. 5.设f(n)=5n+2×3n-1+1(n∈N*),若f(n)能被m(m∈N*)整除,则m的最大值为( )A.2B.4D.16C.8解析:选C f(1)=8,f(2)=32,f(3)=144=8×18,猜想m的最大值为8. 6.用数学归纳法证明“对于足够大的自然数n,总有2n>n3”时,验证第一步不等式成立所取的第一个值n0最小应当是________.解析:∵210=1 024>103,29=512<93,∴n0最小应为10.。
课时跟踪检测(十五) 综合法和分析法层级一 学业水平达标1.要证明a +a +7<a +3+a +4(a ≥0)可选择的方法有多种,其中最合理的是( )A .综合法B .类比法C .分析法D .归纳法 解析:选C 直接证明很难入手,由分析法的特点知用分析法最合理.2.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ ”,其过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证法 解析:选B 结合分析法及综合法的定义可知B 正确.3.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足什么条件( )A .a 2<b 2+c 2B .a 2=b 2+c 2C .a 2>b 2+c 2D .a 2≤b 2+c 2解析:选C 由cos A =b 2+c 2-a 22bc<0,得b 2+c 2<a 2.4.若a =ln 22,b =ln 33,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析:选C 利用函数单调性.设f (x )=ln xx ,则f ′(x )=1-ln x x 2,∴0<x <e 时,f ′(x )>0,f (x )单调递增;x >e 时,f ′(x )<0,f (x )单调递减.又a =ln 44,∴b >a >c .5.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:选A 由f (x )是定义在R 上的奇函数, 且当x ≥0时,f (x )单调递减, 可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.6.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 取导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:该证明过程符合综合法的特点. 答案:综合法7.如果a a +b b >a b +b a ,则正数a ,b 应满足的条件是________. 解析:∵a a +b b -(a b +b a )=a (a -b )+b (b -a )=(a -b )(a -b ) =(a -b )2(a +b ).∴只要a ≠b ,就有a a +b b >a b +b a . 答案:a ≠b8.若不等式(-1)na <2+(-1)n +1n对任意正整数n 恒成立,则实数a 的取值范围是________.解析:当n 为偶数时,a <2-1n ,而2-1n ≥2-12=32,所以a <32,当n 为奇数时,a>-2-1n ,而-2-1n <-2,所以a ≥-2.综上可得,-2≤a <32.答案:⎣⎡⎭⎫-2,329.求证:2cos(α-β)-sin(2α-β)sin α=sin βsin α.证明:要证原等式,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,① 因为①左边=2cos (α-β)sin α-sin [(α-β)+α] =2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α =sin β.所以①成立,所以原等式成立.10.已知数列{a n }的首项a 1=5,S n +1=2S n +n +5,(n ∈N *). (1)证明数列{a n +1}是等比数列. (2)求a n .解:(1)证明:由条件得S n =2S n -1+(n -1)+5(n ≥2)① 又S n +1=2S n +n +5,② ②-①得a n +1=2a n +1(n ≥2), 所以a n +1+1a n +1=(2a n +1)+1a n +1=2(a n +1)a n +1=2.又n =1时,S 2=2S 1+1+5,且a 1=5, 所以a 2=11,所以a 2+1a 1+1=11+15+1=2,所以数列{a n +1}是以2为公比的等比数列. (2)因为a 1+1=6,所以a n +1=6×2n -1=3×2n , 所以a n =3×2n -1.层级二 应试能力达标1.使不等式1a <1b 成立的条件是( ) A .a >b B .a <bC .a >b 且ab <0D .a >b 且ab >0解析:选D 要使1a <1b ,须使1a -1b <0,即b -a ab<0.若a >b ,则b -a <0,ab >0;若a <b ,则b -a >0,ab <0. 2.对任意的锐角α,β,下列不等式中正确的是( ) A . sin(α+β)>sin α+sin β B .sin(α+β)>cos α+cos β C .cos(α+β)>sin α+sin β D .cos(α+β)<cos α+cos β解析:选D 因为α,β为锐角,所以0<α<α+β<π,所以cos α>cos(α+β).又cos β>0,所以cos α+cos β>cos(α+β).3.若两个正实数x ,y 满足1x +4y =1,且不等式x +y4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B ∵x >0,y >0,1x +4y =1,∴x +y 4=⎝⎛⎭⎫x +y 4⎝⎛⎭⎫1x +4y =2+y 4x+4xy ≥2+2y 4x ·4x y =4,等号在y =4x ,即x =2,y =8时成立,∴x +y 4的最小值为4,要使不等式m 2-3m >x +y4有解,应有m 2-3m >4,∴m <-1或m >4,故选B.4.下列不等式不成立的是( ) A .a 2+b 2+c 2≥ab +bc +ca B.a +b >a +b (a >0,b >0)C.a -a -1<a -2-a -3(a ≥3)D.2+10>2 6解析:选D 对A ,∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,∴a 2+b 2+c 2≥ab +bc +ca ;对B ,∵(a +b )2=a +b +2ab ,(a +b )2=a +b ,∴a +b >a +b ;对C ,要证 a -a -1<a -2-a -3(a ≥3)成立,只需证明a +a -3<a -2+a -1,两边平方得2a -3+2a (a -3)<2a -3+2(a -2)(a -1),即a (a -3)<(a -2)(a -1),两边平方得a 2-3a <a 2-3a +2,即0<2.因为0<2显然成立,所以原不等式成立;对于D ,(2+10)2-(26)2=12+45-24=4(5-3)<0,∴2+10<26,故D 错误.5.已知函数f (x )=2x,a ,b 为正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系是________.解析:∵a +b 2≥ab (a ,b 为正实数),2ab a +b≤ab ,且f (x )=2x是增函数,∴f ⎝ ⎛⎭⎪⎫2ab a +b ≤f (ab )≤f ⎝ ⎛⎭⎪⎫a +b 2,即C ≤B ≤A .答案:C ≤B ≤A6.如图所示,四棱柱ABCD - A 1B 1C 1D 1的侧棱垂直于底面,满足________时,BD ⊥A 1C (写上一个条件即可).解析:要证BD ⊥A 1C ,只需证BD ⊥平面AA 1C . 因为AA 1⊥BD ,只要再添加条件AC ⊥BD ,即可证明BD ⊥平面AA 1C ,从而有BD ⊥A 1C . 答案:AC ⊥BD (答案不唯一)7.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C .证明:在锐角三角形ABC 中,∵A +B >π2,∴A >π2-B .∴0<π2-B <A <π2,又∵在⎝⎛⎭⎫0,π2内正弦函数y =sin x 是单调递增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B , 即sin A >cos B .① 同理sin B >cos C ,② sin C >cos A .③ 由①+②+③,得:sin A +sin B +sin C >cos A +cos B +cos C .8.已知n ∈N ,且n >1,求证:log n (n +1)>log n +1(n +2). 证明:要证明log n (n +1)>log n +1(n +2),即证明log n (n +1)-log n +1(n +2)>0.(*)∵log n (n +1)-log n +1(n +2)=1log n +1n -log n +1(n +2)=1-log n +1n ·log n +1(n +2)log n +1n .又∵当n >1时,log n +1n >0,且log n +1(n +2)>0,log n +1n ≠log n +1(n +2),∴log n +1n ·log n +1(n +2)<14[log n +1n +log n +1(n +2)]2=14log 2n +1[n (n +2)]=14log 2n +1(n 2+2n )<14log 2n +1(n +1)2=1, 故1-log n +1n ·log n +1(n +2)>0, ∴1-log n +1n ·log n +1(n +2)log n +1n>0.这说明(*)式成立,∴log n (n +1)>log n +1(n +2).。