X射线应力测定总结
- 格式:ppt
- 大小:1.42 MB
- 文档页数:27
X射线衍射方法测量残余应力的原理与方法-STRESSX射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料内部残留的应力就是残余应力。
但是,习惯上将残余应力分为微观应力和宏观应力。
两种应力在X射线衍射谱中的表现是不相同的。
微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。
宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在的应力。
一般情况下,残余应力的术语就是指在宏观上存在的这种应力。
宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。
当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰的位移情况,可以求得残余应力。
X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。
20世纪初,人们就已经开始利用X射线来测定晶体的应力。
后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。
1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。
X射线衍射法测量残余应力的基本原理X射线衍射测量残余内应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。
其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。
用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。
X射线衍射方法测量残余应力的原理与方法-STRESSX射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料部残留的应力就是残余应力。
但是,习惯上将残余应力分为微观应力和宏观应力。
两种应力在X射线衍射谱中的表现是不相同的。
微观应力是指晶粒部残留的应力,它的存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。
宏观应力是指存在于多个晶体尺度围的应力,相对于微观应力存在的围而视为宏观上存在的应力。
一般情况下,残余应力的术语就是指在宏观上存在的这种应力。
宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。
当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰的位移情况,可以求得残余应力。
X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。
20世纪初,人们就已经开始利用X射线来测定晶体的应力。
后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。
1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。
X射线衍射法测量残余应力的基本原理X射线衍射测量残余应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。
其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。
用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。
X射线衍射方法主要是测试沿试样表面某一方向上的应力σφ。
X 射线应力测定技术预备知识一、X 射线的本质与产生1、X 射线的本质1895 年德国物理学家伦琴发现了 X 射线。
1912年德国物理学家劳埃等人成功地观察到 X 射线在晶体中的衍射现象,从而证实了 X 射线在本质上是一种电磁波。
依据电磁波的波长,从 3×10-4m 以上到10-13m 以下,可以把它们分别称为无线电波、红外线、可见光、紫外线、X 射线、γ射线和宇宙射线 等(如图 1 所示)。
X 射线的波长范围在 10-12m ~ 10 - 8m 之间。
用于衍射分析的 X 射线波长通常在0.05nm ~0.25nm 范围,用于金属材料透视的 X 射线 波长为 0.1nm ~0.005 nm ,甚至更短。
实验证明,波长越长的电磁波,其波动性越明 显,波长越短的电磁波,其粒子性越明显。
X 射线 和可见光、紫外线同其它基本粒子一样都同时具有 波动性和粒子性二重特性。
正因为它们的具有波动 性,光的干涉衍射现象才得以圆满解释;也正因为 它们的粒子性,探测器才可以接收到一个个不连续的 图1、电磁波谱光量子。
反映波动性的波长λ、频率υ与反映粒子性 各个区域的上下限难以明确指定,本图中各种电磁波的边界是臆定的的光子能量ε之间存在以下关系: ε=h υ=hc/λ 式中 h 为普朗克常数,h =6.626×10-34J ·s ;c 为光速,也是 X 射线的传播速度,c =2.2998 ×108m/s 。
2、X 射线的产生 研究证明,当高速运动的电子束(即阴极射线)与物体碰撞时,他们的运动便急遽的 被阻止,从而失去所具有的动能,其中一小部分能量变成 X 射线的能量,发生 X 射线,而 大部分能量转变成热能,使物体温度升高。
从原则上讲,所有基本粒子(电子、中子、质子 等)其能量状态发生变化时,均伴随有 X 射线辐射。
通常使用的 X 射线都是从特制的 X 射 线管中产生的。
图 2 是 X 射线管的结构和产生 X 射线示意图。
目录1.概述 (2)1.1 X射线残余应力测试技术和测量装置的进展 (2)a.测试技术的进展 (3)b.测量装置的进展 (4)1.2测试标准 (5)2、测定原理及方法: (6)2.1二维残余应力 (6)2.1.1原理 (6)2.1.2方法 (9)2.2三维残余应力 (15)2.2.1沿深度分布的应力测定一剥层法 (16)2.2.2 X射线积分法(RIM) (17)2.2.3 多波长法 (20)3、X射线残余应力测定法的优、缺点 (21)4、一些应用 (22)参考文献: (23)X射线衍射法残余应力测试原理、计算公式、测试方法的优缺点、目前主要应用领域。
1.概述X射线法是利用X射线入射到物质时的衍射现象测定残余应力的方法。
包括X射线照相法、X射线衍射仪法和X射线应力仪法。
1.1 X射线残余应力测试技术和测量装置的进展早在1936年,Glocker等就建立了关于x射线应力测定的理论。
但是当时由于使用照相法,需要用标准物质粉末涂敷在被测试样表面以标定试样至底片的距离,当试样经热处理或加工硬化谱线比较漫散时,标准谱线与待测谱线可能重叠,测量精度很低,因此,这种方法未受到重视,直到二十世纪四十年代末还有人认为淬火钢的应力测定是不可能的。
只有在使用衍射仪后,X射线应力测定才重新引起人们的重视,并在生产中日渐获得广泛应用。
美国SAE在巡回试样测定的基础上,于1960年对X射线应力测定技术进行了全面的讨论。
日本于1961年在材料学会下成立了X射线应力测定分会,并在1973年颁布了X射线应力测定标准方法。
a.测试技术的进展在二十世纪五十年代,X射线应力测定多采用0°~ 45°法(又称两次曝光法),这种方法在dψϕ与sin2ψ有较好的线性关系时误差不大,但当试件由于各种原因,dψϕ与sin2ψ偏离离直线关系时,0°~ 45°法就会产生很大误差。
为了解决这个问题,德国E.Macherauch在1961年提出了X射线应力测定的sin2ψ法,使x射线应力测定的实际应用向前迈进了一大步。
作用与平衡范围较大,
多晶体
入射线多晶体
衍射峰
入射线
衍射线
多晶体
多晶体
2θ
入射线
衍射线
衍射峰
衍射角
2θ
2d Sin θ= n λ布拉格定律d λ
X射线波长
晶面间距
θ布拉格角衍射角衍射角的1/2
衍射晶面法线2θ
试样表面法线
衍射晶面法线
2θ
衍射晶面法线
试样表面法线ΨΨ衍射晶面方位角
2θ
在无应力状态下
在各个晶粒当中
所选 ( h k l ) 晶面间距 d 均相等多晶体无应力状态
2θ衍射峰衍射角
在无应力状态下
不论X射线从哪个方向入射
即不论Ψ角为何值
同一 ( h k l ) 晶面产生的衍射峰,根据布拉格定律
其衍射角2θ应该相等。
多晶体
多晶体拉应力状态
晶面间距d变小
多晶体拉应力状态
晶面间距d变大多晶体拉应力状态
即Ψ=0°确定衍射晶面法线使之与试样表面法线重合
确
定
衍
射
晶
面
法
线
多晶体拉应力状态
计数管扫描
入射线衍射线
多晶体拉应力状态
衍射峰多晶体拉应力状态
多晶体拉应力状态
2θ
衍射角根据 2d Sin θ= n λ
晶面间距d变小
变大
Ψ
试
样
表
面
法
线
多晶体拉应力状态
Ψ
在拉应力状态
参与衍射的晶面间距 d 变大
根据布拉格定律
2d Sinθ= nλ
2θ
衍射角2θ变小。
X 射线应力测定技术预备知识一、X 射线的本质与产生1、X 射线的本质1895年德国物理学家伦琴发现了X 射线。
1912年德国物理学家劳埃等人成功地观察到X 射线在晶体中的衍射现象,从而证实了X 射线在本质上是一种电磁波。
依据电磁波的波长,从3×10-4m 以上到10-13m 以下,可以把它们分别称为无线电波、红外线、可见光、紫外线、X 射线、γ射线和宇宙射线等(如图1所示)。
X 射线的波长范围在10-12m ~ 10-8m 之间。
用于衍射分析的X 射线波长通常在0.05nm ~0.25nm 范围,用于金属材料透视的X 射线波长为0.1nm ~0.005 nm ,甚至更短。
实验证明,波长越长的电磁波,其波动性越明显,波长越短的电磁波,其粒子性越明显。
X 射线和可见光、紫外线同其它基本粒子一样都同时具有波动性和粒子性二重特性。
正因为它们的具有波动性,光的干涉衍射现象才得以圆满解释;也正因为它们的粒子性,探测器才可以接收到一个个不连续的光量子。
反映波动性的波长λ、频率υ与反映粒子性的光子能量ε之间存在以下关系:ε=h υ=hc/λ式中 h 为普朗克常数,h =6.626×10-34J ·s ;c 为光速,也是X 射线的传播速度,c =2.2998×108m/s 。
2、X 射线的产生研究证明,当高速运动的电子束(即阴极射线)与物体碰撞时,他们的运动便急遽的被阻止,从而失去所具有的动能,其中一小部分能量变成X 射线的能量,发生X 射线,而大部分能量转变成热能,使物体温度升高。
从原则上讲,所有基本粒子(电子、中子、质子等)其能量状态发生变化时,均伴随有X 射线辐射。
通常使用的X 射线都是从特制的X 射线管中产生的。
图2是X 射线管的结构和产生X 射线示意图。
灯丝上的热电子在高电压的作用下以高速度撞击阳极靶面,就从靶面上产生X 射线,并通过管壁上的铍窗放射出来。
图2、X 射线管的一般结构示意图图1、电磁波谱 各个区域的上下限难以明确指定,本图中各种电磁波的边界是臆定的3、连续X 射线谱和标识X 射线谱从X 射线管发出的X 射线分为两种:一种是波长连续变化的X 射线,构成连续X 射线谱,和白色可见光相类比。
应力试验工作总结应力试验是一种常见的工程测试方法,用于评估材料或结构在不同应力条件下的性能和稳定性。
在进行应力试验工作时,需要严格遵守操作规程和安全标准,以确保测试结果的准确性和可靠性。
以下是我对应力试验工作的总结和体会。
首先,进行应力试验前需要对测试设备进行严格的检查和校准,确保设备的正常运行和准确性。
在进行试验过程中,需要严格控制试验条件,包括温度、湿度、加载速度等因素,以保证测试结果的可比性和准确性。
其次,应力试验过程中需要严格遵守操作规程和安全标准,确保操作人员和设备的安全。
在进行试验操作时,需要注意操作技巧和步骤,避免操作失误导致的意外事故。
同时,需要配备必要的安全防护设备,如安全帽、护目镜、手套等,以保护操作人员的安全。
另外,应力试验的数据处理和分析也是非常重要的一环。
在进行试验后,需要对测试数据进行及时和准确的处理和分析,得出测试结果并进行合理的解释。
同时,需要对测试数据进行统计分析,评估试验结果的可靠性和稳定性。
最后,应力试验工作需要密切配合相关部门和人员,确保工作的顺利进行和结果的准确可靠。
在进行试验前,需要与相关部门和人员进行充分的沟通和协调,明确试验的目的和要求。
在试验过程中,需要及时和相关人员进行沟通和交流,解决试验中遇到的问题和困难。
总的来说,应力试验工作需要严格遵守操作规程和安全标准,确保测试结果的准确性和可靠性。
同时,需要注意试验过程中的数据处理和分析,确保测试结果的科学性和可靠性。
通过对应力试验工作的总结和体会,我相信在今后的工作中能够更加严谨和专业地进行应力试验工作,为工程项目的安全和稳定性提供可靠的数据支持。