第三章数列基础测试题
- 格式:doc
- 大小:99.50 KB
- 文档页数:3
数列基础练习题一、选择题1.已知等差数列的前五项为:3,7,11,15,19。
其公差为:A. 2B. 3C. 4D. 52.已知等差数列的首项为2,公差为-3,前n项和为-161。
则n的值为:A. 17B. 18C. 19D. 203.已知等差数列的前3项为1,3,5。
则该数列的通项公式为:A. an = -2n + 3B. an = 2n - 1C. an = 2n + 1D. an = 2n + 34.已知等差数列的前四项为a,2a,3a,4a。
则该数列的前n项和为:A. (n^2 + n)aB. 2(n^2 + n)aC. (2n^2 + n)aD. (n^2 + 2n)a二、填空题1.已知等差数列的前3项为7,10,13。
则该数列的第10项为__________。
2.已知等差数列的前4项和为30,前6项和为66。
则该数列的公差为__________。
3.已知等差数列的第12项为3,公差为-2。
则该数列的首项为__________。
三、解答题1.求等差数列的通项公式:定义:等差数列是指数列中相邻两项之差恒定的数列。
设首项为a,公差为d,第n项为an。
解答步骤:设等差数列的通项公式为an = a + (n-1)d。
由已知条件可得:a1 = a,a2 = a + d,a3 = a + 2d。
根据等差性质有:a2 - a1 = a + d - a = d,a3 - a2 = a + 2d - (a + d) = d。
因此,a2 - a1 = a3 - a2 = d。
即可得到等差数列的通项公式:an = a1 + (n-1)d。
2.已知等差数列的前6项和为60,前12项和为240。
求该数列的首项和公差。
解答步骤:设等差数列的首项为a,公差为d。
首先,根据等差数列前n项和的公式Sn = (n/2)(2a + (n-1)d),可得:6/2(2a + 5d) = 6012/2(2a + 11d) = 240化简上述方程组得到:2a + 5d = 202a + 11d = 40解此二元一次方程组可以求得:a = 8,d = 2。
数列基础练习题(简单)1.在等差数列中已知a 1=12, a 6=27,则d=___________ 2.2()a b +与2()a b -的等差中项是_______________ 3.等差数列-10,-6,-2,2,…前___项的和是54 4.数列{}n a 的前n 项和23n S n n -=,则n a =___________ 5. 已知数列{}n a 的通项公式a n =3n -50,则当n=___时,S n 的值最小,S n 的最小值是_______。
二、挑选题1. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为()A.84 B.72 C.60 D.48 2. 在等差数列{}n a 中,前15项的和1590S = ,8a 为()A.6B.3C.12D.43. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20项的和等于A.160 B.180 C.200 D.2204. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是()A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,且是等比数列D.既不是等差数列也不是等比数列5. 数列3,7,13,21,31,…的通项公式是()A. 41n a n =-B. 322n a n n n =-++C.21n a n n =++ 三、计算题1. 按照下列各题中的条件,求相应的等差数列{}n a 的有关未知数:(1)151,,5,66n a d S ==-=-求n 及n a ;(2)12,15,10,n n d n a a S ===-求及2. 设等差数列{}n a 的前n 项和公式是253n S n n =+,求它的前3项,并求它的通项公式一、填空题1. 若等比数列的首项为4,公比为2,则其第3项和第5项的等比中项是______.2. 在等比数列{a n }中,(1)若a 7·a 12=5,则a 8·a 9·a 10·a 11=____;(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6=______;(3)若q 为公比,a k =m ,则a k +p =______;(4)若a n >0,q=2,且a 1·a 2·a 3…a 30=230,则a 3·a 6·a 9…a 30=_____.3. 一个数列的前n 项和S n =8n -3,则它的通项公式a n =____.4. 在2和30之间插入两个正数,使前三个成为等比数列,后三个成等差数列,则这两个正数之和是_______.二、挑选题1.数列m ,m ,m ,…,一定[ ]A..是等差数列,但不是等比数列B .是等比数列,但不是等差数列 C .是等差数列,但不一定是等比数列D .既是等差数列,又是等比数列2已知a,b,c 成等比数列,且x,y 分离为a 与b 、b 与c 的等差中项,则y c x a +的值为()(A )21 (B )-2 (C )2 (D )不确定3数列1,0,2,0,3,…的通项公式为()(A )a n =2)1(n n n --(B )a n =4])1(1)[1(n n --+ (C )a n =???0n 为偶数为奇数n n (D )a n =4])1(1)[1(n n ---一、解答题1.已知数列{a n }的通项公式为a n =3n +2n +(2n-1),求前n 项和。
一、数列的概念选择题1.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-2.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1B .3C .2D .3-3.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N++=+∈且1300nS=,若23a <,则n 的最大值为( )A .49B .50C .51D .524.已知数列{}ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )A .13i =,33j =B .19i =,32j =C .32i =,14j =D .33i =,14j =5.已知数列{}n a ,若()12*Nn n n a a a n ++=+∈,则称数列{}na 为“凸数列”.已知数列{}nb 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5B .5-C .0D .1-6.已知数列{}n a 的前n 项和为()*22nn S n =+∈N ,则3a=( )A .10B .8C .6D .47.数列{}n a 中,11a =,12n n a a n +=+,则n a =( )A .2n n 1-+B .21n +C .2(1)1n -+D .2n8.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =( ) A .12018B .12019 C .12020D .120219.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有()()()f x f y f x y ⋅=+,若112a =,()()*n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A .1324n S ≤< B .314n S ≤< C .102n S <≤D .112n S ≤< 10.数列1,3,6,10,…的一个通项公式是( )A .()21n a n n =-- B .21n a n =-C .()12n n n a +=D .()12n n n a -=11.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23 D .21112.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x -+=的实数根,则10b 等于( ) A .24B .32C .48D .6413.已知数列{}n a 的通项公式为2n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞B .(),2-∞C .(),1-∞D .(),0-∞14.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和383969a a a ++⋅⋅⋅+=( )A .180B .160C .150D .14015.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-16.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则645a ,等于( )12345678910A .2019B .2020C .2021D .202217.已知数列{}n a 满足112n a +=+112a =,则该数列前2016项的和为( ) A .2015B .2016C .1512D .3025218.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-19.下列命题中错误的是( ) A .()()21f n n n N+=-∈是数列的一个通项公式B .数列通项公式是一个函数关系式C .任何一个数列中的项都可以用通项公式来表示D .数列中有无穷多项的数列叫作无穷数列20.数列{}n a 满足 112a =,111n n a a +=-,则2018a 等于( )A .12B .-1C .2D .3二、多选题21.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 22.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( )A .-4B .-2C .0D .223.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 24.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6525.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21FF ==C.()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦26.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =27.已知数列{}n a 满足:12a =,当2n ≥时,)212n a =-,则关于数列{}n a 的说法正确的是 ( )A .27a =B .数列{}n a 为递增数列C .221n a n n =+-D .数列{}n a 为周期数列28.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 29.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥30.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =31.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列32.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列33.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+34.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <35.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.C 解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.2.C解析:C 【分析】根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得2019a 的值.【详解】数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=⨯+ 所以201932a a == 故选:C 【点睛】本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.3.A解析:A 【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n nS =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值.【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+ 2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n=,因为22485048+348503501224,132522S S ⨯+⨯====,所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+因为2491149349412722S a a +⨯-=+=+,2511151351413752S a a +⨯-=+=+,又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.4.C解析:C 【分析】可以看出所排都是奇数从小到大排起.规律是先第一列和第一行,再第二列和第二行,再第三列第三行,并且完整排完n 次后,排出的数呈正方形.可先算2021是第几个奇数,这个奇数在哪两个完全平方数之间,再去考虑具体的位置. 【详解】每排完n 次后,数字呈现边长是n 的正方形,所以排n 次结束后共排了2n 个数.20211110112-+=,说明2021是1011个奇数. 而22961311011321024=<<=,故2021一定是32行,而从第1024个数算起,第1011个数是倒数第14个,根据规律第1024个数排在第32行第1列,所以第1011个数是第32行第14列,即2021在第32行第14列. 故32,14i j ==. 故选:C. 【点睛】本题考查数列的基础知识,但是考查却很灵活,属于较难题.5.B解析:B 【分析】根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】()*21N n n n b b b n ++=-∈,且11b =,22b =-,∴345673,1,2,3,1,b b b b b =-=-===∴{}n b 是以6为周期的周期数列,且60S =, ∴20203366412345S S b b b b ⨯+==+++=-,故选:B. 【点睛】本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.6.D解析:D 【分析】根据332a S S =-,代入即可得结果. 【详解】()()3233222224a S S =-=+-+=.故选:D. 【点睛】本题主要考查了由数列的前n 项和求数列中的项,属于基础题.7.A解析:A 【分析】由题意,根据累加法,即可求出结果. 【详解】因为12n n a a n +=+,所以12n n a a n +-=,因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212n n n a a n n n ⎡⎤-+-⎣⎦-=+++==+--,又11a =,所以21n a n n =-+.故选:A. 【点睛】本题主要考查累加法求数列的通项,属于基础题型.8.C解析:C 【分析】根据数列的递推关系,利用取倒数法进行转化,构造等差数列,结合等差数列的性质求出通项公式即可. 【详解】解:11nn n a a a +=+, ∴两边同时取倒数得11111n n n na a a a ++==+, 即1111n na a ,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a .则11(1)1nn n a =+-⨯=, 得1n a n=, 则202012020a =, 故选:C 【点睛】本题主要考查数列通项公式的求解,结合数列递推关系,利用取倒数法以及构造法构造等差数列是解决本题的关键.考查学生的运算和转化能力,属于基础题.9.D解析:D 【分析】根据题意得出1112n n n a a a a +==,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】取1x =,()y n n N*=∈,由题意可得()()()111112n n n af n f f n a a a +=+=⋅==, 112n n a a +∴=,所以,数列{}n a 是以12为首项,以12为公比的等比数列, 11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即112n S ≤<. 故选:D. 【点睛】本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.10.C解析:C 【分析】首先根据已知条件得到410a =,再依次判断选项即可得到答案. 【详解】由题知:410a =,对选项A ,()2444113a =--=,故A 错误;对选项B ,244115a =-=,故B 错误;对选项C ,()4441102a ⨯+==,C 正确; 对选项D ,()444162a ⨯-==,故D 错误. 故选:C 【点睛】本题主要考查数列的通项公式,属于简单题.11.C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-. 故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.12.D解析:D 【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +-=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x -+=的实数根, 所以1n n n a a b ++=,12nn n a a +=,又11a =,所以22a =;当2n ≥时,112n n n a a --=,所以11112n n n n n na a a a a a ++--==, 因此4102232a a =⋅=,5111232a a =⋅=所以101011323264b a a =+=+=. 故选:D. 【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.13.A解析:A 【分析】由已知得121n n a a n λ+-=+-,根据{}n a 为递增数列,所以有10n n a a +->,建立关于λ的不等式,解之可得λ的取值范围. 【详解】由已知得221(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立, 所以21n λ<+,所以只需()min 21n λ<+,即2113λ<⨯+=, 所以3λ<, 故选:A. 【点睛】本题考查数列的函数性质:递增性,根据已知得出10n n a a +->是解决此类问题的关键,属于基础题.14.B解析:B 【分析】根据题意可得n a 为421167n n +的个位数为27n n +的个位数,而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,即可求和. 【详解】由n a 为421167n n +的个位数, 可得n a 为27n n +的个位数, 而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,所以27n n +的个位数是以9,3,1,7为周期, 即421167n n +的个位数是以9,3,1,7为周期, 第38项至第69项共32项,共8个周期,所以383969a a a ++⋅⋅⋅+=8(9317)160⨯+++=. 故选:B15.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.16.C解析:C 【分析】根据题目中已知数据,进行归总结,得到一般性结论,即可求得结果. 【详解】根据题意,第1行第1列的数为1,此时111(11)112a ⨯-=+=,, 第2行第1列的数为2,此时212(21)122a ⨯-=+=,, 第3行第1列的数为4 ,此时313(31)142a ⨯-=+=,, 据此分析可得:第64行第1列的数为64164(641)120172a ⨯-=+=,,则6452021a =,,17.C解析:C 【分析】通过计算出数列的前几项确定数列{}n a 是以2为周期的周期数列,进而计算可得结论. 【详解】 依题意,112a =,211122a =,3111222a =+=, ⋯从而数列{}n a 是以2为周期的周期数列, 于是所求值为20161(1)151222⨯+=, 故选:C 【点睛】关键点睛:解答本题的关键是联想到数列的周期性并找到数列的周期.18.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.19.C解析:C根据通项公式的概念可以判定AB 正确;不难找到一些规律性不强的数列,找不到通项公式,由此判定C 错误,根据无穷数列的概念可以判定D 正确. 【详解】数列的通项公式的概念:将数列{} n a 的第n 项用一个具体式子(含有参数n )表示出来,称作该数列的通项公式,故任意一个定义域为正整数集合的或者是其从1开始的一个子集的函数都可以是数列的通项公式,它是一个函数关系,即对于任意给定的数列,各项的值是由n 唯一确定的,故AB 正确; 并不是所有的数列中的项都可以用一个通项公式来表示,比如所有的质数从小到大排在一起构成的数列,至今没有发现统一可行的公式表示,圆周率的各位数字构成的数列也没有一个通项公式可以表达,还有很多规律性不强的数列也找不到通项公式,故C 是错误的; 根据无穷数列的概念,可知D 是正确的. 故选:C. 【点睛】本题考查数列的通项公式的概念和无穷数列的概念,属基础题,数列的通项公式是一种定义在正整数集上的函数,有穷数列与无穷数列是根据数列的项数来分类的.20.B解析:B 【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.二、多选题 21.ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设,则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x ,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数, 即()()102f f x f ⎛⎫<<⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD【点睛】本题考查了数列性质的综合应用,属于难题.22.AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.23.ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+-20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.24.ABC 【分析】利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列满足,,依次取代入计算得, ,,,,因此继续下去会循环解析:ABC 【分析】利用数列{}n a 满足的递推关系及135a =,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,,,5555. 故选:ABC. 【点睛】本题考查了数列的递推公式的应用和周期数列,属于基础题.25.BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……, 显然,,,,,所以且,即B 满足条件; 由,所以 所以数列解析:BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是以12+为首项,12+为公比的等比数列, 所以()()1nF n n +-=⎝⎭11515()n F F n n -+=++, 令1nn n F b-=⎝⎭,则11n n b +=+,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭的等比数列,所以1n n b -+, 所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.26.ABD【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列的前项和为,,∴,解得,故,故A 正确;∵,,故有,故B 正确;该数解析:ABD【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=,∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确; ∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确,故选:ABD.【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 27.ABC【分析】由,变形得到,再利用等差数列的定义求得,然后逐项判断.【详解】当时,由,得,即,又,所以是以2为首项,以1为公差的等差数列,所以,即,故C 正确;所以,故A 正确;,解析:ABC【分析】由)212n a =-1=,再利用等差数列的定义求得n a ,然后逐项判断.【详解】当2n ≥时,由)212n a =-,得)221n a +=,1=,又12a =,所以是以2为首项,以1为公差的等差数列,2(1)11n n =+-⨯=+,即221n a n n =+-,故C 正确;所以27a =,故A 正确;()212n a n =+-,所以{}n a 为递增数列,故正确; 数列{}n a 不具有周期性,故D 错误;故选:ABC28.AC【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误.【详解】令,则,因为,所以为等差数列且公差,故A 正确;由,所以,故B 错误;解析:AC【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误.【详解】 令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d d a a d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na d S d d n a n n -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误.故选:AC .【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.29.BC【分析】设公差d 不为零,由,解得,然后逐项判断.【详解】设公差d 不为零,因为,所以,即,解得,,故A 错误;,故B 正确;若,解得,,故C 正确;D 错误;故选:BC解析:BC【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+,即1127a d a d +=--, 解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误; 故选:BC 30.BCD【分析】设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解.【详解】设等差数列的公差为,由题意,,所以,故A 错误;所以,所以,故B 正确;因为,所以当解析:BCD【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解.【详解】设等差数列{}n a 的公差为d ,由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确;因为()()2211168642n n n a n d n n n S -=+=-+=--+, 所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈,所以使得0n S >的最大整数15n =,故D 正确.故选:BCD.31.BCD【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正解析:BCD【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n -是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2n a 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++, 由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==, 此时,数列{}n a 为常数列,D 选项正确.故选BCD.【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.32.AD【分析】利用求出数列的通项公式,可对A ,B ,D 进行判断,对进行配方可对C 进行判断【详解】解:当时,,当时,,当时,满足上式,所以,由于,所以数列为首项为,公差为2的等差数列,因解析:AD【分析】利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式,所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误,故选:AD【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题33.AC【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式【详解】由题可知,,即,所以等差数列的公差,所以,.故选:AC.【点睛】本题考查等差数列,考查运算求解能力.解析:AC【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-. 故选:AC.【点睛】本题考查等差数列,考查运算求解能力. 34.BC【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】A 选项,若,则,那么.故A 不正确;B 选项,若,则,又因为,所以前8项为正,从第9项开始为负,因为解析:BC【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确;B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负,因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确;C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC .【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.35.ACD【分析】由得,故正确;当时,根据二次函数知识可知无最小值,故错误;根据等差数列的性质计算可知,故正确;根据等差数列前项和公式以及等差数列的性质可得,故正确.【详解】因为,所以,所以,即解析:ACD【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确.【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2d n n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a +⨯===,故D 正确.故选:ACD.【点睛】本题考查了等差数列的通项公式、前n项和公式,考查了等差数列的性质,属于中档题.。
数列练习题基础一、等差数列1. 已知等差数列的首项是a,公差是d,前n项和是Sn,求公式。
解析:设等差数列的首项是a,公差是d,那么根据等差数列的性质,第n项可以表示为an = a + (n-1)d。
根据等差数列的性质,前n项和Sn可以表示为Sn = (n/2)(a + an)。
代入an的值,化简公式得到Sn = (n/2)(2a + (n-1)d)。
2. 已知等差数列的首项是3,公差是4,求该等差数列的第10项。
解析:根据等差数列的公式an = a + (n-1)d,带入已知条件得到a10 = 3 + (10-1)4 = 3 + 9*4 = 39。
3. 已知等差数列的首项是5,公差是2,前n项和大于100的最小正整数n是多少?解析:根据等差数列的公式Sn = (n/2)(2a + (n-1)d),带入已知条件得到(n/2)(10 + (n-1)2) > 100。
化简不等式得到(n/2)(n+9) > 100,进一步化简得到n^2 + 9n - 200 > 0。
解这个不等式,得到n > 10。
因此,前n 项和大于100的最小正整数n是11。
二、等比数列1. 已知等比数列的首项是a,公比是r,前n项和是Sn,求公式。
解析:设等比数列的首项是a,公比是r,那么根据等比数列的性质,第n项可以表示为an = a * r^(n-1)。
根据等比数列的性质,前n项和Sn可以表示为Sn = a * (1 - r^n) / (1 - r)。
2. 已知等比数列的首项是2,公比是3,求该等比数列的第5项。
解析:根据等比数列的公式an = a * r^(n-1),带入已知条件得到a5= 2 * 3^(5-1) = 2 * 3^4 = 162。
3. 已知等比数列的首项是1,公比是0.5,前n项和大于10的最小正整数n是多少?解析:根据等比数列的公式Sn = a * (1 - r^n) / (1 - r),带入已知条件得到1 * (1 - 0.5^n) / (1 - 0.5) > 10。
数列测试题及答案一、选择题1. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,那么a_5的值为:A. 15B. 31C. 63D. 127答案:B2. 数列{a_n}是等差数列,公差为3,且a_3=12,则a_1的值为:A. 3B. 6C. 9D. 12答案:B3. 已知数列{a_n}满足a_1=2,a_{n+1}=3a_n,那么数列的通项公式为:A. a_n = 2 * 3^{n-1}B. a_n = 2 * 3^nC. a_n = 3 * 2^{n-1}D. a_n = 3^n答案:B二、填空题4. 已知数列{a_n}的前n项和S_n=n^2,求a_3的值。
答案:65. 数列{a_n}是等比数列,首项为2,公比为4,求a_5的值。
答案:128三、解答题6. 已知数列{a_n}满足a_1=1,a_{n+1}=a_n+n,求数列的前5项。
答案:a_1 = 1a_2 = a_1 + 1 = 2a_3 = a_2 + 2 = 4a_4 = a_3 + 3 = 7a_5 = a_4 + 4 = 117. 已知数列{a_n}是等差数列,且a_1=5,a_4=14,求数列的通项公式。
答案:a_n = 5 + (n-1) * 3 = 3n + 28. 已知数列{a_n}满足a_1=2,a_{n+1}=2a_n+1,求数列的前5项。
答案:a_1 = 2a_2 = 2a_1 + 1 = 5a_3 = 2a_2 + 1 = 11a_4 = 2a_3 + 1 = 23a_5 = 2a_4 + 1 = 479. 已知数列{a_n}是等比数列,首项为3,公比为2,求数列的前5项。
答案:a_1 = 3a_2 = 3 * 2 = 6a_3 = 6 * 2 = 12a_4 = 12 * 2 = 24a_5 = 24 * 2 = 4810. 已知数列{a_n}满足a_1=1,a_{n+1}=3a_n-2,求数列的前5项。
数列的测试题
1. 基础题:给定数列的前几项,找出数列的通项公式。
- 题目:数列的前5项为 2, 4, 8, 16, 32,求该数列的通项公式。
2. 中等题:使用等差数列和等比数列的性质解决问题。
- 题目:已知等差数列的第3项为10,第5项为18,求该数列的
首项和公差。
3. 提高题:数列的求和问题。
- 题目:给定等差数列的首项为3,公差为2,求前10项的和。
4. 应用题:将数列问题与实际问题结合起来。
- 题目:某公司每年的利润增长率为5%,如果第一年的利润为100
万元,求5年后的总利润。
5. 综合题:涉及到数列的极限问题。
- 题目:给定数列 1, 1/2, 1/3, 1/4, ...,求该数列的极限。
6. 探索题:发现数列的规律并证明。
- 题目:观察数列 1, 11, 21, 1211, 111221,找出数列的规律并
证明。
7. 计算题:使用数列的性质进行复杂的计算。
- 题目:已知等比数列的首项为2,公比为3,求前6项的和。
8. 证明题:证明数列的性质或定理。
- 题目:证明等差数列中任意两项的等差中项等于这两项的算术平
均数。
9. 开放题:设计一个数列问题并解决。
- 题目:设计一个数列,使得它的前n项和为n^2,求该数列的通项公式。
10. 创新题:使用数列解决非传统问题。
- 题目:在数学竞赛中,每位参赛者需要解决一系列问题。
如果解决一个问题可以获得5分,未解决则扣2分。
如果参赛者想要获得至少20分,他至少需要解决多少个问题?。
一、数列的概念选择题1.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 2.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )A .存在正整数0N ,当0n N >时,都有n a n ≤.B .存在正整数0N ,当0n N >时,都有n a n ≥.C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥. 3.已知数列{}n a ,若()12*Nn n n a a a n ++=+∈,则称数列{}na 为“凸数列”.已知数列{}nb 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5B .5-C .0D .1-4.在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .55.数列{}n a 满足 112a =,111n na a +=-,则2018a 等于( )A .12B .-1C .2D .36.在数列{}n a 中,()1111,1(2)nn n a a n a --==+≥,则5a 等于A .32B .53 C .85D .237.若数列的前4项分别是1111,,,2345--,则此数列的一个通项公式为( ) A .1(1)n n --B .(1)n n -C .1(1)1n n +-+D .(1)1n n -+8.在数列{}n a 中,114a =-,111(1)n n a n a -=->,则2019a 的值为( ) A .45B .14-C .5D .以上都不对9.3……,则 ) A .第8项B .第9项C .第10项D .第11项10.已知数列{}n a 的通项公式为2n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞B .(),2-∞C .(),1-∞D .(),0-∞11.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个12.若数列{a n }满足1112,1nn na a a a ++==-,则2020a 的值为( ) A .2B .-3C .12-D .1313.已知数列265n a n n =-+则该数列中最小项的序号是( )A .3B .4C .5D .614.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1015.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤C .数列{}n a 的最小项为3a 和4aD .数列{}n a 的最大项为3a 和4a 16.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( )A .4×20162-1B .4×20172-1C .4×20182-1D .4×2018217.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45B .46C .47D .4818.已知数列{}n a满足112n a +=+112a =,则该数列前2016项的和为( ) A .2015B .2016C .1512D .3025219.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-20.数列1,3,5,7,9,--的一个通项公式为( )A .21n a n =-B .()1(21)nn a n =--C .()11(21)n n a n +=--D .()11(21)n n a n +=-+二、多选题21.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )A .1(1)nn a =+-B .2cos2n n a π= C .(1)2sin2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+--22.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .223.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+24.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6525.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >26.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( )A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-27.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =28.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值29.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <30.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <31.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <32.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数)B .数列{}n a -是等差数列C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列D .1n a +是n a 与2n a +的等差中项33.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列34.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >35.在下列四个式子确定数列{}n a 是等差数列的条件是( )A .n a kn b =+(k ,b 为常数,*n N ∈);B .2n n a a d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和21n S n n =++(*n N ∈).【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B.【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.2.A解析:A 【分析】运用数列的单调性和不等式的知识可解决此问题. 【详解】数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,121n n n n a a a a +++∴≥--,设1n n n d a a +=-,则1n n d d +≥,∴数列{}n d 是递减数列.对于A ,由11a =,20192019a =, 则201911220182019a a d d d =+++=,所以1220182018d d d +++=,又1232018d d d d ≥≥≥≥,所以1122018201820182018d d d d d ≥+++≥,故120181d d ≥≥,2018n ∴≥时,1n d ≤,02019N ∃=,2019n >时, 20192019202012019111n n a a d d d n -=+++≤++++=即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;结合A ,故B 不正确;对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A 【点睛】本题考查了数列的单调性以及不等式,属于基础题.3.B解析:B 【分析】根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】()*21N n n n b b b n ++=-∈,且11b =,22b =-, ∴345673,1,2,3,1,b b b b b =-=-===∴{}n b 是以6为周期的周期数列,且60S =, ∴20203366412345S S b b b b ⨯+==+++=-,故选:B. 【点睛】本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.4.B解析:B 【分析】根据已知递推条件()*21n n n a a a n N ++=-∈即可求得5a【详解】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a 5435a a a故选:B 【点睛】本题考查了利用数列的递推关系求项,属于简单题5.B解析:B 【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.6.D解析:D 【解析】分析:已知1a 逐一求解2345122323a a a a ====,,,.详解:已知1a 逐一求解2345122323a a a a ====,,,.故选D 点睛:对于含有()1n-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.7.C解析:C 【分析】根据数列的前几项的规律,可推出一个通项公式. 【详解】设所求数列为{}n a ,可得出()111111a+-=+,()212121a+-=+,()313131a+-=+,()414141a+-=+,因此,该数列的一个通项公式为()111n na n +-=+.故选:C. 【点睛】本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题.8.A解析:A 【分析】根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值 【详解】由114a =-,111(1)n n a n a -=->知 21115a a =-= 321415a a =-= 4131114a a a =-=-= 故数列{}n a 是周期为3的数列,而2019可被3整除 ∴2019345a a == 故选:A 【点睛】本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题9.D解析:D 【解析】 【分析】根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-⨯=+而=所以4541n =+ 解得11n = 故选:D 【点睛】本题考查了等差数列通项公式的求法及简单应用,属于基础题.10.A解析:A 【分析】由已知得121n n a a n λ+-=+-,根据{}n a 为递增数列,所以有10n n a a +->,建立关于λ的不等式,解之可得λ的取值范围. 【详解】由已知得221(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立, 所以21n λ<+,所以只需()min 21n λ<+,即2113λ<⨯+=, 所以3λ<, 故选:A. 【点睛】本题考查数列的函数性质:递增性,根据已知得出10n n a a +->是解决此类问题的关键,属于基础题.11.B解析:B 【分析】讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数. ①若11a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;②若12a =,则21a =,34a =,42a =,51a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;③若13a =,则26a =,33a =,46a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;④若14a =,则22a =,31a =,44a =,52a =,,以此类推,可知对任意的n *∈N ,3n n a a +=,此时,{}n a 为周期数列;⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,,以此类推,可知对任意的n *∈N ,2n n a a +=,此时,{}n a 为周期数列;⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.下面说明,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.(1)当(3412,2a ⎤∈⎦且1N a *∈时,由列举法可知,数列{}n a 不是周期数列; (2)假设当(()112,23,k k a k k N +*⎤∈≥∈⎦且1N a *∈时,数列{}n a 不是周期数列,那么当(()1212,23,k k a k k N ++*⎤∈≥∈⎦时. 若1a 为正偶数,则(1122,22k k a a +⎤=∈⎦,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则((121321323,232,2k k k k a a ++++⎤⎤=+∈++⊆⎦⎦且2a 为偶数,由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.综上所述,当19a ≥且1N a *∈时,数列{}n a 不是周期数列.因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.12.D解析:D 【分析】分别求出23456,,,,a a a a a ,得到数列{}n a 是周期为4的数列,利用周期性即可得出结果. 【详解】由题意知,212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,612312a +==--,…,因此数列{}n a 是周期为4的周期数列, ∴20205054413a a a ⨯===. 故选D. 【点睛】本题主要考查的是通过观察法求数列的通项公式,属于基础题.13.A解析:A 【分析】首先将n a 化简为()234n a n =--,即可得到答案。
数列基础知识练习题数列是数学中的重要概念,它由一系列按特定规律排列的数字组成。
在数学中,数列的研究具有重要的意义,它不仅在数论、代数、几何等领域有广泛的应用,也有助于培养学生的逻辑思维和问题解决能力。
下面我们来练习一些关于数列的基础知识题目,帮助大家巩固相关概念。
1.下列数列中,哪些是等差数列?a) 1, 4, 7, 10, 13b) 2, 4, 8, 16, 32c) 3, 6, 11, 18, 27解答:等差数列是指数列中相邻两项之差保持不变。
根据这个定义,我们可以观察每个数列的相邻项之间的差是否相等。
只有数列a)和c)的差是恒定的,所以它们是等差数列。
2.求下列等差数列的公差和通项公式:a) 2, 5, 8, 11, 14b) -3, 1, 5, 9, 13解答:公差是指等差数列中相邻两项之差的值。
我们观察每个数列的相邻项,可以得到:a) 公差为3。
通项公式可以表示为an = 2 + 3(n-1),其中n代表项数。
b) 公差为4。
通项公式可以表示为an = -3 + 4(n-1)。
3.下列数列中,哪些是等比数列?a) 2, 4, 8, 16, 32b) 3, 6, 12, 24, 48c) 1, 4, 9, 16, 25解答:等比数列是指数列中相邻两项之比保持不变。
根据这个定义,我们可以观察每个数列的相邻项之间的比值是否相等。
只有数列a)和b)的比值是恒定的,所以它们是等比数列。
4.求下列等比数列的公比和通项公式:a) 3, 9, 27, 81, 243b) -2, 4, -8, 16, -32解答:公比是指等比数列中相邻两项之比的值。
我们观察每个数列的相邻项,可以得到:a) 公比为3。
通项公式可以表示为an = 3^(n-1),其中n代表项数。
b) 公比为-2。
通项公式可以表示为an = (-2)^n,其中n代表项数。
5.求下列数列的前n项和:a) 1, 2, 3, 4, 5, ...b) 2, 4, 6, 8, 10, ...解答:前n项和是指数列前n项的和。
一、数列的概念选择题1.数列1,3,5,7,9,--的一个通项公式为( )A .21n a n =-B .()1(21)nn a n =--C .()11(21)n n a n +=--D .()11(21)n n a n +=-+2.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若1102a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+D .71089a a a a +>+3.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007B .1008C .1009.5D .10104.已知数列{}n a 满足11a =),2n N n *=∈≥,且()2cos3n n n a b n N π*=∈,则数列{}n b 的前18项和为( ) A .120B .174C .204-D .37325.在数列{}n a 中,11a =,11n na a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞6.数列{}n a 的通项公式是276n a n n =-+,4a =( )A .2B .6-C .2-D .17.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =( ) A .12018B .12019 C .12020D .120218.在数列{}n a 中,()1111,1(2)nn n a a n a --==+≥,则5a 等于A .32B .53 C .85D .239.3……,则 ) A .第8项B .第9项C .第10项D .第11项10.数列{}n a 的前n 项和记为n S ,()*11N ,2n n n a a a n n ++=-∈≥,12018a =,22017a =,则100S =( )A .2016B .2017C .2018D .201911.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么24620201a a a a +++++=( )A .2021aB .2022aC .2023aD .2024a12.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174B .184C .188D .16013.已知数列{}n a 的首项为2,且数列{}n a 满足111n n n a a a +-=+,数列{}n a 的前n 项的和为n S ,则1008S 等于( ) A .504B .294C .294-D .504-14.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .16015.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24B .26C .28D .3016.已知在数列{}n a 中,112,1n n na a a n +==+,则2020a 的值为( )A .12020B .12019C .11010D .1100917.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-18.在数列{}n a 中,11(1)1,2(2)nn n a a n a --==+≥,则3a =( ) A .0B .53C .73D .319.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-20.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n na a a a n +++⋯+=+ 二、多选题21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=22.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=23.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=024.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .225.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( )A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 26.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>027.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列28.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a >B .6S 最大C .130S >D .110S >29.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .830.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列31.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a < 32.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列33.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+34.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列 C .数列{}na n是递增数列 D .数列{}3n a nd +是递增数列35.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.C 解析:C 【分析】分别观察各项的符号、绝对值即可得出. 【详解】数列1,-3,5,-7,9,…的一个通项公式()()112nn a n =--. 故选C . 【点睛】本题考查了球数列的通项公式的方法,属于基础题.2.C解析:C 【分析】 由递推公式1221n n n a a a ++=+得出25445n n n a a a ++=+,计算出25,24a ⎛⎫∈ ⎪⎝⎭,利用递推公式推导得出()0,1n a ∈(n 为正奇数),1n a >(n 为正偶数),利用定义判断出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,进而可得出结论.【详解】()()113212132221212221n n n n n n a a a a a a ++++===++++,110,2a ⎛⎫∈ ⎪⎝⎭,25,24a ⎛⎫∴∈ ⎪⎝⎭, ()()121259245221545944221454544452121n n n n n n n n n n n n a a a a a a a a a a a a ++++++-+++=====-+++++⨯++,且()2241544545n n n n n n n a a a a a a a +-+-=-=++,()212122121n n n n n n n a a a a a a a +-+-=-=++. 110,2a ⎛⎫∈ ⎪⎝⎭,则101a <<,则()()3590,14445n a a =-∈+, 如此继续可得知()()210,1n a n N *-∈∈,则()22121212141=045n n n n a aa a -+---->+,所以,数列{}()21n a n N *-∈单调递增;同理可知,()21na n N *>∈,数列{}()2na n N *∈单调递减.对于A 选项,78a a <且79a a <,8972a a a ∴+>,A 选项错误; 对于B 选项,89a a >且108a a <,则91082a a a +<,B 选项错误; 对于C 选项,68a a >,97a a >,则6978a a a a +>+,C 选项正确; 对于D 选项,79a a <,108a a <,则71098a a a a +<+,D 选项错误. 故选:C. 【点睛】本题考查数列不等式的判断,涉及数列递推公式的应用,解题的关键就是推导出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,考查推理能力,属于难题.3.D解析:D 【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S 的值,得到答案. 【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-= 所以20173672210102S =⨯+=. 故选:D. 【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.4.B解析:B 【分析】将题干中的等式化简变形得211n n a n a n --⎛⎫= ⎪⎝⎭,利用累乘法可求得数列{}n a 的通项公式,由此计算出()32313k k k b b b k N *--++∈,进而可得出数列{}nb 的前18项和.【详解】)1,2n a n N n *--=∈≥,将此等式变形得211n n a n a n --⎛⎫= ⎪⎝⎭,由累乘法得22232121211211123n n n aa a n a a a a a n n --⎛⎫⎛⎫⎛⎫=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2cos3n n n a b n N π*=∈,22cos 3n n b n π∴=, ()()222323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝⎭592k =-,因此,数列{}n b 的前18项和为()591234566921151742⨯+++++-⨯=⨯-=. 故选:B. 【点睛】本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.5.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.6.B解析:B 【分析】 令4n = 代入即解 【详解】令4n =,2447466a =-⨯+=-故选:B. 【点睛】数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.7.C解析:C 【分析】根据数列的递推关系,利用取倒数法进行转化,构造等差数列,结合等差数列的性质求出通项公式即可. 【详解】 解:11nn n a a a +=+, ∴两边同时取倒数得11111n n n na a a a ++==+, 即1111n na a ,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a .则11(1)1nn n a =+-⨯=, 得1n a n=, 则202012020a =, 故选:C【点睛】本题主要考查数列通项公式的求解,结合数列递推关系,利用取倒数法以及构造法构造等差数列是解决本题的关键.考查学生的运算和转化能力,属于基础题.8.D解析:D 【解析】分析:已知1a 逐一求解2345122323a a a a ====,,,. 详解:已知1a 逐一求解2345122323a a a a ====,,,.故选D 点睛:对于含有()1n-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.9.D解析:D 【解析】 【分析】根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-⨯=+而=所以4541n =+ 解得11n = 故选:D 【点睛】本题考查了等差数列通项公式的求法及简单应用,属于基础题.10.A解析:A 【分析】根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】解:因为12018a =,22017a =,()*11N ,2n n n a a a n n +-=-∈≥,则321201720181a a a =-=-=-,432(1)20172018a a a =-=--=-,543(2018)(1)2017a a a =-=---=-,654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==, 8762201812017a a a a =-=-==,…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++12342016a a a a =+++=.故选:A . 【点睛】本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.11.A解析:A 【分析】根据数列的递推关系式即可求解. 【详解】由21(1),n n n a a a n ++=+≥ 则2462020246210201a a a a a a a a a +++++++++=+3462020562020201920202021a a a a a a a a a a =+++=+++=+=.故选:A12.A解析:A 【分析】根据已知条件求得11n n n a a -=--,利用累加法求得19a . 【详解】 依题意:3,4,6,9,13,18,24,1,2,3,4,5,6,所以11n n n a a -=--(2n ≥),且13a =,所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()12213n n =-+-++++()()()11113322n n n n -+--=+=+.所以19191831742a ⨯=+=. 故选:A 【点睛】本小题主要考查累加法,属于中档题.13.C解析:C 【分析】根据递推公式,算出数列前4项,确定数列周期,即可求出结果. 【详解】∵12a =,111n n n a a a +-=+,∴213a =,311131213a -==-+,41123112a --==--+, 又121111111111n n n n n n nn a a a a a a a a +++---+===--+++,所以421n n n a a a ++=-=, ∴数列{}n a 的周期为4,且123476a a a a +++=-, ∵10084252÷=,∴100872522946S ⎛⎫=⨯-=- ⎪⎝⎭.故选:C. 【点睛】本题主要考查数列周期性的应用,属于常考题型.14.B解析:B 【分析】根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】3,4,6,9,13,18,24,1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()11113322n n n n -+⋅--=+=+.所以19191831742a ⨯=+=.故选:B 【点睛】本小题主要考查数列新定义,考查累加法,属于基础题.15.B解析:B 【分析】先写出新数列的各项,找到数列的周期,即得解. 【详解】由题意可知“斐波那契数列”的各项依次被4整除后的余数构成一个新的数列{}n b , 此数列的各项求得:1,1,2,3,1,0,1,1,2,3,1,0,1……,则其周期为6, 其中1+1+2+3+1+0=8,则201819201812S S b b S b b =++=++381126=⨯++=, 故选:B.16.C解析:C 【分析】由累乘法可求得2n a n=,即可求出. 【详解】11n n n a a n +=+,即11n na n a n +=+, 12321123211232121232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⨯--2n=, 20202120201010a ∴==. 故选:C.17.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-,21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.18.B解析:B 【分析】由数列的递推关系式以及11a =求出2a ,进而得出3a . 【详解】11a =,21123a a ∴=+=,321523a a -=+= 故选:B19.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.20.C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、多选题 21.BCD 【分析】根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.22.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,,,,故A 正确;对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.23.ABD 【分析】对于A ,由题意得bn=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题24.ABC 【分析】根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减解析:ABC 【分析】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n-<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立,由12+n 递减,且1223n <+≤,所以2a -≤,即2a ≥-,当n 为偶数时有:12a n<-恒成立, 由12n -第增,且31222n ≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC . 【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.25.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;解析:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-=因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.26.AC 【分析】由,可得,且,然后逐个分析判断即可得答案 【详解】解:因为,所以,且,所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误, 所以,,所以C 正确,D 错误, 故选:AC解析:AC 【分析】由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】解:因为564S S S >>,所以650,0a a ,且650a a +>,所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()5()02a a S a a +==+>,11111611()1102a a S a +==<, 所以C 正确,D 错误, 故选:AC27.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.28.ABD 【分析】转化条件为,进而可得,,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】 因为,所以,即,因为数列递减,所以,则,,故A 正确; 所以最大,故B 正确; 所以,故C 错误解析:ABD 【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确;所以()113137131302a a S a +⨯==<,故C 错误; 所以()111116111102a a S a +⨯==>,故D 正确. 故选:ABD.29.BD【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解.【详解】依据题意,根数从上至下构成等差解析:BD【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解.【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n +-≥且为偶数, 验证可知5,8n =满足题意.故选:BD.【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.30.BCD【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正【分析】根据定义以及举特殊数列来判断各选项中结论的正误.【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n -是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2n a 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++, 由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==, 此时,数列{}n a 为常数列,D 选项正确.故选BCD.【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.31.AD【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确.【详解】因为,所以 ,因为,所以,所以等差数列公差,所以是递减数列,故最大,选项A解析:AD利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确.【详解】因为67S S <,所以7670S S a -=> ,因为78S S >,所以8780S S a -=<,所以等差数列{}n a 公差870d a a =-<,所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确;故选:AD【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.32.ABD【分析】首项根据得到,从而得到是以首项为,公差为的等差数列,再依次判断选项即可.【详解】对选项A ,因为,,所以,即所以是以首项为,公差为的等差数列,故A 正确.对选项B ,由A 知:解析:ABD【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121n n n a a a +=+,11a =, 所以121112n n n n a a a a ++==+,即1112n na a +-=所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:112121n n n a 数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121n n a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD【点睛】 本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.33.AC【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式【详解】由题可知,,即,所以等差数列的公差,所以,.故选:AC.【点睛】本题考查等差数列,考查运算求解能力.解析:AC【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-. 故选:AC.【点睛】本题考查等差数列,考查运算求解能力. 34.AD【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项.【详解】, ,所以是递增数列,故①正确,,当时,数列不是递增数列,故②不正确,,当时,不是递增数列,故③不正确,,因解析:AD【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项.【详解】0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,()()2111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d-<时,数列{}n na 不是递增数列,故②不正确,1n a a d d n n -=+,当10a d -<时,{}n a n不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确, 故选:AD【点睛】本题主要考查了等差数列的性质,属于基础题.35.ABCD【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0解析:ABCD【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确.【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0,又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,n nS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:n nS a <0,但是随着n 的增大而增大. ∴n =7时,n nS a 取得最小值. 综上可得:ABCD 都正确.故选:ABCD .【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.。
数列基础测试题及答案一、选择题(每题2分,共10分)1. 等差数列{a_n}的首项为1,公差为2,那么a_5的值为:A. 9B. 10C. 11D. 122. 等比数列{b_n}的首项为2,公比为3,那么b_4的值为:A. 24B. 54C. 72D. 1083. 数列{c_n}满足c_1=1,且c_{n+1}=2c_n+1,那么c_3的值为:A. 5B. 9C. 17D. 334. 已知数列{d_n}是等差数列,且d_1=3,d_3=9,那么d_5的值为:A. 15B. 18C. 21D. 245. 数列{e_n}是等比数列,且e_1=8,e_3=64,那么e_5的值为:A. 512C. 128D. 64二、填空题(每题3分,共15分)6. 等差数列{f_n}的首项为5,公差为-1,那么f_7=________。
7. 等比数列{g_n}的首项为3,公比为-2,那么g_5=________。
8. 数列{h_n}满足h_1=2,且h_{n+1}=3h_n-2,那么h_4=________。
9. 已知数列{i_n}是等差数列,且i_2=7,i_5=16,那么i_8=________。
10. 数列{j_n}是等比数列,且j_2=6,j_4=36,那么j_6=________。
三、解答题(每题10分,共20分)11. 已知数列{k_n}是等差数列,且k_1=2,k_3=10,求k_5的值。
12. 已知数列{l_n}是等比数列,且l_1=4,l_3=36,求l_5的值。
答案:一、选择题1. B2. D3. C4. C5. A二、填空题6. 28. 339. 3110. 576三、解答题11. 等差数列的公差d=k_3-k_1=10-2=8,所以k_5=k_3+2d=10+2*8=26。
12. 等比数列的公比q=l_3/l_1=36/4=9,所以l_5=l_3*q^2=36*9^2=2916。
数列的概念练习题一、选择题1. 数列是按照一定次序排列的一列数,其中每一个数称为该数列的项。
数列中的第1个数称为首项,第2个数称为第二项,依此类推。
以下哪个是数列的项?A. 数列的首项B. 数列的第二项C. 数列的第n项D. 数列的末项2. 等差数列中,相邻两项的差是一个常数,这个常数称为等差数列的公差。
以下哪个不是等差数列的公差?A. 2B. 0C. -3D. 1.53. 等比数列中,相邻两项的比值是一个常数,这个常数称为等比数列的公比。
以下哪个不是等比数列的公比?A. 2B. 0C. 1D. -14. 数列的通项公式是指表示数列中任意一项与项数n之间关系的公式。
以下哪个不是数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 * r^(n-1)C. a_n = n^2D. a_n = a_1 * n5. 数列的前n项和是指数列前n项的总和。
以下哪个不是数列前n项和的公式?A. S_n = n/2 * (a_1 + a_n)B. S_n = (n/2) * (2a_1 + (n-1)d)C. S_n = a_1 * (1-r^n) / (1-r)D. S_n = a_1 * (n+1)二、填空题6. 一个数列的第1项是3,第2项是6,第3项是9,这个数列是______数列。
7. 一个数列的通项公式是a_n = 2n,这个数列的前5项和S_5是______。
8. 一个等差数列的首项是5,公差是3,这个数列的第10项a_10是______。
9. 一个等比数列的首项是2,公比是2,这个数列的第5项a_5是______。
10. 数列1, 4, 9, 16, ...的通项公式是a_n = ______。
三、解答题11. 已知数列的前3项分别是1, 2, 4,求证这个数列是等比数列,并求出数列的通项公式。
12. 已知等差数列的前5项和是40,首项是3,求出数列的公差和第6项。
数列的概念练习题一、选择题:1. 一个数列的第5项是10,如果这个数列是等差数列,且公差为2,则第1项是:A. 2B. 4C. 6D. 82. 以下哪个数列不是等比数列?A. 1, 2, 4, 8B. 2, 4, 8, 16C. 1, 3, 9, 27D. 1, 1, 1, 13. 一个数列的前三项分别是1, 4, 13,那么这个数列的通项公式可能是:A. an=n^2B. an=n^3C. an=n^2+1D. an=n^3+14. 如果一个数列的前n项和为S_n,且S_n=n^2,那么这个数列的第n 项是:A. 2nB. n^2C. nD. 2n-15. 对于等差数列,如果a_2=5,a_5=14,那么这个数列的公差d是:A. 3B. 2C. 4D. 5二、填空题:1. 等差数列的通项公式为an=a1+(n-1)d,其中a1是首项,d是公差。
如果一个等差数列的首项是3,公差是2,那么第10项a10=______。
2. 如果一个等比数列的首项是2,公比是3,那么这个数列的前5项和S_5=______。
3. 一个数列的前n项和Sn=n^2+n,那么这个数列的第n项an=______。
4. 如果一个数列的通项公式是an=2^n-1,那么这个数列的前3项分别是______。
5. 一个数列的前4项和为24,如果这个数列是等差数列,且公差为3,那么首项a1=______。
三、解答题:1. 已知数列{an}是等差数列,且a1=1,a4=10,求数列的通项公式。
2. 证明:如果一个数列的前n项和Sn=n^2+3n,那么这个数列的通项公式是an=2n+1。
3. 已知数列{bn}是等比数列,且b1=8,b3=64,求数列的通项公式。
4. 一个数列的前n项和Sn=2n^2,求这个数列的第n项an。
5. 已知数列{cn}的前n项和Sn=n(n+1)/2,求数列的通项公式,并证明这个数列是等差数列。
四、计算题:1. 计算等差数列1, 4, 7, ...的前10项和。
数列一、选择题(本大题共18小题,共90.0分)1. 已知等差数列{a n }满足a 1+a 5=10,a 8=3a 3,则数列{a n }的前10项的和等于( )A. 10B. 11C. 100D. 1102. 已知等差数列{a n }和等差数列{b n }的前n 项和分别为S n ,T n 且(n +1)S n =(7n +23)T n ,则使a nb n 为整数的正整数n 的个数是( )A. 2B. 3C. 4D. 53. 数列0,0,0,…,0,…是( )A. 是等差数列但不是等比数列B. 是等比数列但不是等差数列C. 既是等差数列又是等比数列D. 既不是等差数列也不是等比数列4. 设等比数列{a n }中,每项均是正数,且a 5a 6=81,则A. 20B. −20C. −4D. −55. 数列112,314,518,7116,…,(2n −1)+12n ,…的前n 项和S n 的值等于( )A. n 2+1−12n B. 2n 2−n +1−12n C. n 2+1−12n−1D. n 2−n +1−12n6. 已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n+1,则S n =A. 2n−1B. (32)n−1C. (23)n−1D. 12n−17.( )A. 32−1nB. 2−3n+1C. 1−1n+1D. 32+1n8. 两数√2+1与√2−1的等比中项是( )。
A. −1或1B. −1C. 1D. 129. 在等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A. S 4B. S 5C. S 6D. S 710. 数列1,11+2,11+2+3,…,11+2+3+⋯+n 的前n 项和为95,则正整数n 的值为( )A. 6B. 8C. 9D. 10A. 12B. 1C. −1D. 212.已知数列{a n}中,a1=1,前n项和为S n,且点P(a n,a n+1)(n∈N∗)在直线x−y+1=0上,则1S1+1S2+1S3+...+1S n=()A. n(n+1)2B. 2n(n+1)C. 2nn+1D. n2(n+1)13.在数列{a n}中,a1=2,a n+1n+1=a nn+ln(1+1n),则a n=()A. 2+nlnnB. 2n+(n−1)lnnC. 2n+nlnnD. 1+n+nlnn14.在数列{a n}中,a2=3,a3=5,且a n+2=2a n+1−a n,则a6=()A. 9B. 11C. 13D. 1515.若数列{a n}的通项公式是a n=(−1)n(3n−2),则a1+a2+⋯+a2018=()A. 1009B. 3027C. 5217D. 610616.等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+⋯+log3a10=()A. 12B. 10C. 8D. 2+log3517.数列{a n}的通项公式a n=√n+√n+1,若前n项的和为10,则项数为()A. 11B. 99C. 120D. 12118.等差数列{a n}的前n项和为S n,S100>0,S101<0,则满足a n a n+1<0的n=()A. 50B. 51C. 100D. 101二、填空题(本大题共9小题,共45.0分)19.设数列{a n}的前n项和为S n,且a1=−1,a n+1=S n S n+1,则S n=.20.设S n为等比数列{a n}的前n项和,已知S4=14,S8=56,则S16=____________.21.已知{a n}是递增数列,且对于任意的n∈N∗,a n=n2+λn恒成立,则实数λ的取值范围是_________.22.已知数列{a n}的前n项和为S n,且,则{a n}的通项为______.23.已知数列{a n}的前n项和S n=2n−3,则数列{a n}的通项公式为_________.24.若数列{a n}满足a1=12,a1+2a2+3a3+⋅⋅⋅+na n=n2a n,则a2019=______.25.设数列{a n}的前n项和为S n,且满足a1+2a2+⋯+2n−1a n=n,则S5=________.26.若f(x)+f(1−x)=4,a n=f(0)+f(1n )+⋯+f(n−1n)+f(1)(n∈N+),则数列{a n}的通项公式为______.三、解答题(本大题共8小题,共96.0分)28. 已知数列{a n }的前n 项和为S n ,且满足3S n =2a n +1.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =(n +1)a n ,求数列{b n }的前n 项和T n .29. 已知等差数列{a n }中,a 3=3,a 2+2,a 4,a 6−2顺次成等比数列.(1)求数列{a n }的通项公式; (2)记b n =(−1)n a 2n+1a n a n+1,{b n }的前n 项和S n ,求S 2n .30. 已知数列{a n }满足a 1=1,a n+1=2a na n +2,(n ∈N ∗),b n =1a n. (1)证明数列{b n }为等差数列; (2)求数列{a n }的通项公式.31.设等差数列{a n}的前n项和为S n,若S9=81,a3+a5=14.(1)求数列{a n}的通项公式;(2)设b n=1a n a n+1,若{b n}的前n项和为T n,证明:T n<12.32.设数列{a n}的前n项和为S n.已知a n>0,a n2+2a n=4S n+3.(1)求{a n}的通项公式.(2)设b n=1a n⋅a n+1,求数列{b n}的前n项和.33.已知等比数列{a n}满足a n+1=a n+2n.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若b n=log2a na n+1,求数列{b n}的前n项和S n.34.在数列{a n}中,已知a1=35,a n=2−1a n−1(n≥2,n∈N∗),数列{b n}满足b n=1a n−1(n∈N∗).(1)求证:数列{b n}是等差数列;(2)求{a n}的通项公式a n.35.已知数列{a n}满足,且a1=8.(1)证明:数列为等比数列;(2)设,记数列{b n}的前n项和为T n,若对任意n∈N∗,m≥T n恒成立,求m的取值范围.2.答案和解析1.【答案】C解:设等差数列{a n }的公差为d , ∵a 1+a 5=10,a 8=3a 3,∴2a 1+4d =10,a 1+7d =3(a 1+2d), 解得a 1=1,d =2. ∴S 10=10a 1+10×92d =10+90=100.2.【答案】C解:由题意,可得S nT n=7n+23n+1,则a n b n=2a n2b n=n(a 1+a 2n−1)2n(b 1+b 2n−1)2=S2n−1T 2n−1=14n+162n =7n+8n=7+8n ,经验证,知当n =1,2,4,8时,a nb n 为整数, 即使a nb n 为整数的正整数n 的个数是4.3.【答案】A解:数列0,0,0,…,0,…是无穷数列,从第二项开始起,每一项与它前一项的差都等于常数0,符合等差数列的定义,所以,数列0,0,0,…,0,…是等差数列,根据等比数列的定义可知,等比数列中不含有为0的项,所以,数列0,0,0,…,0,…不是等比数列. 故选A .4.【答案】B解:∵等比数列{a n }中,每项均是正数,a 5a 6=81, ∴a 5a 6=a 4a 7=a 3a 8=a 2a 9=a 1a 10=81, ∴log 13a 1+log 13a 2+⋯+log 13a 10.,=log 13(a 5a 6)5,=5log 1381,=−20.解:该数列的通项公式为a n =(2n −1)+12n ,∴S n =[1+3+5+⋯+(2n −1)]+(12+122+123+⋯+12n )=n [1+(2n −1)]2+12(1−12n )1−12=n 2+1−12n.6.【答案】B解:由S n =2a n+1可得当n >1时,S n−1=2a n ,,两式相减可得: 当n >1时,s n −s n−1=a n =2a n+1−2a n , 所以a n+1=32a n ; 因为a 1=1,所以a n =(32)n−1.故选B .7.【答案】A解:∵a n+1−a n =1n (n+1)=1n −1n+1,∴a 2−a 1=1−12,a 3−a 2=12−13,...,a n −a n−1=1n−1−1n , 以上n −1式相加,得a n −a 1=1−1n , ∵a 1=12,∴a n =32−1n . 故选A .8.【答案】A解:设√2+1与√2−1的等比中项是x ,则满足x 2=(√2+1)(√2−1)=(√2)2−1=2−1,则x =1或x =−1,9.【答案】B 10.【答案】C解:设a n =11+2+3+⋯+n =2(n+1)n =2(1n −1n+1),∴该数列的前n 项和为S n =2(1−12+12−13+⋯+1n −1n+1)=2nn+1, 令2nn+1=95,解得n =9.解:∵在数列{a n }中,a 1=12,a n =1−1a n−1(n ≥2,n ∈N +),∴a 2=1−1a 1=1−2=−1,a 3=1−1−1=2, a 4=1−12=12,∴{a n }是周期为3的周期数列, ∴2020=3×673+1, ∴a 2020=a 1=12.12.【答案】C解:∵点P(a n ,a n+1)(n ∈N ∗)在直线x −y +1=0上∴a n −a n+1+1=0∴数列{a n }是以1为首项,以1为公差的等差数列.∴a n =n∴s n =n(n +1)2∴1s n =2n(n +1)=2(1n −1n +1) 1S 1+1S 2+1S 3+⋯+1S n =2(1−12+12−13+⋯+1n −1n +1)=2n n +113.【答案】C解:由an+1n+1=a n n+ln(1+1n ),设ann =b n ,b 1=a 11=2,则a n+1n+1=b n+1,可得b n+1−b n =ln(n+1n)那么:b n −b n−1=ln(nn−1),n ≥2,…b 2−b 1=ln 21,累加可得:b n −b 1=ln(21×32×……×nn−1)=lnn . ∴b n =b 1+lnn =2+lnn ,当n =1也满足. 则a n =n(2+lnn)14.【答案】B因为a2=3,a3=5,所以a1=1,d=2,所以a6=a1+5d=11.15.【答案】B解:a n=(−1)n(3n−2),则a1+a2+⋯+a2018=(−1+4)+(−7+10)+(−13+16)+⋯+(−6049+6052)=3+3+⋯+3=3×1009=3027.16.【答案】B解:∵a5a6=a4a7,∴a5a6+a4a7=2a5a6=18,∴a5a6=9,∴log3a1+log3a2+⋅⋅⋅+log3a10=log3(a5a6)5=5log39=10.17.【答案】C解:∵数列{a n}的通项公式是a n=√n+√n+1=√n+1−√n,∴其前n项的和为S n=(√2−1)+(√3−√2)+⋯+√n+1−√n=√n+1−1,即√n+1−1=10,则n+1=121,即n=120,18.【答案】A解:根据题意,等差数列{a n}中,S100>0,S101<0,则有S100=(a1+a100)×1002=50(a1+a100)=50(a50+a51)>0,则有a50+a51>0;又由S101=(a1+a101)×1012=101a51<0,则有a51<0;则有a50>0,若a n a n+1<0,必有n=50;19.【答案】−1n解:∵a n+1=S n S n+1,∴a n+1=S n+1−S n=S n S n+1,∴S n+1−S nS n+1S n =1S n−1S n+1=1,即1S n+1−1S n=−1,又a1=−1,即1S1=1a1=−1,∴数列{1S n }是以首项和公差均为−1的等差数列,∴1S n=−1−1(n−1)=−n,∴S n=−1n,解:设等比数列{a n }的公比为q , 因为S 4=a 1(1−q 4)1−q =14,S 8=a 1(1−q 8)1−q=56,所以1−q 41−q 8=14,所以1+q 4=4,所以q 4=3, 又因为a 1(1−q 4)1−q=14,所以a 11−q =−7,所以S 16=a 1(1−q 16)1−q=a 11−q[1−(q 4)4]=560.故答案为560.21.【答案】(−3,+∞)解:解法一(定义法)因为{a n }是递增数列,所以对任意的n ∈N ∗,都有a n+1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理得2n +1+λ>0,即λ>−(2n +1) (∗). 因为n ≥1,所以−(2n +1)≤−3,要使不等式(∗)恒成立,只需λ>−3.解法二(函数法)设f (n )=a n =n 2+λn ,其图象的对称轴为直线n =−λ2,要使数列{a n }为递增数列,只需使定义在正整数集上的函数f (n )为增函数,故只需满足f (1)<f (2),即λ>−3.22.【答案】a n ={3,n =12n +2 ,n ≥2,n ∈Z解:∵数列{a n }的前n 项和为S n ,且S n =n 2+3n −1, ∴a 1=S 1=3,当n ≥2时,a n =S n −S n−1=n 2+3n −1−[(n −1)2+3(n −1)−1]=2n +2,则{a n }的通项公式为a n ={3,n =12n +2 ,n ≥2,n ∈Z,23.【答案】a n ={−1,n =1,2n−1,n ≥2解:当n ≥2时,a n =S n −S n−1=2n−1,当n =1时,a 1=S 1=−1,所以a n ={−1,n =1,2n−1,n ≥2.24.【答案】4673解:因为a 1+2a 2+3a 3+⋯+na n =n 2a n ,所以当n ≥2时,a 1+2a 2+3a 3+⋯+(n −1)a n−1=(n −1)2a n−1,所以na n =(n −1)a n−1=⋯=2a 2=a 1,由a 1=12可知a n =a 1n=12n,所以a 2019=122019=4673, 故答案为4673.25.【答案】3116解:a 1+2a 2+⋯+2n−2a n−1+2n−1a n =n ,➀ 当n ≥2时,a 1+2a 2+⋯+2n−2a n−1=n −1,➀ ➀−➀,得2n−1a n =1,即a n =12n−1, ➀ 当n =1时,a 1=1,满足➀式,∴{a n }是以a 1=1为首项,q =12为公比的等比数列,通项公式为a n =12, ∴S 5=1×[1−(12)5]1−12=2−(12)4=3116.26.【答案】a n =2(n +1)解:由f(x)+f(1−x)=4,可得自变量的和为1,则函数值的和为4, 由a n =f(0)+f(1n )+f(2n )+⋯+f(n−1n )+f(1),a n =f(1)+f(n−1n )+f(n−2n)+⋯+f(1n )+f(0),相加可得2a n =[f(0)+f(1)]+[f(1n )+f(n−1n)]+⋯+[f(1)+f(0)]=4+4+⋯+4=4(n +1), 解得a n =2(n +1). 故答案为a n =2(n +1).27.【答案】3027解:∵f (x )+f (1−x )=3x−22x−1+3(1−x )−22(1−x )−1=3x−22x−1+1−3x1−2x =6x−32x−1=3, 设S =f(12019)+f(22019)+f(32019)+⋯+f(20182019)………①, 则S =f(20182019)+f(20172019)+f(20162019)+⋯+f(12019) ………②, ①+②得:2S =2018[f(12019)+f(20182019)]=2018×3, S =1009×3=3027,28.解:(1)当n =1时,3S 1=2a 1+1,可得a 1=1,当n ≥2时,由{3S n =2a n +13S n−1=2a n−1+1得3(S n −S n−1)=2a n −2a n−1,整理得a n =−2a n−1, 所以数列{a n }是公比为−2,首项为1的等比数列 从而a n =(−2)n−1.(2)由b n =(n +1)a n ,得b n =(n +1)×(−2)n−1,则:T n =2×(−2)0+3×(−2)1+4×(−2)2+⋯+(n +1)×(−2)n−1,……① 那么:−2T n =2×(−2)1+3×(−2)2+⋯+n ×(−2)n−1+(n +1)×(−2)n ,……② 由①−②得:3T n =2×(−2)0+(−2)1+(−2)2+⋯+(−2)n−1−(n +1)×(−2)n =1+1−(−2)n 1−(−2)−(n +1)×(−2)n =43−(n +43)×(−2)n ,从而:T n =49−3n+49×(−2)n .29.解:(1)设等差数列{a n }的公差为d ,因为a 3=3,a 2+2,a 4,a 6−2顺次成等比数列,所以a 42=(a 2+2)(a 6−2),所以(3+d)2=(5−d)(1+3d),化简得d 2−2d +1=0,解得d =1.所以a 1=a 3−2d =1,所以a n =a 1+(n −1)d =1+(n −1)×1=n . (2)由(1)得b n =(−1)n a 2n+1a n a n+1=(−1)n 2n+1n(n+1)=(−1)n (1n +1n+1),所以S 2n =b 1+b 2+b 3+⋯+b 2n =−(1+12)+(12+13)−(13+14)+⋯+(12n +12n+1)=−1+12n+1=−2n2n+1.30.(1)证明:∵a 1≠0,且有a n+1=2ana n +2,(n ∈N ∗), ∴ a n ≠0,又∵b n =1a n,∴b n+1=1an+1=a n +22a n=1a n+12=b n +12,即b n+1−b n =12,且b 1=1a 1=1,∴ 数列{b n }是首项为1,公差为12的等差数列. (2)解:由(1)知b n =1+n−12=n+12,即1a n=n+12⇒a n =2n+1.31.解:(1)设等差数列{a n }的公差为d ,由S 9=9a 5=81,得a 5=9, 又由a 3+a 5=14,得a 3=5, 由上可得等差数列{a n }的公差d =2, ∴a n =a 3+(n −3)d =2n −1;(2)证明:由题意得,b n=1a n a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1).所以T n=12(1−13+13−15+⋯+12n−1−12n+1)=12(1−12n+1)<12.32.解:(1)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3,两式相减得a n+12−a n2+2(a n+1−a n)=4a n+1,即2(a n+1+a n)=a n+12−a n2=(a n+1+a n)(a n+1−a n),∵a n>0,∴a n+1−a n=2,∵a12+2a1=4a1+3,∴a1=−1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n−1)=2n+1;(2)∵a n=2n+1,∴b n=1a n a n+1=1 (2n+1)(2n+3)=12(1 2n+1−12n+3),∴数列{b n}的前n项和T n=12(13−15+15−17+⋯+12n+1−12n+3)=12(13−12n+3)=n3(2n+3).33.解:(Ⅰ)当n=1时,a2=a1+2,当n=2时,a3=a2+4=a1+6,∵数列{a n}是等比数列,∴a22=a1a3,即(a1+2)2=a1(a1+6),解得a1=2.∴q=a2a1=42=2,∴a n=a1q n−1=2×2n−1=2n;(Ⅱ)∵b n=log2a na n+1=n2n+1,∴S n=122+223+324+⋯+n2n+1①,∴12S n=12+22+32+⋯+n2②,由①−②得12S n=122+123+124+⋯+12n+1−n2n+2=122(1−12n )1−12−n 2n+2 =12−12n+1−n 2n+2 ∴S n =1−n+22n+1.34.(1)证明:当n ≥2时,b n −b n−1=1a n −1−1a n−1−1=12−1a n−1−1−1an−1−1=a n−1−1a n−1−1=1, 所以数列{b n }为等差数列, 且首项为1a1−1=−52,公差为1;(2)解:由(1)知,所以1an−1=n −72=2n−72,故a n =1+22n−7=2n−52n−7.35.解:(1)证明:因为数列{a n }满足,所以a n+1=2a n −2,整理得a n+1−2=2(a n −2), 因为a 1−2=6≠0且a n+1−2a n −2=2为常数,所以数列是以6为首项,2为公比的等比数列;(2)解:由(1)知a n −2=6·2n−1,即a n =3·2n +2, 所以b n =(−1)n a n(2n +1)(2n+1+1)=(−1)n (12n +1+12n+1+1)当n 为偶数时,;当n 为奇数时,;当n 为偶数时,是递减的,此时当时,T n 取最大值29,则m ⩾−29;当n 为奇数时,是递增的,由上式易得到T n <−13,则m ⩾−13. 综上,m 的取值范围是[−29,+∞).。
高中数列基础练习题高中数列基础练习题数列是高中数学中的重要概念之一,它在数学中有着广泛的应用。
通过解决数列练习题,我们可以加深对数列的理解,提高数学运算能力。
下面通过一些基础的数列练习题,来帮助我们更好地掌握数列的概念和相关的计算方法。
1. 求和数列求和数列是最基础的数列类型之一。
它的通项公式可以表示为Sn = a1 + a2 +a3 + ... + an,其中Sn表示前n项的和,a1、a2、a3等表示数列的各项。
现在我们来解决一个求和数列的练习题。
题目:已知数列的通项公式为an = 3n,求该数列的前10项的和。
解答:根据通项公式,我们可以得到该数列的前10项分别为3、6、9、12、15、18、21、24、27、30。
将这些项相加得到的和为165。
因此,该数列的前10项的和为165。
2. 等差数列等差数列是一种常见的数列类型,它的每一项与前一项之间的差值都相等。
解决等差数列的练习题可以帮助我们熟悉等差数列的性质和计算方法。
题目:已知等差数列的首项为a1 = 2,公差为d = 3,求该数列的第10项。
解答:根据等差数列的性质,我们可以得到该数列的通项公式为an = a1 + (n-1)d。
将已知的数值代入公式中,我们可以得到该等差数列的第10项为2 +(10-1)3 = 29。
因此,该等差数列的第10项为29。
3. 等比数列等比数列是一种常见的数列类型,它的每一项与前一项之间的比值都相等。
解决等比数列的练习题可以帮助我们熟悉等比数列的性质和计算方法。
题目:已知等比数列的首项为a1 = 2,公比为r = 3,求该数列的第10项。
解答:根据等比数列的性质,我们可以得到该数列的通项公式为an = a1 *r^(n-1)。
将已知的数值代入公式中,我们可以得到该等比数列的第10项为2 * 3^(10-1) = 19683。
因此,该等比数列的第10项为19683。
4. 斐波那契数列斐波那契数列是一种特殊的数列,它的每一项都是前两项之和。
数列基础练习题一、选择题1. 已知数列{an}是等差数列,且a1=2,a3=8,求a10。
A. 26B. 28C. 30D. 322. 一个等差数列的首项是5,公差是3,求这个数列的第8项。
A. 24B. 26C. 28D. 303. 数列{bn}是等比数列,首项为4,公比为2,求b5。
A. 64B. 128C. 256D. 5124. 已知数列{cn}的前n项和Sn=n^2,求c5。
A. 10B. 12C. 14D. 165. 数列{dn}的通项公式为dn=2n-1,求这个数列的前5项和。
A. 25B. 30C. 35D. 40二、填空题6. 等差数列{an}的首项a1=3,公差d=2,第10项a10=________。
7. 等比数列{bn}的首项b1=2,公比q=3,第4项b4=________。
8. 已知数列{cn}的前n项和Sn=2n+1,求c1=________。
9. 数列{dn}的通项公式为dn=3n+1,求这个数列的前4项和S4=________。
10. 已知数列{en}的前n项和Sn与第n项en的关系为Sn=2en-1,求e3=________。
三、解答题11. 已知数列{an}的前5项和S5=35,且an+1=an+5,求a1。
12. 证明:若数列{bn}是等差数列,其前n项和为Sn,若b1=b,bn+1=bn+d,则Sn=n(b1+bn)/2。
13. 已知等比数列{cn}的前3项和为S3=28,且c1=4,求c3。
14. 已知数列{dn}的前n项和Sn与第n项dn的关系为Sn=dn^2,求dn。
15. 证明:若数列{en}的通项公式为en=2^n,其前n项和Tn=(2^(n+1)-2)/2。
四、应用题16. 某工厂生产的产品数量构成等差数列,首年生产100件,每年增加50件,求第5年的生产量。
17. 某银行的存款利息按复利计算,首年存入100元,年利率为5%,求第3年的本息总额。
高二数学(文)数列基础题 2012.12.29一、选择题1.在数列1,1,2,3,5,8,13,x ,34,55,…中,x 的值是A .19B .20C .21D .222、(2010安徽文数)设数列{}n a 的前n 项和2n S n =,则8a 的值为 (A ) 15 (B) 16 (C) 49 (D )64 3.已知数列,11,3,7,5,3,1…21,12则-n 是这个数列的第( )A.10项B.11项C.12项D.21项4.已知数列{}n a 中,11=a ,13n n a a +=+,若2008=n a ,则n =( ) A.667 B.668 C.669 D.670 5.数列1,-3,5,-7,9,.......的一个通项公式为 ( )A. 12-=n a nB. )21()1(n a nn --=C. )12()1(--=n a n nD. )12()1(+-=n a nn6.在等差数列{}n a 中,133,5a a ==,则7a =( )A.9B.11C.13D.15 7.等差数列{a n }中,已知35a =,2512a a +=,29n a =,则n 为 ( ) A. 13 B. 14 C. 15 D. 16 8.已知等差数列{}n a 满足011321=+⋅⋅⋅+++a a a a ,则有( ) A .66=a B .093=+a a C .0111>+a a D .0102<+a a 9.已知等比数列{}n a 的公比q=2,其前4项和460S =,则2a 等于( )A .8B .6C .-8D .-610.已知等比数列{a n }的公比q 为正数,且2a 3+a 4=a 5,则q 的值为( )A .23 B .2 C .25 D .311、(2010浙江文数)设n s 为等比数列{}n a 的前n 项和,2580a a +=,则52SS=( )(A)-11(B)-8 (C)5(D)11 12、(2009辽宁卷理)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则69S S =( ) (A ) 2 (B ) 73(C ) 83(D )3二、填空题13.已知数列{a n }的前n 项和S n =2n +n -1,则a 1+a 3= .14、设n S 为等差数列{}n a 的前n 项和,若36324S S ==,,则9a = 。
基础测试
1.一架飞机起飞时,第一秒滑跑2.3米,以后每秒比前一秒多滑跑4.6米,离地的前一秒滑跑66.7米,则滑跑的时间一共是()
(A ) 15秒 (B )16秒 (C )17秒 (D )18秒
答案:A
2.某工厂去年产值是a ,计划在今后五年内,每年比上一年产值增长10%,从今年起到第五年末这个工厂的总产值是()
(A )1.14a (B )1.15a (C )10×(1.15-1) a (D )11×(1.15-1) a
答案:D
3.若数列{}n a 的前n 项和1-=n n a S ,则{}n a 是()
(A )等比数列 (B )不是等比数列
(C )可以是等比数列,也可以是等差数列
(D )可是等比数列,但不可能是等差数列
答案:C
4.已知a >b >0,A 是a ,b 的等差中项,G 是a ,b 的等比中项,且G >0,若A=2G , 则=b
a ___________ (答案:347+)
5.已知⎭⎬⎫⎩⎨
⎧+13n n ,则这个数列的前n 项和=n S ______________. (答案:()13
212121+⋅-++n n n ) 6.已知数列{}n a 的通项公式
a n =3n -50,则当n=______时,S n 的值最小,S n
的最小值是__________。
(答案:16,-392) 7.已知等差数列为{}n a 中,a 1=1,S 10=100
(1)求数列{}n a 的通项公式;
(2)从数列{}n a 中依次取出第1,3,32,…,3n -1 项,组成数列{}n b ,求数列{}n b 的前n 项和。
(答案: (1)a n =2 n -1 , (2) S bn =3n -n -1.
点评:7.由于1,3,32,…,3n -1 都是数列{}n a 中的项,所以它们都满足a n =2n -1故1321-⨯=-n n b .以下再对等比数列{}
132-⨯n 及常数列1,1,…,分别求其前n 项和即可.)
8.有三个数成等差数列,前两数和的3倍等于第三个数的2倍,若第二个数减去2(仍作第二项),则三数成等比数列,求此三个数。
答案:1,5,9或4
9,45,41 点评:列方程组求解,设此三数的为x -d ,x ,x +d ,则
()()()()()⎩⎨⎧-+=-+=+-d x d x x d x x d x 2223
9.已知二次函数()())(10061931022
2N n n n x n x x f ∈+-+--= (1)设函数()x f y =图象的顶点的横坐标组成数列{}n a ,求证:数列{}n a 是等差数列.
(2)设函数()x f y =图象的顶点到y 轴的距离构成数列{}n b ,求数列{}n b 的前n 项和S n.
答案:(1)a n =10-3n ;
(2)当n ≤3时,21732n n S n +-=,当n ≥4时, 2
481732+-=n n S n ; 点评:
9.(2)()⎩
⎨⎧≥-≤-=-==4103)3(310310n n n n n a b n n 当n ≤3时,()[]2
173231072n n n n S n +-=-+=; 当n ≥4时,n n b b S S +++=...43 ()()[]2
1032325127-+-++-=n n 2
481732+-=n n . 10.已知数列{}n a 中,1,111+==+n n a a a ,设函数
()()1,1...1121≠∈++++++=
n N n a n a n a n n f n 且,求函数()n f 的最小值. 答案:12
7 点评:易知n a n =.
∵ ()()121...2111≠∈+++++=n N n n
n n n f 且
∴()()⎪⎭⎫ ⎝⎛+++++++++=-+22112121...31211n n n n n n f n f ⎪⎭⎫ ⎝⎛+++++-n n n 21...2111 11
221
121+-+++=n n n
()()022121
>++=n n
∴ 函数()()1≠∈n N n n f 且为增函数.
∴ n=2时,f (n )最小,最小值为()127
221
121
2=+++=f .。