数学归纳法证明。
- 格式:ppt
- 大小:8.52 MB
- 文档页数:22
数学归纳法证明数列数学归纳法证明数列一、引言数学归纳法证明是指根据假设和定理,利用类似步骤证明某个关系或结论的方法,也就是从一般到特殊,从抽象到具体,从全集到某个特定元素等等方法的一种表达形式。
数学归纳法常用于证明一个数列的性质,或某个数学公式在一组数列中的关系。
一般我们可以通过归纳法从一般性公式出发,证明某数列的某个特定性质。
具体地,这个特定性质可以是数列的某一项,也可以是数列的某一段,或数列的某一个总和等等。
二、具体讲解1、归纳法证明数列:a) 首先,我们需要假设某种数列,对于此数列,我们可以设立数列公式 n=(a_1,a_2,a_3,a_4,a_5...),对于任意n,都有a_n=f(n),这里我们定义f为某种函数。
b) 然后,我们需要根据假设的关系,验证此数列的特殊性质是否正确。
例如,我们可以利用归纳法,证明某种数列的和关系,即∑a_n=f(1)+f(2)+f(3)+f(4)+f(5)+...,我们需要证明这个公式正确。
c) 对于这个数列,我们可以设立一般步骤,即先设立假设,然后利用假设的关系,验证某一步骤的结果是否正确,最后证明特定性质正确。
2、特定示例:假设我们要验证某种数列的总和,即n=(a_1,a_2,a_3,a_4,a_5....),我们可以将其表示为a_n=f(n),比如a_n=n^2,此时我们可以证明∑a_n=f(1)+f(2)+f(3)+f(4)+f(5)+...=1^2+2^2+3^2+4^2+5^2+...a) 首先,我们可以假设数列a_n=n^2,即a_1=1^2,a_2=2^2,a_3=3^2,a_4=4^2,a_5=5^2以此类推。
b) 其次,我们可以设立基本步骤,即当k=1时,我们有∑_1^k a_n=f(1)=1^2,而当k=2时,我们有∑_1^k a_n=f(1)+f(2)=1^2+2^2,以此类推,当k=n时,我们有∑_1^ka_n=f(1)+f(2)+f(3)+f(4)+f(5)+...c) 最后,我们可以根据假设的关系,证明此式子正确,即∑a_n=f(1)+f(2)+f(3)+f(4)+f(5)+...=1^2+2^2+3^2+4^2+5^2+...三、结论从上面的表述可以看出,数学归纳法证明数列是一种有效的方法,它可以从一般的关系中推导出特殊性质的关系,从而证明某个数列的特殊性质,或某个数学公式在一组数列中的关系。
例1:已知*N n ∈,证明:n n 211214131211--+⋅⋅⋅+-+-nn n 212111+⋅⋅⋅++++=. 证明:用数学归纳法证明. (1)当1=n 时,左边=21211=-,右边21=,等式成立; (2)假设当k n =时等式成立,即有:k k 211214131211--+⋅⋅⋅+-+-kk k 212111+⋅⋅⋅++++=. 那么当1+=k n 时, 左边=)1(211)1(21211214131211+--++--+⋅⋅⋅+-+-k k k k k k k 212111+⋅⋅⋅++++=)1(21121+-++k k ++++⋅⋅⋅++++=121213121k k k k ])1(2111[+-+k k +⋅⋅⋅++++++=2)1(11)1(1k k )1()1(1)1(1++++++k k k k =右边; 所以当1+=k n 时等式也成立.综合(1)(2)知对一切*N n ∈,等式都成立.例2、求证:n n n +≤++++≤+21213121121 证明:(1)当n=1时,211)1(+=f ,原不等式成立 (2)设n=k ()*∈N k 时,原不等式成立 即k k k +≤++++≤+21213121121 成立,当n=k+1时, ()()2112121212121212122112121212211211211111++=++=+++++>+++++++≥++++++=++++++k k k k k f k f k k k k k k k k k k 项共 ()() 项共k k k k k k k k k k k k k f k f 211121121121212122112121212211211++++++++<+++++++≤++++++=+++()()1211++<+∴k k f 即n=k+1时,命题成立 综合(1)、(2)可得:原命题*∈N n 对恒成立。
解:设椭圆221mx ny +=,则4191m n m n +=⎧⎨+=⎩,解得335835m n ⎧=⎪⎪⎨⎪=⎪⎩,所以椭圆方程为223813535x y +=.六、数学归纳法(一)数学归纳法应用关于正整数的命题的证明可以用数学归纳法.本部分的数学归纳法指的是第一数学归纳法.第一数学归纳法的思维方法是:命题在1n =成立的条件下,如果n k =时命题成立能够推出1n k =+时命题也成立,我们就可以下结论,对于任意正整数命题都成立.1.证明等式典型例题:证明222112(1)(21)6n n n n ++⋅⋅⋅+=++,其中n N *∈.证明:(1)当1n =时,左边211==,右边11(11)(21)16=⨯⨯++=,等式成立.(2)假设n k =时等式成立,即222112(1)(21)6k k k k ++⋅⋅⋅+=++.则当1n k =+时,左边22222112(1)(1)(21)(1)6k k k k k k =++⋅⋅⋅+++=++++1(1)(2)(23)6k k k =+++1(1)[(1)1][2(1)1]6k k k =+++++=右边,即1n k =+时等式成立.根据(1)(2)可知,等式对于任意n N *∈都成立.2.证明不等式典型例题 1.证明1111223n n+++⋅⋅⋅+<,其中n N *∈.证明:(1)当1n =时,左边1=,右边2=,不等式成立.(2)假设n k =时不等式成立,即1111223k k+++⋅⋅⋅+<,则当1n k =+时,左边11111122311k k k k =+++⋅⋅⋅++<+++,右边21k =+.要证左边<右边,536只需证12211k k k +<++,而此式2112(1)k k k ⇔++<+2121k k k ⇔+<+24(1)(21)01k k k ⇔+<+⇔<,显然01<成立,故1n k =+时不等式也成立.综上所述,不等式对任意n N *∈都成立.典型例题2.已知,0a b >,a b ≠,n N ∈,2n ≥,证明()22n nn a b a b ++<.证明:(1)当2n =时,2222222222()2442a b a ab b a b a b +++++=<=,不等式成立.(2)假设n k =时不等式成立,即()22k kk a b a b ++<,则当1n k =+时,左边1()2k a b ++11224k k k k k k a b a b a b a b ab +++++++<⋅=,因为11()()k k k ka b a b ab +++-+()()k k a b a b =--0>,所以11k k k k a b ab a b +++<+,则111142k k k k k k a b a b ab a b ++++++++<,即111()22k k k a b a b +++++<,故1n k =+时不等式也成立.由(1)(2)可知,不等式对任意n N ∈,2n ≥都成立.3.证明整除性问题典型例题:证明22nn ab -能被a b +整除,其中n N *∈.证明:(1)当1n =时,显然22a b -能被a b +整除.(2)假设n k =时命题成立,即22k k a b -能被a b +整除,则当1n k =+时,2(1)2(1)2(1)2(1)2222k k k k k k a b a b a b a b ++++-=-+-222222()()k k k a a b b a b =-+-,因为22a b -与22k k a b -都能被a b +整除,所以222222()()k kk a a b b a b -+-能被a b +整除,即1n k =+时命题也成立.综上所述,原命题成立.4.证明几何问题典型例题:求证平面内n 条直线的交点最多有1(1)2n n -个.证明:平面内n 条直线的交点最多,只需任意三条直线不过同一点,任意两条直线不平行,下面在此条件下证明.(1)当2n =时,显然两条直线只有1个交点,而1(1)12n n -=,命题成立.537(2)假设n k =时命题成立,即平面内k 条直线的交点有1(1)2k k -个,则当1n k =+即平面上有1k +条直线时,因为任意三条直线不过同一点,任意两条直线不平行,所以第1k +条直线与原来的k 条直线共有k 个交点.这时交点的总个数为1(1)2k k k-+1(1)[(1)1)]2k k =++-,即1n k =+时命题也成立.综上所述,原命题成立.(二)其他数学归纳法除了第一数学归纳法以外,还有一些特别的数学归纳法.1.第二数学归纳法典型例题:设n N *∈,且12cos x x α+=,证明:12cos n n x n x α+=.证明:(1)当1n =时,12cos x xα+=,命题成立.当2n =时,21()x x +2212x x =++24cos α=,得2212cos 2x xα+=,命题成立.(2)假设n k ≤(2)k ≥时命题成立,则当1n k =+时,有111k k x x +++11111()()()k k k k x x x x x x--=++-+2cos 2cos 2cos(1)k k ααα=⋅--2[cos(1)cos(1)]2cos(1)k k k ααα=++---2cos(1)k α=+,故1n k =+时不等式也成立.由(1)(2)可知,命题成立.2.反向数学归纳法典型例题:函数:f N N **→满足(1)(2)2f =,(2)对任意正整数m 、n ,()()()f mn f m f n =,(3)当m n >时,()()f m f n >;证明:()f n n =.证明:令2m =、1n =,则(2)(2)(1)f f f =,故(1)1f =.令2m =、2n =,则22(2)(2)(2)2f f f ==;令22m =、2n =,则323(2)(2)(2)2f f f ==;由第一数学归纳法易证(2)2mmf =.下面用反向数学归纳法证()f n n =.(1)由上面推证知,存在无数个形如2m的数使()f n n =成立.(2)假设1n k =+时成立,即(1)1f k k +=+.因为存在t N *∈满足1212t t k +<+≤,则122t t k +≤<.设2t k s =+,s N *∈,则1112(2)(21)(22)(2)(21)(2)2t t t t t t t t f f f f s f f +++=<+<+<⋅⋅⋅<+<⋅⋅⋅<-<=.所以1(21),(22),,(2),,(21)t t t t f f f s f +++⋅⋅⋅+⋅⋅⋅-是区间1(2,2)t t +内的21t -个不同的自然数,538而区间1(2,2)t t +内恰好有21t -个不同的自然数121,22,,2,,21t t t t s +++⋅⋅⋅+⋅⋅⋅-,于是11(21)21,(22)22,,(21)21t t t t t t f f f +++=++=+⋅⋅⋅-=-,即()f k k =.由反向数学归纳法知,对任意n N *∈都有()f n n =.3.跷跷板数学归纳法典型例题:n S 是数列{}n a 的前n 项和,设223n a n =,213(1)1n a n n -=-+,n N *∈,求证:2211(431)2n S n n n -=-+及221(431)2n S n n n =++.证明:设()P n :2211(431)2n S n n n -=-+;()Q n :221(431)2n S n n n =++.(1)当1n =时,111S a ==,则(1)P 成立.(2)假设n k =时,则()P k 成立,即2211(431)2k S k k k -=-+,则2212k k k S S a -=+=221(431)32k k k k -++21(431)2k k k =++,即()Q k 成立.当()Q k 成立时,21k S +=221k k S a ++21(431)3(1)12k k k k k =+++++21(1)[4(1)3(1)1]2k k k =++-++,即(1)P k +成立.由跷跷板数学归纳法可知,原命题成立.4.二重数学归纳法典型例题:设(,)f m n 满足(,)(,1)(1,)f m n f m n f m n ≤-+-,其中,m n N *∈,1mn >,且(,1)(1,)1f m f n ==,证明:12(,)m m n f m n C -+-≤.证明:设命题(,)P m n 表示(,)f m n .(1)112(,1)1m m f m C -+-==,012(1,)1n f n C +-==,即(,1)P m 、(1,)P n 成立.(2)假设(1,)P m n +、(,1)P m n +成立,即1(1,)m m n f m n C +-+≤,11(,1)m m n f m n C -+-+≤.则(1,1)(1,)(,1)f m n f m n f m n ++≤+++11111(1)(1)2m m m m m n m n m n m n C C C C -+++-+-++++-≤+==,即(1,1)P m n ++也成立.由二重数学归纳法知,原不等式成立.539。
数学归纳法在几何证明中的运用数学归纳法是一种证明数学命题的方法,它包括两个步骤:基础步骤和归纳步骤。
在几何证明中,数学归纳法可以用来证明与自然数有关的几何命题。
下面是一些常见的数学归纳法在几何证明中的运用知识点。
1.等差数列的求和公式:等差数列的求和公式是一个常见的数学归纳法应用。
设有一个等差数列a_1, a_2, a_3, …, a_n,首项为a_1,公差为d,求和公式为S_n = n/2 * (a_1 + a_n)。
这个公式可以通过数学归纳法来证明。
2.多边形的内角和公式:一个n边形的内角和为(n-2) * 180度。
这个公式也可以通过数学归纳法来证明。
首先,对于三角形,内角和为180度,成立。
然后,假设对于一个k边形,内角和为(k-2) * 180度,可以通过数学归纳法证明对于一个k+1边形,内角和为(k+1-2) * 180度也成立。
3.幂的乘法法则:幂的乘法法则是数学归纳法的一个典型应用。
对于任意正整数n,有n^m * n^n = n(m+n)。
这个法则可以通过数学归纳法来证明。
首先,对于m=1,有n1 * n^n = n(1+n),成立。
然后,假设对于一个k,n m * n^k = n(m+k)成立,可以通过数学归纳法证明对于一个k+1,n m * n^(k+1) = n^(m+k+1)也成立。
4.归纳法证明几何命题:在几何中,有时需要证明一个命题对于所有自然数n成立。
例如,证明一个多边形的某个性质对于所有自然数n成立的命题。
可以使用数学归纳法来证明。
首先,证明对于n=1的情况成立。
然后,假设对于一个k,命题成立,需要证明对于k+1也成立。
这通常涉及到对于多边形的操作,如分割、拼接或变换等。
5.归纳法证明几何恒等式:在几何中,有时需要证明一个恒等式对于所有自然数n成立。
例如,证明一个关于多边形面积的恒等式。
可以使用数学归纳法来证明。
首先,证明对于n=1的情况成立。
然后,假设对于一个k,恒等式成立,需要证明对于k+1也成立。
数学归纳法证明的原理2020-12-07数学归纳法证明的原理数学归纳法证明的原理数学归纳法证明的是与自然数有关的命题,它的依据是皮亚诺提出的自然数的序数理论,就是通常所说的自然数的皮亚诺公理,内容是:(1)l是自然数。
(2)每个自然数a有一个确定的“直接后继”数a’,a也是自然数。
(2)a’≠1,即1不是任何自然数的“直接后继”数。
(4)由a’=b’,推得a=b,即每个自然数只能是另外的唯一自然的“直接后继”数。
(5)任一自然数的集合,如果包含1,并且假设包含a,也一定包含a的“直接后继”数a’,则这个集合包含所有的自然数。
皮亚诺公理中的(5)是数学归纳法的依据,又叫归纳公理数学归纳法的应用及举例。
因为由假设知42k+1+3k+2能被13整除,1342k+1也能被13整除,这就是说,当n=k+1时,f(k+l)能被13整除。
根据(1)、(2),可知命题对任何n∈N都成立。
下面按归纳步中归纳假设的形式向读者介绍数学归纳法的几种不同形式以及它们的应用。
(l)简单归纳法。
即在归纳步中,归纳假设为“n=k时待证命题成立”。
这是最常用的一种归纳法,称为简单归纳法,大家都比较熟悉,这里不再赘述。
(2)强归纳法。
这种数学归纳法,在归纳步中,其归纳假设为“n≥k时待证命题成立”。
我们称之为强归纳法,又叫串值归纳法。
通常,如果在证明p(n+l)成立时,不仅依赖于p(n)成立,而且还可能依赖于以前各步时,一般应选用强归纳法,下面举例说明其应用。
例有数目相等的两堆棋子,两人轮流从任一堆里取几项棋子,但不能不取也不能同时从两堆里取,规定凡取得最后一项者胜。
求证后者必胜。
证:归纳元n为每堆棋子的数目。
设甲为先取者,乙为后取者。
奠基n=l,易证乙必胜。
归纳设Nn≤k时,乙必胜。
现证n=k+l时也是乙必胜。
设甲在某堆中先取r颗,O<r≤k。
乙的对策是在另一堆中也取r颗。
有二种可能:(1)若r<k,经过两人各取一次之后,两堆都只有k-r颗,k-r<k,现在又轮到甲先取,依归纳假设,乙必胜。
数学归纳法及其在证明中的应用数学归纳法是一种常用的证明方法,在数学领域中具有广泛的应用。
它基于数学归纳原理,通过证明某一命题在基础情形下成立,并且在前一情形成立的前提下,推导出在后一情形下成立,从而证明该命题对于所有情形都成立。
本文将介绍数学归纳法的基本原理及其在证明中的应用。
一、数学归纳法的基本原理数学归纳法的基本原理可以简述为:若能证明命题在基础情形下成立,并且在前一情形成立的前提下,能推导出在后一情形下也成立,则该命题对于所有情形都成立。
具体而言,数学归纳法一般包含以下三个步骤:1. 基础情形的证明:首先证明当n取某个特定值时,命题成立。
这个特定值称为基础情形。
证明这一步骤通常是较为简单和直接的。
2. 归纳假设的建立:假设当n=k时命题成立,其中k是某个自然数。
这个假设被称为归纳假设,它是推导下一情形的前提。
3. 归纳步骤的证明:在归纳假设的前提下,证明当n=k+1时命题也成立。
这一步骤需要推导并证明命题成立的过程。
通过以上三个步骤,我们可以逐步推导出命题对于所有正整数都成立的结论。
二、数学归纳法的应用数学归纳法在证明数学命题中有着广泛的应用。
下面将介绍数学归纳法在代数、数论和组合数学等领域中的具体应用。
1. 代数中的应用在代数中,数学归纳法常用于证明与自然数相关的性质。
例如,我们可以利用数学归纳法证明自然数n的平方和公式:1² + 2² + 3² + ... + n² = (n(n+1)(2n+1))/6首先,我们证明当n=1时,公式成立。
然后,假设当n=k时公式成立,即1² + 2² + 3² + ... + k² = (k(k+1)(2k+1))/6。
接下来,我们需要证明当n=k+1时公式也成立。
利用归纳假设,我们可以得到:1² + 2² + 3² + ... + k² + (k+1)² = (k(k+1)(2k+1))/6 + (k+1)²通过化简和运算,我们可以证明等式成立,从而得出结论:对于所有自然数n,平方和公式都成立。
数学归纳法证明数学归纳法是数学证明中一种常用的方法,其思想是通过推广某个命题在基础情形的真实性,证明该命题对于所有情形也都成立。
本文将介绍数学归纳法证明的基本原理、步骤、应用及注意事项。
一、基本原理数学归纳法的基本思想是,如果命题P(n)对于某个正整数n成立,并且命题P(n+1)可以由P(n)推出,在此基础上可以得到P(n+2),P(n+3)等等的真实性,那么命题P(n)对于所有大于或等于基础情形的正整数n都成立。
在这个过程中,需要区分基础情形和归纳情形。
基础情形是在证明的开始处,需要证明P(1)的真实性。
归纳情形是在基础情形成立的前提下,证明命题P(n)的真实性。
二、步骤1.证明基础情形:证明P(1)是真实的。
2.证明归纳情形:假设P(k)成立,证明P(k+1)也成立。
3.结论:因为所有的下一个情形都可以从上一个情形推得,所以可以得出结论:对于所有的n,命题P(n)成立。
三、应用数学归纳法证明在各个数学分支中都有着广泛的应用,以下是几个例子:1.证明1+2+3+...+n = n(n+1)/2:基础情形:n=1时,1=1×(1+1)/2,等式成立。
归纳情形:假设1+2+3+...+k=k(k+1)/2成立,那么:1+2+3+...+k+(k+1)=(k+1)(k+2)/2因此,得证1+2+3+...+n = n(n+1)/2对于所有的正整数n成立。
2.证明斐波那契数列的通项公式:基础情形:当n=1和n=2时,斐波那契数列是1,1,也就是f1=f2=1。
归纳情形:假设当n=k-1和n=k时,斐波那契数列是fk-1和fk,则f(k+1)= fk +fk-1,其中k≥2。
因此,得证斐波那契数列的通项公式对于所有的正整数n 成立。
四、注意事项1.需要正确地识别基础情形和归纳情形,确保证明的准确性。
2.需要注意证明过程中的细节,尤其是数学运算的准确性。
3.有时候需要进行二次归纳证明,即需要证明P(1)和P(2)成立,并且假设P(1)、P(2)、……、P(k-1)成立可以推出P(k)成立,那么就可以推出命题P(n)对于所有大于等于2的整数n成立。
4。
1 数学归纳法庖丁巧解牛知识·巧学一、数学归纳法的定义证明某些与自然数有关的数学题,可用下列方法来证明它们的正确性:(1)验证当n取第一个值n0(例如n0=1)时命题成立,(2)假设当n=k(k∈N*,k≥n0)时命题成立,证明当n=k+1时命题也成立。
完成这两步,就可以断定这个命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法。
从数学归纳法的定义我们可以看出,它强调的就是两个基本步骤.数学归纳法的两个步骤,是问题的两个方面,一个是命题成立的基础,一个是命题之间可递推的依据,二者缺一不可。
缺步骤(2),则证明就是“一叶障目,以一代全”不能保证命题对所有的自然数n 都成立;而缺步骤(1),则证明就成了“空中楼阁",也难以保证命题对所有自然数n都成立.我们通常称第(1)步为奠基步骤。
记忆要诀总结以上的分析,归纳如下:“奠基步骤不能少,归纳假设要用到,结论写明莫忘掉."如果同学们能正确地理解了数学归纳法证明的要义,才能轻松自如地运用它,而不致误用.误区警示数学归纳法的两个步骤,是问题的两个方面,一个是命题成立的基础,一个是命题之间可递推的依据,二者缺一不可.疑问:既然第(2)步已经证明了任两个连续自然数对应的命题的递推关系,那么第(1)步是否是多余的?请看如下例子:对于欲证的命题:1+2+3+…+n=21n (n+1)+1。
第二步证明为:若n=k 时命题成立,即1+2+3+…+k=21k(k+1)+1, 则当n=k+1时,1+2+3+…+k+(k+1)=21k (k+1)+1+(k+1)=21(k+1)(k+2)+1,即当n=k+1时命题也成立.但我们会发现:当n=1时,左式=1,右式=2,显然命题不成立。
辨析比较归纳法与数学归纳方法我们在研究问题时,还常常用到如下的一种思维方法,即从特殊到一般的思维方法,举例如下:1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42, …,我们由此发现并得出如下结论: 1+2+3+…+(n-1)+n+(n —1)+…+3+2+1=n 2(n ∈N ).这就是考察具有1+2+3+…+(n —1)+n+(n —1)+…+3+2+1特征的某几个式子的数值后,发现了蕴含其中的共性之后而得到的一个结论。
数学归纳法在证明与自然数有关的问题上的强大应用数学归纳法是一种证明方法,通常用于证明与自然数有关的性质。
下面列举几个例子,以展示数学归纳法在证明与自然数有关的问题上的强大应用:
1. 证明等式或不等式成立:例如,通过数学归纳法可以证明等差数列的求和公式或者二项式定理。
2. 证明某些算法的正确性:在计算机科学和信息技术领域中,数学归纳法可以用来证明某些算法的正确性。
例如,插入排序算法的正确性可以通过数学归纳法进行证明。
3. 证明某些结论的成立:例如,通过数学归纳法可以证明n个点的完全图中有n(n-1)/2条边。
4. 证明某些概率性质的成立:在概率论中,数学归纳法可以用来证明某些概率性质的成立。
例如,可以通过数学归纳法证明n个独立事件的概率乘积公式。
总的来说,数学归纳法是一种非常有用的证明方法,可以用于证明各种数学问题的正确性。