高等代数与解析几何(三)期末考试试卷(参考答案)(A卷)(2007年1月)
- 格式:doc
- 大小:266.50 KB
- 文档页数:6
高代参考答案高代参考答案高等代数,作为数学中的一门重要学科,是许多学生在大学阶段必须学习的一门课程。
高等代数的内容涉及到向量空间、线性变换、矩阵理论、特征值与特征向量等等,对于初学者来说,往往需要一定的时间和精力来理解和掌握。
本文将为大家提供一些高等代数的参考答案,希望能够帮助学生更好地理解和应对这门课程。
在高等代数中,矩阵是一种非常重要的概念。
矩阵可以看作是一个由数值排列成的矩形阵列,它在线性代数中有着广泛的应用。
在矩阵的运算中,加法和乘法是两个基本的运算。
矩阵的加法满足交换律和结合律,即对于任意的矩阵A、B和C,有(A+B)+C=A+(B+C)。
矩阵的乘法也满足结合律,但不满足交换律,即对于任意的矩阵A和B,一般情况下,AB≠BA。
在高等代数中,线性变换是一个非常重要的概念。
线性变换是指一种将一个向量空间映射到另一个向量空间的变换,它保持向量空间的加法和标量乘法运算。
线性变换可以用矩阵来表示,矩阵的每一列代表了线性变换对应的基向量在新的向量空间中的坐标。
线性变换有许多重要的性质,比如线性变换的复合仍然是一个线性变换,线性变换的逆变换也是一个线性变换。
在高等代数中,特征值与特征向量是一个非常重要的概念。
特征值是指线性变换对应的矩阵的特征方程的根,特征向量是指线性变换对应的矩阵的特征值所对应的非零向量。
特征值与特征向量在许多领域中有着广泛的应用,比如在物理学中,特征值与特征向量可以用来描述一个物理系统的稳定性和振动模式。
高等代数中还有许多其他的重要概念和定理,比如行列式、正交矩阵、对角化等等。
行列式是一个用于描述线性变换对体积变化的度量,它可以用来求解线性方程组的解。
正交矩阵是指一个方阵的转置矩阵等于它的逆矩阵,它在几何学中有着重要的应用。
对角化是指将一个矩阵通过相似变换变为对角矩阵的过程,它可以简化矩阵的运算和分析。
通过学习高等代数,我们可以更好地理解和应用数学知识。
高等代数中的许多概念和定理都是数学中的基础,它们在许多领域中都有着广泛的应用。
考试样卷(A )卷学年第1学期考试有关事项说明考试日期:年01月17日(星期五)考试用时:150分钟考试地点:(花都校区教学楼_____室)考试形式:闭卷有关考试的特殊提示:(沉着冷静、认真作答!相信自己,你是最棒的!)此此为为考考试试样样卷卷,,仅仅提提供供试试卷卷题题型型,,内内容容与与实实际际考考试试无无关关。
如如有有雷雷同同,,纯纯属属巧巧合合!!一、填空题(每小题2分,共14分)1、等式222)(baba•成立的充分必要条件是)共线(或、baba//;。
2、若置换24131234,32411234qp,则qp14321234。
3、将矩阵541312bA的第1行乘上-2加到第二行后变成5421112B, 则b 4 。
4、1至6的排列241356的逆序数为________ 3 。
5、四阶行列式展开式中,项23413412aaaa的符号为负 (或-1) 。
6、如果线性方程组5-32221232131321x x x x x x x ax 有唯一解,a 的取值范围 611 a 。
7、 设在空间直角坐标系下,A=(2,0,0),B=(2,1,2),C=(0,-1,4),则空间ABC 面积等于 6。
二、判断题(每小题2分,共10分)1、 0ab ac a b cr r r r若且则一定有。
( × )2、 若a r (,,b r ,c r )=0r,则必存在不全为零的实数 , ,使得c a b r r r 。
( × )3、1112111221222122ka ka a a kka ka a a 。
( × )4、在△ABC 中一定存在一点O ,可以使得 0OC OB OA 。
( √ ) 5、m ,,,21 线性相关当且仅当m rank m )),,,((21 。
( √ )三、选择题(每小题2分,共10分)1、 在四边形ABCD 中,若AB u u u v 2a b rr ,BC uuu v 4a b r r ,CD uuu v 53a b r r ,则四边形ABCD 为( A ).A.梯形;B.平行四边形;C.一般四边形;D.以上结论都不正确. 2、n 维向量组s ,,,21 )3(n s 线性无关的充分必要条件是( D ) A. 存在一组不全为零的数s k k k ,,,21 ,使02211 s s k k k B. s ,,,21 中任意两个向量组都线性无关C. s ,,,21 中存在一个向量,它不能用其余向量线性表示D. s ,,,21 中任意一个向量都不能由其余向量线性表示3、 行列式00 (010)0 (200).............10......00000......00n n的值为( D ).A. !n ;B. 1(1)!n n ; C. (1)2(1)!n n n ; D. (1)(2)2(1)!n n n4、行列式41032657a 中,元素a 的代数余子式是( D )。
[ ϑ1 2 3 | | 22高等代数期末考试卷一、 单选题(32 分. 共 8 题, 每题 4 分)1)设 b 为 3 维行向量, V = {(x 1 , x 2 , x 3 ) | ( x 1 , x 2 , x 3 ) = b },则。
CA) 对任意的 b ,V 均是线性空间; B) 对任意的 b ,V 均不是线性空间; C) 只有当 b = 0 时,V 是线性空间;D) 只有当 b σ 0 时,V 是线性空间。
2)已知向量组 I :α1 ,α2 ,...,α s 可以由向量组 II : ⎭1 , ⎭2 ,..., ⎭t 线性表示,则下列叙述正确的是。
AA) 若向量组 I 线性无关,则 s t ; B) 若向量组 I 线性相关,则 s > t ; C) 若向量组 II 线性无关,则 s t ;D) 若向量组 II 线性相关,则 s > t 。
3)设非齐次线性方程组 AX = ⎭ 中未定元个数为 n ,方程个数为 m ,系数矩阵 A 的秩为 r ,则。
DA) 当 r < n 时,方程组 AX = ⎭ 有无穷多解; B) 当 r = n 时,方程组 AX = ⎭ 有唯一解;C) 当 r < m 时,方程组 AX = ⎭ 有解;D) 当 r = m 时,方程组 AX = ⎭ 有解。
4)设 A 是 m n 阶矩阵, B 是 n m 阶矩阵,且 AB = I ,则。
AA) r ( A ) = m , r (B ) = m ;B) r ( A ) = m , r (B ) = n ;C) r ( A ) = n , r (B ) = m ;D) r ( A ) = n , r (B ) = n 。
{1 1 1[5)设 K 上 3 维线性空间 V 上的线性变换ϕ 在基 ⋂ ,⋂ ,⋂ 下的表示矩阵是|1 0 1|,则 ϕ 在基|1 1 1|⋂1 , 2⋂2 ,⋂3 下的表示矩阵是。
习题习题设A是一个"阶下三角矩阵。
证明:(1)如果A的对角线元素吗H勺(门=1,2,…/),则A必可对角化;(2)如果A的对角线元素a ll=a22=-=a ll…f且A不是对角阵,则A不可对角化。
证明:(1)因为A是一个〃阶下三角矩阵,所以A的特征多项式为I 2E - A 1= (2 - ! )(2 - «22)■ • (2 - 6/wj),又因心工勺(/, j = 1,2, •••,/?),所以人有" 个不同的特征值,即4有"个线性无关的特征向量,以这〃个线性无关的特征向量为列构成一个可逆阵P,则有厂虫卩为对角阵,故A必可对角化。
(2)假设A可对角化,即存在对角阵〃= 人. ,使得A与B相似,进而A与3有相同的特征值人,人,…人。
又因为矩阵A的特征多项式为Ixtf —A1=(几_°]])“ ,所以= ■ ■ ■ = A lt =, 从|([J / 、如B=如=如丘,于是对于任意非退化矩阵x ,都有、% >X"BX =X%EX =gE = B,而A不是对角阵,必有厂曲=3",与假设矛盾,所以A 不可对角化。
习题设“维线性空间V的线性变换”有$个不同的特征值入,易,…,入,匕是人的特征子空间(心1,2,…,s)。
证明:(1)叫+岭+…+匕是直和;(2)a可对角化的充要条件是V = %㊉匕㊉…㊉匕。
证明:(1)取岭+£+・•・ +匕的零向量0,写成分解式有a x +a 2 + -- + a x =0,其中 q e V ; J = 1,2,…,s 。
现用 6b[…,b分别作用分解式两边,可得印+色+…+ % = 0人 © + + ・・• + A s a s = 0 常匕+石么+・・・+町匕=0写成矩阵形式为‘1人( 、1(4S ,…心):J 人f 1由于人,人,…,人是互不相同的,所以矩阵3= 1零,即矩阵B 是可逆的,进而有(卬,色,aJBB" = (0,0,…,0)B" = (0,0,…,0), (a 「勺,…)=(0,0,…,0)。
高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。
2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。
3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
2020-2021《高等代数》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一、填空(共40分,每小题4分)1.向量空间n P 的子空间12112{(,,,,0)0,}n k W x x x x x x P -=+=∈的维数为____________,它的一组基为__________________.2.已知111α⎛⎫ ⎪= ⎪ ⎪-⎝⎭是矩阵2125312A a b -⎛⎫⎪= ⎪ ⎪--⎝⎭的一个特征向量,则_______,_______a b ==特征向量α对应的特征值0___________λ=.3.k 满足___________时,二次型22212312132(1)22f x x k x kx x x x =--+---是负定的。
4.设矩阵20022311A x -⎛⎫ ⎪= ⎪ ⎪⎝⎭与10002000B y -⎛⎫⎪= ⎪ ⎪⎝⎭相似,则_________,________x y ==.5.在空间[]n P x 中,设变换σ为()(1)()f x f x f x →+-,则σ在基0(1)(1)1,(1,2,1)!i x x x i i n i εε--+===-下的矩阵为____________________.6.相似矩阵的特征值__________.7.向量)1,3,2,4(),4,3,2,1(==βα,则内积=),(βα___________. 8.若A 是实对称矩阵,则 A 的特征值为____________.9.n 元实二次型),,,(21n x x x f 是正定的充分必要条件是它的正惯性指数等于___________________.10.对于线性空间V 中向量)1(,,,21≥r r ααα ,若在数域P 中有r 个不全为零的数r k k k ,,,21 ,使02211=+++r r k k k ααα ,则向量r ααα,,,21 称为_________.二、(15分)设V 是实数域上由矩阵A 的全体实系数多项式组成的空间,其中2100100,200A ωωω⎛⎫- ⎪== ⎪ ⎪⎝⎭,求V 的维数和一组基.三、(15分)用非退化线性替换化二次型22212312132322448x x x x x x x x x ---++为标准形.四、(15分)在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在基1234,,,ηηηη下的坐标,设(1,0,1,0)ξ=1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩; 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩.五、(15分)设1234,,,εεεε是四维线性空间V 的一组基,已知线性变换σ在这组基下的矩阵为1021121312552212⎛⎫⎪- ⎪⎪⎪--⎝⎭ 1)求σ在基11242234334442,3,,2ηεεεηεεεηεεηε=-+=--=+=下的矩阵; 2)求σ的核与值域.2020-2021《高等代数》期末课程考试试卷A 答案一、填空(共40分,每小题4分)1、向量空间n P 的子空间12112{(,,,,0)0,}n k W x x x x x x P -=+=∈的维数为__2n -__________,它的一组基为122(1,1,0,,0,0),(0,0,1,,0,0),,(0,0,0,,1,0)n εεε-=-==_。
《高等代数》试题库一、 选择题1.在[]F x 里能整除任意多项式的多项式是( )。
A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。
A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。
A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。
A . 充分B . 充分必要C .必要D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。
A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。
A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。
A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。
习题习题设A 是一个n 阶下三角矩阵。
证明:(1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i =,则A 必可对角化; (2)如果A 的对角线元素nn a a a === 2211,且A 不是对角阵,则A 不可对角化。
证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλ ,又因jj ii a a ≠),,2,1,(n j i =,所以A 有n个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。
(2)假设A 可对角化,即存在对角阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n B λλλ21,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21 。
又因为矩阵A 的特征多项式为na A E )(||11-=-λλ,所以1121a n ====λλλ ,从而E a a a a B nn 112211=⎪⎪⎪⎪⎪⎭⎫⎝⎛=,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与假设矛盾,所以A 不可对角化。
习题设n 维线性空间V 的线性变换σ有s 个不同的特征值s λλλ,,,21 ,i V 是i λ的特征子空间),,2,1(s i =。
证明:(1)s V V V +++ 21是直和;(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕= 21。
证明:(1)取s V V V +++ 21的零向量0,写成分解式有021=+++s ααα ,其中i i V ∈α,s i ,,2,1 =。
现用12,,,-s σσσ 分别作用分解式两边,可得⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121s s s s s ss s αλαλαλαλαλαλααα 。
中国计量学院2011 ~ 2012学年第 2 学期《高等代数》(2)课程试卷(A )参考答案及评分标准一、单项选择题(每小题3分,共15分)1.D2.B3.D4.C5.A二、填空题(每小题3分,共15分)1.1111⎛⎫ ⎪-⎝⎭;2. __1,-3__;3.100010011⎛⎫⎪ ⎪⎪⎝⎭; 4. 20x y +-= 5.222x y pz +=.三、计算题1.(12分)设A 是3P 中的线性变换,且A 在基)1,1,1(1-=η,)1,0,1(2-=η,)1,1,0(3=η下的矩阵为101110121A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭求A 在基123(1,0,0),(0,1,0),(0,0,1)εεε===下的矩阵.解 因为(1η,2η,3η)=(1ε,2ε,3ε)⎪⎪⎪⎭⎫⎝⎛--111101011, 所以 (1ε,2ε,3ε)=(1η,2η,3η)⎪⎪⎪⎭⎫ ⎝⎛---101110111=(1η,2η,3η)X ,-------------4分故A 在基1ε,2ε,3ε下的矩阵为B =X 1-AX=⎪⎪⎪⎭⎫ ⎝⎛--111101011⎪⎪⎪⎭⎫ ⎝⎛-121011101⎪⎪⎪⎭⎫ ⎝⎛---101110111=⎪⎪⎪⎭⎫⎝⎛--203022211 -------------12分2.(12分)求λ矩阵222211λλλλλλλλλλ()A ⎛⎫-⎪=- ⎪ ⎪+-⎝⎭的标准形、不变因子、行列式因子、初等因子.解 对-λ矩阵作初等变换,有A =)(λ ⎪⎪⎪⎭⎫⎝⎛-+--222211λλλλλλλλλ→ ⎪⎪⎪⎭⎫⎝⎛--222101λλλλλλ→ ⎪⎪⎪⎭⎫⎝⎛+--)1(00001λλλλ → )()1(0000001λλλλD =⎪⎪⎪⎭⎫⎝⎛+ 标准形为: ⎪⎪⎪⎭⎫⎝⎛+=)1(000001)(λλλλD ;----------------------6分 不变因子为:)1()(,)(,1)(321+===λλλλλλd d d ;----------------------8分 行列式因子为:)1()(,)(,1)(2321+===λλλλλλD D D ;----------------------10分 初等因子为:1,,2+λλλ.----------------------12分3.(12分) 设二次型()222123123121323,,22448f x x x x x x x x x x x x =---++ ,求一正交变换 x Ty =,将二次型化为标准形. 解 二次型对应的矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=242422221A ,----------------------2分且A 的特征多项式为 2)2)(7(-+=-λλλA E ,特征值为2,7321==-=λλλ.---------------------4分 相应的特征向量为 ()()()1,0,2,0,1,2,2,2,1321=-=-=ααα,---------------------6分正交化,可得()()⎪⎭⎫ ⎝⎛=-=-=1,54,52,0,1,2,2,2,1321βββ, 再单位化,有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=535,534,532,0,51,52,32,32,31321ηηη, ----------------------8分令X=TY ,其中⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=53503253451325325231T ,----------------------10分 则 232221'227y y y AX X ++-=.----------------------12分4.(12分) 求顶点在原点,准线为01,0122=+-=+-z y z x 的锥面方程. 解 设为锥面上任一点),,(z y x M ,过M 与O 的直线为:z Zy Y x X ==----------------------3分 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,, -----------6分 将它们代入准线方程,并消去参数t ,得:0)()(222=-+--y z y z z x即:0222=-+z y x此为所要求的锥面方程. ----------------------12分5. (12分)求过双曲抛物面z y x =-41622上的点(2,1,0)的直母线方程. 解:双曲抛物面z y x =-41622的两族直母线为:⎪⎪⎩⎪⎪⎨⎧=-=+z y x u uy x )24(24 及 ⎪⎪⎩⎪⎪⎨⎧=+=-z yx v v yx 24(24----------------------6分将点(2,1,0)分别代入上面两族直母线的方程,求得,1==v u----------------------10分因此,所求的直母线方程为:⎪⎪⎩⎪⎪⎨⎧=-=+z y x yx 24124 及 ⎪⎩⎪⎨⎧==-024z y x ----------------------12分四、证明题((每小题5分,共10分)1.在2R 中,定义变换(,)(2,2)x y x y x y σ=++. (1)证明:σ是2R 的线性变换.(2)取2R 的一组基:12(1,0),(0,1)εε==,求σ的值域2()σR 及2()σR 的一组基.证明(1)设1221x x A y y σξ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,σ是2R 到R 的映射,且2,,k αβ∀=∈∀∈R R ,有()()k l A k l kA lA σαβαβαβ+=+=+,所以σ是线性变换;-----------------3分(2) 对于2R 的基:12(1,0),(0,1)εε==,有12()(1,2),()(2,1)σεσε==,易知12(),()σεσε线性无关,于是它们构成2()σR 的一组基,且值域为 12()((),())((1,2),(2,1))L L σσεσε==3R .-----------------5分 2.欧氏空间V 中的线性变换A 称为反对称的,如果对任意α,β∈V ,有(A α,β)= —(α,A β). 证明:如果V 1是反对称线性变换A —子空间,则V 1⊥也是A —子空间.证明 任取∈αV 1⊥,可证A ∈αV 1⊥,即A ∈αV 1,事实上,任取β∈V 1,由于V 1是A 子空间,因此A β1V ∈,而∈αV 1⊥,故(α,A β)=0.----------------------3分再由题设,A 是反对称的,知(A α,β)= —(α,A β)=0,----------------------4分由β的任意性,即证A ∈αV 1 .从而V 1⊥也是A —子空间.----------------------5分。
数学系《高等代数》期末考试试卷年级专业学号姓名注:考试时间120分钟,试卷满分100分。
题号一二三四五总分签名得分一装订线得分阅卷教师一.判断题(正确的在题后的括号内打“√”;错误的在题后的括号内打“×”.每小题2分,共18分)1.向量空间一定含有无穷多个向量. ( ) 2.若向量空间V的维数dimV2,则V没有真子空间. ( )3.n维向量空间中由一个基到另一个基的过渡矩阵必为可逆矩阵. ( ) 4.线性变换把线性无关的向量组映成线性无关的向量组. ( ) 5.每一个线性变换都有本征值. ( ) 6.若向量是线性变换的属于本征值的本征向量,则由生成的子空间为的不变子空间. ( )7.保持向量间夹角不变的线性变换是正交变换. ( ) 8.两个复二次型等价的充分必要条件是它们有相同的秩. ( )9.若两个n阶实对称矩阵A,B均正定,则它们的和A B也正定. ( )得二分阅卷教师二.单项选择题(在每小题的四个备选答案中,选出一个正确的答案,并将其号码填在题目的括号内.每小题2分,共10分)1.下列命题不正确的是 ( ).A.若向量组{1,2,,r}线性无关,则它的任意一部分向量所成的向量组也线性无关;B.若向量组{1,2,,r}线性相关,则其中每一个向量都是其余向量的线性组合;C.若向量组{1,2,,r}线性无关,且每一i可由向量{1,2,,s}线性表示,则r s ;D.n(n0)维向量空间的任意两个基彼此等价.2.下列关于同构的命题中,错误的是( ).A.向量空间V 的可逆线性变换是V 到V 的同构映射;B.数域F 上的n 维向量空间的全体线性变换所成向量空间与数域F 上的所有n 阶矩阵所成向量空间同构;C.若是数域F 上向量空间V 到W 的同构映射,则1是W 到V 的同构映射;D.向量空间不能与它的某一个非平凡子空间同构.3.n 阶矩阵A 有n 个不同的特征根是A 与对角矩阵相似的 ( ).A.充分而非必要条件; B.必要而非充分条件;C.充分必要条件; D.既非充分也非必要条件.21x14.二次型q(x 1,x 2,x 3)(x 1,x 2)31x的矩阵是( ).22121A.; B.3111;310210C.310; D.1100000005.实二次型q(x 1,x 2,x 3)x Ax 正定的充分且必要条件是 ( ).A.A0; B.秩为3;C.A 合同于三阶单位矩阵; D.对某一x (x 1,x 2,x 3)0,有x Ax 0.三得分阅卷教师三.填空题(每小题2分,共10分,把答案填在题中横线上)1.复数域C 作为实数域R 上的向量空间,它的一个基是________.2.设F n{(x 1,x 2,,x n)xiF ,i 1,2,,n}是数域F 上n 元行空间,对任意(x 1,x 2,,x n)F n ,定义((x 1,x 2,,x n ))(0,0,x 1,x 2,,x n 2),则是一个线性变换,且的核Ker()的维数等于______.3.若A 是一个正交矩阵,则A 2的行列式A 2=________.4.在欧氏空间R 3中向量1(1,0,0)与2(0,1,0)的夹角=______.5.实数域R上5元二次型可分为_______类,属于同一类的二次型彼此等价,属于不同类的二次型互不等价.得四分阅卷教师四.计算题(每小题14分,共42分)1.求齐次线性方程组x 1x 2x 3x 403x 12x 2x 3x 40x 2x 2x 03425x14x 23x 33x4的解空间的一个基,再进一步实施正交化,求出规范正交基.1002.设A 021,求A 的特征根及对应的特征向量.问A 是否可以对角化?032若可以,则求一可逆矩阵T ,使T 1AT 为对角形.3.写出3元二次型q(x1,x2,x3)x1x24x2x3的矩阵.试用非奇异的线性变换,将此二次型变为只含变量的平方项.五得分阅卷教师五.证明题(每小题10分,共20分)1.设1,2为n阶矩阵A的属于不同特征根,1,2分别是A的属于1,2的特征向量,证明12不是A的特征向量.2.设是n维欧氏空间V的正交变换,且2为单位变换,某一规范正交基的矩阵,证明A为对称矩阵.A是关于V的数学系《高等代数》期末考试试卷(A 卷)年级专业学号姓名注:考试时间120分钟,试卷满分100分。
⾼等代数与解析⼏何复习题⾼等代数与解析⼏何复习题第⼀章矩阵⼀、填空题1.矩阵A 与B 的乘积AB 有意义,则必须满⾜的条件是。
2.设(),(),ij m s ij s n A a B b ??==⼜()ij m n AB c ?=,问ij c = 。
3.设A 与B 都是n 级⽅阵,计算2()A B += , 2()A B -= ,()()A B A B +-= 。
4.设矩阵1234A ??=,试将A 表⽰为对称矩阵与反对称矩阵的和。
(注意:任意n 阶矩阵都可表⽰为对称矩阵与反对称矩阵的和)5.设(1,2,1)X =,(2,1,3)TY =-,201013122A -??= -,计算XAY = 。
6.设向量()1,2,3,(1,1,1)T αβ==,则αβ= ,βα= 。
7.设矩阵2003A ??=,则100A = 。
8.设矩阵200012035A ?? ?= ?,则1A -= 。
9.设准对⾓矩阵1200A A A ??=,()f x 是多项式,则()f A = 。
10.设矩阵123456789A ?? ?= ? ???,则A 的秩()R A = 。
A 是n 阶⽅阵A 的伴随矩阵, d A =,则=*A A 。
12.设*A 是矩阵A 的伴随矩阵,则**_____________.AA A A ==13.矩阵123235471A ?? ?=- ?的秩为__________,A 的伴随矩阵*A = 。
14.设A 是3阶可逆⽅阵,B 是34?矩阵且()2R B =,则()R AB = 。
15.设102040203A ?? ?= ? ???,B 是34?矩阵且()2R B =,则()R AB = 。
16.试写出n 阶⽅阵A 可逆的⼏个充分必要条件(越多越好)。
17.设矩阵123235471A ??=- ? ???,试写出⾏列式A 中(2,1)-元的代数余⼦式,A 中第三⾏元素的代数余⼦式之和= 。
18.设B 是34?矩阵且()2R B =,则B 的等价标准形为。
解析几何期末试卷A参考答案及评分标准.解析几何期末试卷A 参考答案及评分标准一、(10分)写出下列方程在空间所表示的图形名称.1.1321222-=++z y x 虚椭球面 2.0222=++-z y x 二次锥面(圆锥面)3.1321222=++-z y x 单叶双曲面4.y z x 22122=+ 椭圆抛物面 5.y x 22= 抛物柱面 .二、(10分)试证:对于给定的四个向量}3,5,1{=a ,}2,4,6{--=b ,}7,5,0{-=c ,}35,27,20{--=d ,总可以确定三个实数l ,m ,n ,使得a l ,b m ,c n ,d 构成封闭折线.证明:假设a l ,b m ,c n ,d构成封闭折线,则=+++d c n b m a l (4分)于是=-+-=+--=-+0357230275450206n m l n m l m l (6分)解出 2=l ,3=m ,5=n所以命题成立. (10分)三、(15分)设向量a ,b ,c 两两互相垂直,1||=a ,2||||==cb ,并且向量c b a r -+=,证明:1,cos ,cos ,cos 222>=<+><+><="">. 证明:因为22)(c b a r -+=)(2222c b c a b a c b a ?-?-?+++=,由题设条件可得3||=r ,(5分)于是31||||,cos =>=,32||||,cos =>=32||||,cos -=?>=<="">(12分)所以1,cos ,cos ,cos 222>=<+><+><="" (15分)="">0=+Cz By (5分)以)1,2,4(-代入,得 02=+-C B于是 B :C =1:2 (8分)故所求平面方程为02=+z y (10分)五、(10分)试求经过点)1,0,1(-P ,并且与直线1l :321z y x ==和2l :431221-=-=-z y x 都相交的直线的方程.解:过)1,0,1(-P 与直线1l 的平面方程为321010001000=-------z y x即02=+-z y x (4分)过)1,0,1(-P 与直线2l 的平面方程为412312011321=-------z y x即 022=--+z y x (8分)∴所求直线方程为 ??=--+=+-02202z y x z y x (10分)六、(10分)证明直线1l :01123-==-z y x 与2l :10211zy x =-=+是异面直线. 证明:1l 的方向向量}0,1,2{,2l 的方向向量 }1,0,1{ (4分)取 1l , 2l 上的点 )1,0,3(, )0,2,1(- (6分)计算7110120120)1(3≠=----所以 1l 与 2l 是异面直线. (10分)七、(10分)试求到定点与定直线的距离之比等于常数0>λ的点的轨迹方程,并根据λ的取值范围,说明轨迹的形状(注:假定定点不在定直线上). 解:设定点不在定直线上,建立坐标系,使定直线为x 轴,定点为),0,0(c C ,(0≠c ). 设动点为),,(z y x P ,则由假设可知),(),(轴x P d C P d λ=,即 22222)(z y c z y x +=-++λ 平方,得 02)1()1(222222=+--+-+c cz z y x λλ(5分)①当1=λ时,得 0222=+-c cz x即)2(22cz c x -= 此为抛物柱面. (8分)②当1≠λ时,得2222222221)1)(1()1(λλλλλ-=---+-+c c z y x ,则当1>λ时,此为单叶双曲面;当10<<λ时,此为椭球面. (10分)八、(10分)试求单叶双曲面∑:11649222=-+z y x 上,经过点)0,2,0(M 的两条直母线方程.解:∑上两族直母线:λ族:-=-+=+)21()43()21()43(1221y z x y z x λλλλ μ族:+=--=+)21()43()21()43(1221y z x y z x μμμμ将 )0,2,0(M 分别代入,可得02=λ,01=μ (6分)分别代入,可得所求直线方程:=-=+021043y z x=-=-043021z x y 即 ??=-=+02034y z x=-=-02034y z x .(10分)九、(15分)在欧氏平面上,将方程0844222=+--+-y x y xy x 化成标准型,作出其图形,说明原方程表示什么曲线.解:由 022cot 122211=-=a a a θ得4πθ=于是 0tan 121111=+='θa a a 2tan 122222=-='θa a a 22sin cos 231313-=+='θθa a a0cos sin 231323=+-='θθa a a原方程化为: 04222=+'-'x y 配方0)2(222=-'-'x y 作平移变换 ??'=''-'=''y y x x 2 原方程化为x y ''=''222. (5分)所以原方程表示抛物线. (10分)作图(15分)。
高等代数 课程 A 卷试题答案一、填空题(本题共10小题,每小题2分,满分20分. 把正确答案填在题中横线上)1. 8;2. 0;3. 0;4. 92111⎛⎫ ⎪⎝⎭;5. 1或52;6。
1()3A E E A -+=-;7. 2;8。
23a ≠; 9. 6;10。
112-⎛⎫⎪ ⎪⎝⎭。
二、选择题(本题共10小题,每小题2分,满分20分。
每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号(答题框)内)三、计算题(本题共2小题,每小题10分,满分20分.解答应写出文字说明、证明过程或演算步骤)1. 计算n阶行列式a b bb b a bb D b b ab b b ba=。
解:观察行列式,每一行只有一个a 而有1n -个b ,于是将第2列,第3列,……,第n 列分别乘以1加到第1列,得(1)...(1)...(1)..................(1)...a nb b b b a n b a b b D a n bb a b a n b b ba+-+-=+-+-[]1 (1)...(1)1 (1)...b b b a b ba nb b a b bba =+-[]1...00...0(1)00...0 000...b b b a b a n b a b a b-=+--- []1(1)()n a n b a b -=+--2. 设111111111A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,123124051B ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,求A AB 23-.解:1111231111111242111111051111323AB A -------⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭05822221322305622221720.2902224292-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=---=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭四、解答题(本题共2小题,第1小题15分、第2小题10分,满分25分。
中国计量学院2011 ~ 2012学年第 2 学期《高等代数》(2)课程试卷(A )参考答案及评分标准一、单项选择题(每小题3分,共15分)1.D2.B3.D4.C5.A二、填空题(每小题3分,共15分)1.1111⎛⎫ ⎪-⎝⎭;2. __1,-3__;3.100010011⎛⎫⎪ ⎪⎪⎝⎭; 4. 20x y +-= 5.222x y pz +=.三、计算题1.(12分)设A 是3P 中的线性变换,且A 在基)1,1,1(1-=η,)1,0,1(2-=η,)1,1,0(3=η下的矩阵为101110121A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭求A 在基123(1,0,0),(0,1,0),(0,0,1)εεε===下的矩阵.解 因为(1η,2η,3η)=(1ε,2ε,3ε)⎪⎪⎪⎭⎫⎝⎛--111101011, 所以 (1ε,2ε,3ε)=(1η,2η,3η)⎪⎪⎪⎭⎫ ⎝⎛---101110111=(1η,2η,3η)X ,-------------4分故A 在基1ε,2ε,3ε下的矩阵为B =X 1-AX=⎪⎪⎪⎭⎫ ⎝⎛--111101011⎪⎪⎪⎭⎫ ⎝⎛-121011101⎪⎪⎪⎭⎫ ⎝⎛---101110111=⎪⎪⎪⎭⎫⎝⎛--203022211 -------------12分2.(12分)求λ矩阵222211λλλλλλλλλλ()A ⎛⎫-⎪=- ⎪ ⎪+-⎝⎭的标准形、不变因子、行列式因子、初等因子.解 对-λ矩阵作初等变换,有A =)(λ ⎪⎪⎪⎭⎫⎝⎛-+--222211λλλλλλλλλ→ ⎪⎪⎪⎭⎫⎝⎛--222101λλλλλλ→ ⎪⎪⎪⎭⎫⎝⎛+--)1(000001λλλλ→ )()1(0000001λλλλD =⎪⎪⎪⎭⎫ ⎝⎛+ 标准形为: ⎪⎪⎪⎭⎫ ⎝⎛+=)1(0000001)(λλλλD ;----------------------6分 不变因子为:)1()(,)(,1)(321+===λλλλλλd d d ;----------------------8分行列式因子为:)1()(,)(,1)(2321+===λλλλλλD D D ;----------------------10分初等因子为:1,,2+λλλ.----------------------12分3.(12分) 设二次型()222123123121323,,22448f x x x x x x x x x x x x =---++ ,求一正交变换 x Ty =,将二次型化为标准形. 解 二次型对应的矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=242422221A ,----------------------2分且A 的特征多项式为 2)2)(7(-+=-λλλA E ,特征值为2,7321==-=λλλ.---------------------4分 相应的特征向量为 ()()()1,0,2,0,1,2,2,2,1321=-=-=ααα,---------------------6分正交化,可得 ()()⎪⎭⎫ ⎝⎛=-=-=1,54,52,0,1,2,2,2,1321βββ, 再单位化,有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=535,534,532,0,51,52,32,32,31321ηηη, ----------------------8分令X=TY ,其中⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=53503253451325325231T ,----------------------10分 则 232221'227y y y AX X ++-=.----------------------12分4.(12分) 求顶点在原点,准线为01,0122=+-=+-z y z x 的锥面方程. 解 设为锥面上任一点),,(z y x M ,过M 与O 的直线为:z Z y Y xX == ----------------------3分 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,, -----------6分将它们代入准线方程,并消去参数t ,得:0)()(222=-+--y z y z z x即:0222=-+z y x此为所要求的锥面方程. ----------------------12分5. (12分)求过双曲抛物面z y x =-41622上的点(2,1,0)的直母线方程. 解:双曲抛物面z y x =-41622的两族直母线为:⎪⎪⎩⎪⎪⎨⎧=-=+z y x u uy x )24(24 及 ⎪⎪⎩⎪⎪⎨⎧=+=-z yx v v yx )24(24----------------------6分将点(2,1,0)分别代入上面两族直母线的方程,求得,1==v u----------------------10分 因此,所求的直母线方程为:⎪⎪⎩⎪⎪⎨⎧=-=+z y x yx 24124 及 ⎪⎩⎪⎨⎧==-0024z yx ----------------------12分四、证明题((每小题5分,共10分)1.在2R 中,定义变换(,)(2,2)x y x y x y σ=++. (1)证明:σ是2R 的线性变换.(2)取2R 的一组基:12(1,0),(0,1)εε==,求σ的值域2()σR 及2()σR 的一组基.证明(1)设1221x x A y y σξ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,σ是2R 到R 的映射,且2,,k αβ∀=∈∀∈R R ,有()()k l A k l kA lA σαβαβαβ+=+=+,所以σ是线性变换;-----------------3分(2) 对于2R 的基:12(1,0),(0,1)εε==,有12()(1,2),()(2,1)σεσε==,易知12(),()σεσε线性无关,于是它们构成2()σR 的一组基,且值域为12()((),())((1,2),(2,1))L L σσεσε==3R .-----------------5分2.欧氏空间V 中的线性变换A 称为反对称的,如果对任意α,β∈V ,有(A α,β)= —( α,A β).证明:如果V 1是反对称线性变换A —子空间,则V 1⊥也是A —子空间.证明 任取∈αV 1⊥,可证A ∈αV 1⊥,即A ∈αV 1,事实上,任取β∈V 1,由于V 1是A 子空间,因此A β1V ∈,而∈αV 1⊥,故(α,A β)=0.----------------------3分再由题设,A 是反对称的,知(A α,β)= —(α,A β)=0,----------------------4分由β的任意性,即证A ∈αV 1 .从而V 1⊥也是A —子空间.----------------------5分(注:本资料素材和资料部分来自网络,仅供参考。