高等无机合成第9章 CVD在无机合成与材料制备中
- 格式:ppt
- 大小:327.00 KB
- 文档页数:38
无机合成简明教程复习笔记一、第一章●无机合成十大热点/前沿领域1.特种结构无机材料的制备2.软化学合成●硬化学:在超高温、超高压、强辐射、无重力、仿地心、仿宇宙等条件下探索新物质合成●软化学:采取迂回步骤,在较温和条件下实现化学反应过程,以制备相关材料的化学领域●方法:前驱体法、溶胶-凝胶法、溶剂热合成法、插入反应、离子交换过程、熔体(助溶剂)法、酶促合成骨骼和人齿反应、拓扑化学过程及一些电化学过程●特点●不需用高纯金属作原料●制成的合金是具有一定颗粒度的粉末,在使用时无需碾碎●产品本身具有高活性●产品具有良好的表面性质和优良的吸放氢性能●合成方法简单●有可能降低成本●为废旧储氢合金的回收再生开辟了新途径3.极端条件下合成4.杂化材料的制备5.特殊聚集态材料合成6.特种功能材料的分子设计●概念:其指开展特定结构无机化合物或功能无机材料的分子设计、裁剪与分子工程学的研究●步骤:以特定的功能为导向在分子水平上实现结构设计和构建研究分子构建的形成和组装规律对特定性能的材料进行定向合成7.仿生合成●概念:其指在分子水平上模拟生物的功能,将生物的功能原理用于化学,借以改善现有的和创造崭新的化学原理和工艺科学●仿生膜●选择性通透作用●低能耗、低成本和单极效率高●适合热敏物质分离●应用广泛、装置简单、操作方便、不污染环境8.纳米粉体材料制备●化学制备方法●水热-溶剂热法●热分解法●微乳液法●高温燃烧合成法●模板合成法●电解法●化学沉淀法●化学还原法●溶胶-凝胶法●避免高温引起相分离9.组合化学●其是一门将化学合成、组合理论、计算机辅助设计及机器人结合为一体的技术●基本思想和主要过程●设想和定义●选择相关元素●构建化合物库●并行处理技术●加工过程●高通量分析●将新材料及合成与分析数据送交用户10.绿色合成●方法和实例●热化学循环分解水●水热-溶剂热合成●超临界二氧化碳和成●绿色电解合成●低热固相合成●固相合成四个阶段●扩散●反应●成核●生长●五个特点●具有潜伏期●无化学平衡●拓扑化学控制原理●分步反应●嵌入反应●定义:指在制造和应用化学产品时有效利用原料(最好可再生),消除废物和避免使用有毒的、危险的试剂与溶剂●核心和主要特点(原子经济反应)●无毒无害原料,可再生资源●环境友好产品,回归自然,废物回收利用●无毒无害催化剂●无毒无害溶剂二、第二章●Ellingham 图1.吉布斯-亥姆霍兹方程2.如何理解:设(x,y)( x,y分别为两种物质),位于金属氧化物线段之下的温度区间,x可用于还原金属氧化物,而本身被还原为y3.应用●古代制铜器●金属锌制备●耦合反应1.概念:原来不能单独自发进行的反应A,在反应B的帮助下合并,合并在一起的总反应可以进行,这种情况称之为耦合反应2.应用实例●单质磷的制备●四氯化钛的制备●氧化法制备硫酸铜●泡佩克斯图1.概念:它是相关电对的电极材料-参加反应各物种浓度-温度-溶液酸度图●电极反应类型●既有氢离子或氢氧根离子参加,又有电子参加,这时的泡佩克斯图为一直线,斜率为(-m/n)*0.059,截距为E池●电极反应只有电子得失,没有氢离子或氢氧根离子参加,其图形为平行于横坐标的直线●电极反应有氢离子或氢氧根离子参加,但没有电子得失,其图形为平行于纵坐标的直线2.性质●直线上方为氧化态的稳定区,下方为还原态的稳定区●直线左边是物种离子的稳定区,右边是沉淀的稳定区3.应用●判断氧化还原反应进行的方向和顺序●对角线规律●两条直线间的距离越大,E池越大,G越负,则反应自发进行的趋势越大●对同时存在的几个反应,氧化还原反应进行的顺序可按直线之间距离的大小排序(从大到小)●确定水的稳定区●如图,凡是泡佩克斯图落在j-k之间的氧化剂或还原剂都不会与水反应●可判断物种在水中存在的区域,或者提供制备的条件●湿法冶金中的应用●在电化学中的应用●热力学相图1.一致熔融化合物2.不一致熔融化合物三、第三章●低温合成1.物态●物质的第四态:等离子态,升高温度(数百万度)●物质的第五态:波色-爱因斯坦凝聚(超导态和超流态),温度低至临界温度2.低温温区划分●普冷区:环境温度到120k●深冷区:120k到绝对零度●普冷与低温的分界线:123k3.低温获得●恒温低温浴●制冷产生低温P78●低温恒温器●储存液化气体装置●高压气体钢瓶●气体钢瓶的颜色●气体钢瓶的安全使用●原因:钢瓶内部填充的气体压力很大,并且有的气体具有可燃性和助燃性,故钢瓶具有一定的易燃易爆性●注意点●气瓶必须连接压力调节器,经降压后,再流出使用●安装调节器,配管一定要用合适的,安装后试接口,不漏气方可使用●保持清洁,防污秽侵入,防漏气●小心使用,不可过度用力●易燃气体钢瓶应装单向阀门,防止回火●避免和电器电线接触,以免产生电弧使气体受热发生危险●瓶内气体不可用尽,即压力表指压不可为0,否则可能混入空气,重装气体时会有危险●气体附近必须有灭火器,且工作场所通风良好4.低温的测量●蒸气压温度计●低温热电偶●低温热电阻温度计5.应用●稀有气体合成●KrF2的低温放电合成● XeO4的低温水解合成●在高氙酸盐中缓慢滴入零下五摄氏度的浓硫酸,生成四氧化氙气体●真空升华得纯品,储存于零下78摄氏度的冷凝容器中●XeF2的低温光化学合成P84●RnF2的光化学合成●金属,非金属同液氨的反应●碱金属及其化合物同液氨的反应●U型汞鼓泡管主要作为液氨蒸发的出口,并在所有的液氨蒸发后,阻止气体进入杜瓦瓶●碱土金属同液氨反应●某些化合物在液氨中的反应●非金属同液氨的反应●液氨中配合物的生成●低温下挥发性化合物的合成●二氧化三碳的合成●氯化氰的合成●磷化氢的合成●实验结束时不断的使氢气通过烧瓶,同时使烧瓶中的物质冷却,直至磷完全凝固。
名词解释1.胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的质量可以忽略不计,粒子之间的相互作用主要是短程作用力。
2.溶胶:溶胶是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。
分散粒子是固体或者大分子颗粒,分散粒子的尺寸为lnm-100nm,这些固体颗粒一般由10"3个-10"9个原子组成。
3.凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般为1%-3%O4.多孔材料:是山形成材料本身基本构架的连续固相和形成孔隙的流体所组成。
5.水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。
6.溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(如有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成、易氧化、易水解或对水敬感的材料。
7.超临界流体:是指温度及压力都处于临界温度或临界压力之上的流体。
在临界状态下,物质有近于液体的溶解特性以及气体的传递特性。
8.微波水热合成:微波加热是一种内加热,具有加热速度快,加热均匀无温度梯度,无滞后效应等特点。
微波对化学反应作用是非常复杂的,但有一个方面是反应物分子吸收了微波能量,提高了分子运动速度,致使分子运动杂乱无章,导致燔的增加, 降低了反应活化能。
9.超电位:实际开始分解的电压往往要比理论分解电压大一些,两者之差称之为超电压。
10.阳极效应:在某些熔盐点解过程中,端电压急剧升高,电流则强烈下降,同时, 电解质与电极之间呈现润湿不良现象,电解质好像被一层气体膜隔开似的,电极周围还出现细微火花放电的光圈。
11.电位序:各元素按照它们的标准电极电位数值的大小排列出来的顺序。
高温合成在高温的条件下,反应物分子易于扩散,在扩散的过程中形成新相,新的物质或新材料,此过程称为高温合成。
在高温的条件下,反应物分子易于扩散,在扩散的过程中形成晶核,晶核不断生长,形成新的物质或新材料,此过程称为高温固相合成。
该反应在热力学上是完全可以进行的,但在实际中,该反应需要很高的温度条件 下才能进行,而且进行的非常缓慢,在1200°C 下,几乎不反应,而在1500°C 下,也要需要几天反应才能完成。
需要几天反应才能完成。
在一定的高温条件下,MgO 与Al203的晶粒界面间将产生反应而生成产物尖晶石型MgAl204层。
这种反应的第一阶段将是在晶粒界面上或界面邻近的反应物晶格中生成MgAl204晶核,实现这步是相当困难的,因为生成的晶核与反应物的结构不同。
因此,成核反应需要通过反应物界面结构的重新排列,其中包括结构中阴、阳离子键的断裂和重新结合,MgO 和Al203晶格中Mg2+和Al3+离子的脱出、扩散和进入缺位。
高温下有利于这些过程的进行,有利于晶核的生成。
同样,进一步实现在晶核上的晶体生长也有相当的困难。
因为对原料中的Mg2+和Al3+来讲,则需要横跨两个界面的扩散才有可能在核上发生晶体生长反应,并使原料界面间的产物层加厚。
因此很明显地可以看到,决定此反应的控制步骤应该是晶格中Mg2+和A13+离子的扩散,而升高温度是有利于晶格中离子扩散的,因而明显有利于促进反应。
另一方而,随着反应物层厚度的增加,反应速率是会随之而减慢的。
曾经有人详细地研究过另一种尖晶石型NiAl2O4的固相反应动力学关系,也发现阳离子Ni2+、A13+通过NiAl2O4产物层的内扩散是反应的控制步骤。
产物层的内扩散是反应的控制步骤。
综上所述,可以得出影响这类固相反应速率的主要应有下列三个因素:(a)反应物固体的表面积和反应物间的接触面积;(b)生成物相的成核速度;(c)相界面间特别是通过生成物相层的离子扩散速度。
化学气相沉积简介:化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。
从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。
化学气相沉积的英文词愿意是化学蒸汽沉积(Chemical Vapor Deposition,CVD),因为很多反应物质在通常条件下是液态或固态,需将他们经过汽化成蒸汽后再参与反应。
这一名称是在20世纪60年代初期由美国Blocher等人在Vapor Deposition一书中首先提出的。
Blocher还由于他对CVD国际学术交流的积极推动被称为“CVD先生(Sir CVD)”在20世纪60年代前后对这一项技术还有另一名称,即蒸气镀(Vapor plating),而Vapor Deposition 一词后来被广泛地接受。
根据沉积过程中主要依靠物理过程或化学过程被划分为物理气相沉积(Physical Vapor Deposition,PVD)和化学气相沉积两大类。
例如,把真空蒸发、溅射、离子镀等通常归属于PVD;而直接依靠气体反应或依靠等离子体放电增强气体反应的称为CVD或等离子体增强化学沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD或PCVD)。
实际上,随着科学技术的发展,也出现了不少交叉现象。
例如,利用溅射或离子轰击使金属汽化再通过气相反应生成氧化物或氮化物等就是物理过程和化学过程相结合的产物,相应地,就称为反应溅射、反应离子镀或化学离子镀。
化学气相沉积(CVD)技术是一种新型的材料制备方法,它可以用于制各各种粉体材料、块体材料、新晶体材料、陶瓷纤维、半导体及金刚石薄膜等多种类型的材料,广泛应用于宇航工业上的特殊复合材科、原子反应堆材料、刀具材料、耐热耐磨耐腐蚀及生物医用材料等领域.同传统材料制各技术相比,CVD)技术具有以下优点:(1)可以在远低于材科熔点的温度进行材料合成:(2)可以控制合成材料的元素组成、晶体结构、微观形貌(粉末状、纤维状、技状、管状、块状等):(3)不需要烧结助剂,可以高纯度合成高密度材料;(4) 可以实现材料结构微米级、亚微米级甚至纳米级控制:(5) 能够进行复杂形状结构件及图层的制备;(6)能够制备梯度复合材料及梯度涂层和多层涂层:(7)能够进行亚稳态物质及新材料的合成。