6无机合成与制备化学打印
- 格式:pdf
- 大小:210.48 KB
- 文档页数:9
无机合成与制备化学学习综述无机合成与制备化学是一门涉及广泛的学科,无机合成与制备的发展是紧随着化学工业的演变二发展的,化学工业的未来将会走向原料路线多元化,无机合成技术也会由仅用于合成向元件、组装、产品方向过渡。
现代人类的衣食住行,生存环境的保护和改善,以至国防的现代化等,无不与化学工业和材料工业的发展密切相关,其中尤以合成化学为技术基础的化学品与各类材料的制造与开发更是起着最为关键的作用。
一、无机合成与制备化学概况无机合成的内容,随着合成化学、特种合成实验技术和结构化学、理论化学等的发展,以及相邻学科如生命、材料、计算机等的交叉、渗透与实际应用上的不断需求,已从常规经典合成进入到大量特种实验技术与方法的合成,以至发展到开始研究特定结构和功能无机材料的定向设计合成与仿生合成等。
无机合成制备化学总的来说是围绕以下四列对象,研究无机物的合成、制备、组装以及无机材料的复合、杂化与制造路线与方法中的化学问题。
1、主要类型的无机化合物诸如配合物、簇合物、金属有机化合物、非化学计量比化合物、无机高聚物以及无机超分子体系等。
2、具有特殊结构的无机物和材料,诸如特殊孔道结构、缺陷、表面、层状等。
3、具有特定聚集态与形貌的无机物和材料、诸如团簇、纳米、膜、单晶与具有特定形貌的晶体等。
4、无机材料的复合、组装、杂化与制造。
二、常用的无机合成方法无机合成的常见方法有水热合成,化学气相沉积,高温合成,低温合成,低压合成,溶胶凝胶法,低热固相反应,胶熔合成等。
(1)、溶胶凝胶法溶胶凝胶法的基本原理将酯类化合物或金属醇盐溶于有机溶剂中,形成均匀的溶液,然后加入其他组分,在一定温度下反应形成凝胶,最后经干燥处理制成产品。
溶胶-凝胶法与其它方法相比具有许多独特的优点:1、由于溶胶-凝胶法中所用的原料首先被分散到溶剂中而形成低粘度的溶液,因此,就可以在很短的时间内获得分子水平的均匀性,在形成凝胶时,反应物之间很可能是在分子水平上被均匀地混合。
4
例如:
一些常用的PECVD反应有:
最后一个硅烷的反应式可以用来制造非晶硅太阳能电池等。
通常这一反应发生在300℃左右的衬底表面。
采用激光
立式反应器桶式反应器
LPCVD装置
这种装置一直沿用至今,但是随着硅片直径越来越大,图中的炉体部分目前已旋转了一个90°。
变成立式炉的装置,其工作原理仍然相同。
这一工艺中的一个关键因素是必须保证不同位置(即图中炉内的气流前后位置)的衬底上都能得到很均匀厚度的沉积层。
3.4等离子体增强CVD装置(PECVD)z通过等离子体增强使CVD技术的沉积温度可以下降几百度,甚至有时可以在室温的衬底上得到CVD薄膜。
以下是几种PECVD装置
3.5 原子层CVD装置。
能量上三线态低于单线态
对于固体化合物(粉末),由于粒子对光散射的存在,不能用这一定律。
在用漫反射测定物质吸收光的特性时使用如下的Kubelka-Munk 方程:
这里R 是固体层的绝对反射性,s 是散射系数,κ是摩尔吸
收系数,∞表示固体层要足够的厚。
当s 是常数时,Kubelka-Munk 方程可表示为
这里c 是试样的浓度,k ′与粒子大小及试样的摩尔吸收性
有关,k ′= s /2.303e 。
此方程可看作是漫反射条件下适用于固s κ
R )R ()f(R =
−=∞∞212'
k c
R )R ()f(R =−=∞∞212
光催化选择性氧化
Dye/TiO
2
/TEMPO可见光光催化醇类选择性氧化机理
《应用化学》(Angew. Chem. Int. Ed.),2008, 47, 9730-9733
DOI: 10.1002/anie.200803630,Wanhong Ma,Jincai Zhao
光致异构分子
在紫外光照射下,4NN-大环/TCDB发生结构变化。
大环化合
物由trans-trans-trans-trans 构型变为trans-trans-trans-cis和trans-cis-trans-cis两种构型的结构(左图)和模型(右图)
《美国化学会志》(J. Am. Chem. Soc.),131 (17), pp 6174–6180,Yong-Tao Shen,Chen Wang
一个名为拉链空穴的小装置能够将激光变为机械能。
Matt Eichenfield,Jasper Chan /《自然》。
无机合成与制备化学题目一、填空题1.合成反应中常用作为反应能否进行的依据, 一般当其值在范围内时,表明可用于合成反应。
2.温度是沸石合成中重要的因素之一,高水含量的沸石一般要求,而低水含量的沸石一般要求。
3.碱金属与液氨反应后生成溶液。
该反应速率一般很慢,通常需要作为催化剂。
4.除水干燥剂的作用方式有和两种。
沸石分子筛属于型干燥剂,与其他脱水剂相比,其优点是。
5.固相化合物的合成反应中,其反应速度与产物层的厚度成比,为缩短反应时间,通常将阳离子制成,这种方法也叫做合成法。
6.金属簇合物与一般多核化合物的区别在于和。
7.合成反应中常用的调节反应速率的手段有,,,和。
8.使用干冰作为低温源时,为了提高致冷效果,需加入一些,常用的有。
9.高温固相合成反应中,1000℃以上的电热材料不能选用。
在实验室中通常是用法来制备的。
10.O311.在合成具有强还原性的特殊低价态化合物时,对溶剂和气氛的要求很高,这种要求一般是和,这是由于的原因。
12.用水热法合成Na-Si-Al-O 分子筛时,产物的孔径与有关,一般在时孔径较大。
13.化学气相沉积是利用在气相或气固界面上反应生成的技术。
14.一些物质本身在高温下会气化分解然后在沉积反应器稍冷的地方反应沉积生成等形式的产物。
15.金属有机化合物通常指含有的化合物,在许多方面B、Si、P和As元素有机化学类似于相关的金属有机化学。
16.主族金属和碳键的形成可大致分类为:、、、。
17.离子迁移产生的微波能损失与被解离的、和有关,并受离子与溶剂分子之间相互作用的影响。
18.获得等离子体的方法和途径是多种多样的,微波等离子体是靠的办法获得的。
19.在合成配位化合物时,加入辅助配体的作用主要有:,。
20.由三氯化铬与乙酰丙酮水溶液合成配合物时,在反应液中加入尿素的目的是。
21.分子筛表面具有,因而对极性分子有很大的亲和力。
22.延伸固体按连续的化学键作用的空间分布可分为___________、___________、___________。
高温合成在高温的条件下,反应物分子易于扩散,在扩散的过程中形成新相,新的物质或新材料,此过程称为高温合成。
在高温的条件下,反应物分子易于扩散,在扩散的过程中形成晶核,晶核不断生长,形成新的物质或新材料,此过程称为高温固相合成。
该反应在热力学上是完全可以进行的,但在实际中,该反应需要很高的温度条件 下才能进行,而且进行的非常缓慢,在1200°C 下,几乎不反应,而在1500°C 下,也要需要几天反应才能完成。
需要几天反应才能完成。
在一定的高温条件下,MgO 与Al203的晶粒界面间将产生反应而生成产物尖晶石型MgAl204层。
这种反应的第一阶段将是在晶粒界面上或界面邻近的反应物晶格中生成MgAl204晶核,实现这步是相当困难的,因为生成的晶核与反应物的结构不同。
因此,成核反应需要通过反应物界面结构的重新排列,其中包括结构中阴、阳离子键的断裂和重新结合,MgO 和Al203晶格中Mg2+和Al3+离子的脱出、扩散和进入缺位。
高温下有利于这些过程的进行,有利于晶核的生成。
同样,进一步实现在晶核上的晶体生长也有相当的困难。
因为对原料中的Mg2+和Al3+来讲,则需要横跨两个界面的扩散才有可能在核上发生晶体生长反应,并使原料界面间的产物层加厚。
因此很明显地可以看到,决定此反应的控制步骤应该是晶格中Mg2+和A13+离子的扩散,而升高温度是有利于晶格中离子扩散的,因而明显有利于促进反应。
另一方而,随着反应物层厚度的增加,反应速率是会随之而减慢的。
曾经有人详细地研究过另一种尖晶石型NiAl2O4的固相反应动力学关系,也发现阳离子Ni2+、A13+通过NiAl2O4产物层的内扩散是反应的控制步骤。
产物层的内扩散是反应的控制步骤。
综上所述,可以得出影响这类固相反应速率的主要应有下列三个因素:(a)反应物固体的表面积和反应物间的接触面积;(b)生成物相的成核速度;(c)相界面间特别是通过生成物相层的离子扩散速度。
第三章低热固相合成反应第1节引言合成化学始终是化学研究的热门领域,它提供的上千万种化合物,对现代的人们从日常生活到尖端高科技都产生了不可抗拒的影响。
传统的化学合成往往是在溶液或气相中进行,由于受到能耗高、时间长、环境污染严重以及工艺复杂等的限制而越来越多地受到排斥。
虽然也有一些对该合成技术的改进,甚至有些是卓有成效的,但总体上只是一种“局部优化”战术,没有从整体战略上给予彻底的变革。
面对传统合成方法受到的严峻挑战,化学家们正致力于合成手段的战略革新,越来越多的化学家将目光投向被人类最早利用的化学过程之一——固相化学反应。
1.1 传统的固相化学固相反应不使用溶剂,具有高选择性、高产率、工艺过程简单等优点,已成为人们制备新型固体材料的主要手段之一。
但长期以来,由于传统的材料主要涉及一些高熔点的无机固体,如硅酸盐、氧化物、金属合金等,这些材料一般都具有三维网络结构、原子间隙小和牢固的化学键等特征,通常合成反应多在高温下进行,因而在人们的观念中室温或近室温下的低热固相反应几乎很难进行。
1.1 传统的固相化学例如:英国化学家West在其《固体化学及其应用》一书中所写:“在室温下经历一段合理时间,固体间一般并不能相互反应。
欲使反应以显著速率发生,必须将它们加热至甚高温度,通常是1000~1500℃”。
1993年,美国化学家Arthur Bellis等人编写的“Teaching Gen eral Chemistry,A Materials Science Companion”中也指出:“很多固体合成是基于加热固体混合物试图获得具有一定计量比、颗粒度和理化性质均一的纯样品,这些反应依赖于原子或离子在固体内或颗粒间的扩散速率。
固相中扩散比气、液相中扩散慢几个数量级,因此,要在合理的时间内完成反应,必须在高温下进行”。
1.1 传统的固相化学但是,许多固相反应在低温条件下便可发生,而且研究低温固相反应并开发其合成应用价值的意义是不言而喻的。
无机合成与制备化学无机合成的重要性与研究重点•无机合成是现代无机化学的核心•任务:创造新物质、开发新材料•研究重点:认识无机合成反应基本规律,发展相关理论;发展新的绿色无机合成策略与技术、无机合成的前沿课题•有机合成在分子水平进行分子加工,无机合成除此之外,还着重晶体或其它凝聚态结构上的精雕细琢。
•A开发新合成路线或技术,能带动一大片新物质或新材料的出现。
如溶胶-凝胶合成法的出现,为纳米态与纳米复合材料,玻璃态与玻璃复合材料,陶瓷与陶瓷基复合材料,纤维及其复合材料,无机膜与复合膜,溶胶与超细微粒,微晶,表面、掺杂以及杂化材料等的开发与新物种的出现,起了极其重要的作用。
溶胶-凝胶(Sol-gel)法•胶体(colloid)是一种分散相粒径很小的分散体系,分散相粒子的重力可以忽略,粒子之间的相互作用主要是短程作用力。
•溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,分散的粒子大小在1~1000nm之间。
•凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体。
溶胶-凝胶法•基本原理:以金属醇盐为原料,在有机介质中进行水解、缩聚等化学反应,使溶液经通过溶胶-凝胶-干燥-煅烧等工艺,获得超细粉末的产品;也称为醇盐水解法。
过程如下:水解缩聚加热干燥煅烧金属醇盐溶胶凝胶干凝胶产品溶胶-凝胶法中的基本反应溶胶-凝胶法中的基本反应•水解和缩聚反应——溶胶化过程•金属醇盐的水解一般可表示为:M(OR)n+ xH2O → M(OH)x(OR)n-x+ xROH •在溶胶到凝胶的转变过程中,醇盐一旦水解,失水缩聚和失醇缩聚也几乎同时进行,并生成M-O-M键,形成溶胶体系:-M-OH + HO-M-→ -M-O-M-+ H2O-M-OH + RO-M-→ -M-O-M-+ ROH缩聚反应•室温下,醇盐与水不能互溶,故需要醇或其它有机溶剂作共溶剂,并在醇盐的有机溶液中加水和催化剂(醇盐水解一般都要加入一定催化剂,常用酸、碱催化剂,一般是盐酸或氨水)。
无机合成及制备化学论文题目:碳纳米管的合成及应用摘要:材料化学是一门快速发展的交叉性和前沿性学科,有机的融合了化学和材料两个一级学科的发展优势。
材料化学在深刻认识材料的结构和性能关系的基础上,探索与新材料发展相适应的化学合成新方法和新技术,设计并合成具有优异功能和结构特征的新型材料。
碳是一种常见的非金属元素,位于元素周期表的第二周期IVA族,以多种形式广泛存在于大气和地壳之中。
碳单质很早就被人认识和利用,碳的一系列化合物——有机物更是生命的根本。
碳能通过化学反应自我结合而形成大量化合物,这些化合物很多都是生物和工业的重要分子。
文章主要介绍碳结构的多样性、碳在纳米领域的制备和应用、碳的各种同素异形体以及在化学反应中的作用。
关键词:碳纳米管、场效应晶体管、催化剂载体、电子效应、化学气相沉积、共轭体系、电弧放电法。
正文:碳单质可以以多种形式存在,自然界中最常见的两种单质是高硬度的金刚石和柔软的石墨,它们的晶体结构和键型都不同。
金刚石每个碳都是四面体4配位;石墨每个碳都是三角形3配位,可以看做是无限个苯环稠合起来。
纳米材料以及纳米结构是当今新材料研究领域中最为核心、最接近应用的部分。
在近年取得成果中,纳米材料尤为突出,碳纳米管以及石墨烯是其中的典型代表【1】。
由于它们具有很多优异而独特的光学、电学和机械性质,呈现出广泛地应用前景,因此成为国际上众多科学家关注和研究的前沿热点。
同时,由于碳材料的优越性,运用碳材料中的微观结构制作的纳米分子器件和纳米电路已成为科学家的重点研究对象。
扫描隧道显微镜和原子力显微镜的出现,使得人们可以俘获和放置、排列特定的单一碳原子或者碳纳米结构,构建出特定的纳米器件。
因此,纳米材料在未来大有可为。
1.1碳纳米管1991年,日本电子公司的Iijima[2]用高分辨率电子显微镜仔细研究了用电弧蒸发产出的富勒烯副产物炭黑,初期的研究结果令人失望,从电弧蒸发箱的壁上收集到的炭黑几乎全部是无定型碳,很少带有明显的、长程的结构。
1试述电阻发热体有哪些及特点:电阻发热体有:石墨发热体;金属发热体;氧化物发热体。
1、石墨发热体:在真空下可以获得相当高的温度(2500℃),但吸附、和周围气体结合形成挥发性物质,使加热物质污染,石墨本身在使用中损耗。
2、金属发热体:在真空和还原性气氛下,钽、钨、钼适用产生高温(1650~1700℃),在惰性气氛下钨管的工作温度可达3200℃。
3、氧化物发热体:氧化物发热体是最理想的加热材料,但存在发热体和通电导线连接问题。
2使用电阻发热体注意事项:1、根据不同的需要选择发热体、数目设计电阻炉 2、氧化物发热体的电阻温度系数是负的3、若各发热体并联使用,其中的发热体电阻值不同,电阻稍低的发热体会产生更多热量,被烧毁。
因此,每个发热体尽量分开使用。
3微孔材料合成常涉及有机添加剂,有机添加剂如何影响微孔材料合成的:微孔材料合成常用有机添加剂,有机添加剂一般为有机阳离子,其形状和大小可以选择,控制有机阳离子的空间效应和电子性质为沸石合成提供新的自由度,主要表现在以下几个方面:1、孔道填充作用;2、无机机构单元的有序化起机构导向作用和模板作用;3、平衡骨架电荷;4、改变凝胶化学性质;5、稳定合成骨架。
4 测温仪表的主要类型:接触式:膨胀式温度计:液体、固体;压力表式温度计:充液体、冲气体;热电阻式:铂热、铜热、半导体热敏;热电偶:铂铑-铂、镍铬-镍硅(镍铝)、镍铬-康铜非接触式:光学高温计、辐射高温计、比色高温计5热电偶高温计优缺点及注意事项:优点:1、体积小、重量轻、结构简单、易装配维护、使用方便;2、热惰性很小、热感度良好;3、可与被测量物体直接接触,不受环境介质影响,误差可控制在预期范围内;4、测量范围较广,~2000℃。
注意事项:1、测量信号可远距离传送,能自动记录和集中管理;2、注意环境气氛;避免侵蚀、污染和电磁干扰;3、不能在较高温度环境中长时间工作6简述溶胶和凝胶的异同点,表征,合成方法中主要化学问题:溶胶-凝胶合成是近期发展起来的能替代高温固相合成反应制备陶瓷、玻璃和许多固体材料的方法。