人教版七年级上册第2讲 数轴、相反数、倒数讲义(无答案)
- 格式:doc
- 大小:167.00 KB
- 文档页数:3
数轴与相反数(基础)【学习目标】1.理解数轴的概念及三要素;2.理解有理数与数轴上的点的关系,并会借助数轴比较两个数的大小;3.会求一个数的相反数,并能借助数轴理解相反数的概念及几何意义;4. 掌握多重符号的化简.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数;0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】类型一、数轴的概念1.如图所示是几位同学所画的数轴,其中正确的是( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4)【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.类型二、相反数的概念2.(2015•宜宾)﹣的相反数是()A.5 B.C.﹣ D.-5【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.【答案】B【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.举一反三:【高清课堂:数轴和相反数例1(1)~(7)】【变式1】填空:(1) -(-2.5)的相反数是;(2) 是-100的相反数;(3)155-是的相反数;(4) 的相反数是-1.1;(5)8.2和互为相反数.(6)a和互为相反数. (7)______的相反数比它本身大,______的相反数等于它本身.【答案】(1)-2.5;(2)100;(3)155;(4)1.1;(5)-8.2;(6)-a;(7)负数,0 .【高清课堂:数轴和相反数例2】【变式2】下列说法中正确的有( )①-3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是-3.14;⑤一个数和它的相反数不可能相等.A. 0个B.1个C.2个D.3个或更多【答案】B3.(2016•泰安模拟)如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D【思路点拨】考查相反数的定义:只有符号不同的两个数互为相反数.根据定义,结合数轴进行分析.【答案】A【解析】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.【总结升华】本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.类型三、多重符号的化简4.化简下列各数中的符号.(1)123⎛⎫--⎪⎝⎭(2)-(+5) (3)-(-0.25) (4)12⎛⎫+- ⎪⎝⎭(5)-[-(+1)] (6)-(-a)【答案】(1)112233⎛⎫--=⎪⎝⎭(2)-(+5)=-5 (3)-(-0.25)=0.25(4)1122⎛⎫+-=-⎪⎝⎭(5)-[-(+1)]=-(-1)=1 (6)-(-a)=a【解析】(1)123⎛⎫--⎪⎝⎭表示123-的相反数,而123-的相反数是123,所以112233⎛⎫--=⎪⎝⎭;(2)-(+5)表示+5的相反数,即-5,所以-(+5)=-5;(3)-(-0.25)表示-0.25的相反数,而-0.25的相反数是0.25,所以-(-0.25)=0.25;(4)负数前面的“+”号可以省略,所以1122⎛⎫+-=-⎪⎝⎭;(5)先看中括号内-(+1)表示1的相反数,即-1,因此-[-(+1)]=-(-1)而-(-1)表示-1的相反数,即1,所以-[-(+1)]=-(-1)=1;(6)-(-a)表示-a的相反数,即a.所以-(-a)= a【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.类型四、利用数轴比较大小5.在数轴上表示2.5,0,34-,-1,-2.5,114,3有理数,并用“<”把它连接起来. 【答案与解析】如图所示,点A 、B 、C 、D 、E 、F 、G 分别表示有理数2.5,0,34-,-1,-2.5,114,3.由上图可得: ∴312.5101 2.5344-<-<-<<<< 【总结升华】根据数轴的三要素先画好数轴,表示数的字母要依次对应有理数,然后根据在数轴上表示的两个数,右边的数总比左边的数大,比较大小.举一反三:【变式1】有理数a 、b 在数轴上的位置如图所示,下列各式不成立的是( )A .b ﹣a >0B .﹣b <0C .﹣a >﹣bD .﹣ab <0【答案】D【高清课堂:数轴和相反数 例4(2)】【变式2】填空: 大于763-且小于767的整数有______个; 比533小的非负整数是____________. 【答案】11;0,1,2,3类型五、数轴与相反数的综合应用(数形结合的应用)6.已知数轴上点A 和点B 分别表示互为相反数的两个数a ,b(a <b)并且A 、B 两点间的距离是144,求a 、b 两数. 【思路点拨】因为a 、b 两数互为相反数(a <b),所以表示a ,b 的两点A 、B 离原点的距离相等,而A 、B 两点间的距离是144,所以A 、B 两点到原点的距离就是1142248÷=. 【答案与解析】 解:由题意A 、B 两点到原点的距离都是:1142248÷=而a <b ,所以128a =-,128b =.【总结升华】(1)理解相反数的几何意义. (2)从相反数的意义入手,明确互为相反数的两数关于原点对称.举一反三:【变式】填空:(1)数轴上离原点5个单位长度的点表示的数是________;(2)从数轴上观察,-3与3之间的整数有________个.【答案】(1)±5,提示:要注意两种情况,原点左右各一个点;(2)5,提示:画出数轴,容易看出-3和3之间的整数是-2,-1,0,1,2共5个.。
第2讲 数轴、相反数与倒数类
【知识要点】
1.数轴:规定了原点、正方向和单位长度的直线叫做数轴。
利用数轴比较数的大小:数轴右边的数总比左边的数大。
2.相反数的定义:只有符号不同的两个数互为相反数,其中一个数叫做另一个数的相反数.例如+3与-3互为相反数,其中-3是+3的相反数.零的相反数是0.
正数的相反数是负数,负数的相反数是正数.在一个数的前面添加“+”号,仍然与原数相同;在一个数的前面添上“-”号,就成为原数的相反数。
注意:写代数式的相反数时要注意添括号,如2a +的相反数应写成(2)a -+。
3.多重符号的化简:一个正数的前面不管有多少个“+”号,都可以把它们全部去掉;一个正数的前面有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩下一个“-”号.
4.相反数的几何意义:互为相反数的两个数在原点的两旁,且离原点的距离相等.零的相反数是原点.
5.相反数的性质:若a 与b 互为相反数,则0=+b a ;反之,若0=+b a ,则a 与b 互为相反数.互为相反数的两数商为-1,(0除外),即若a 与b 互为相反数,则)0(1≠-=b a
b 6.倒数的定义:乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,例如
32与23互为倒数,其中23是3
2的倒数.乘积是-1的两个数互为负倒数。
1除以一个数(零除外)的商,叫做这个数的倒数,这是求一个求倒数的方法;如果两个数互为倒数,那么这两个数的积等于1.这是判定两个数是互为倒数的方法.
【典型例题】
例1 如下图所示,数轴中正确的是( )
例2、试比较-0.3,
1
3-,0.03,0,3
,的大小,并用“”连接起来。
例
3、 (1) 2与 互为相反数,5
2-的相反数是 ,)1(--的相反数是 . (2) a -的相反数是 ,3-a 的相反数是 ,1+n 的相反数是 .
例4、如果b a ,表示有理数,在什么条件下, b a +与b a -互为相反数.
例5、化简下列符号:
(1)⎪⎭⎫ ⎝⎛+-514 (2) ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-211 (3)()[]1--- (4)⎥⎦
⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++21 【经典练习】
一、选择题
1.下列所画数轴中正确的是( )
B -1 0 1 A -1 0 1
C -1 0 1
D
A B C D
2.下面说法中正确的是( )
①在―4与―3之间没有负数; ②在0与1之间有无数个数;
③在―4与―3之间没有其它整数; ④在0与1之间没有负数.
A 、①②③
B 、②③④
C 、①③④
D 、①②④
3.下面说法正确的是( )
A 、任何一个有理数都可以用数轴上的点表示出来
B 、数轴上右边的数表示正数,左边的数表示负数
C 、数轴上离开原点距离越远的点所表示的数越大
D 、0是最小的正整数
4.如果一个数的相反数是非负数,那么这个数一定是( )
A 、正数
B 、负数
C 、非正数
D 、非负数
5.下列说法正确的是( )
A 、()2+-是-2的相反数
B 、()2--是-2的相反数
C 、-2的相反数是()2+-
D 、+3的相反数是()3--
二、填空题
6.+3的相反数是 ,-3的相反数是 ,()3+-的相反数是 ,()3-+的相反数是 .
7.2-a 的相反数是 ,a -2的相反数是 .
8.用“>”或“<”填空.
(1)若a 是正数,则a - 0 (2)若a 是负数,则a - 0
(3)若a -是正数,则a 0 (4)若a -是负数,则a 0
9.在数轴上用点A 表示-3,则点A 到原点的距离是 ,到原点的距离距离等于3的点表示的数为 .
10.比较下列各组数的大小: (1)3.5 0; (2)-2.8 0;(3)65-
7
5-;(4)-1.95 -1.59; (5)75 76-;(6)31- 0.3;(7)7.1 1117-;(8)7.1 1117. 三、解答题
11.在下图中,点A 、B 、C 、D 、E 、F 、O 各表示什么数?
12.有理数y x ,在数轴上的对应点如下图所示,图中0为原点,且A 到原点的距离比B 到原点的距离大. (1)在数轴上表示出x -和y -;
(2)试把y x y x --,,0,,这五个数从大到小用“>”连接起来.
13.画图表示一个点从数轴上的原点开始,按下-1 0 1 A E B O C F D -2 -1 B A
x
y O
列条件移动两次后到达的终点,并说出它是表示什么数的点.
(1)向右移动3个单位长度,再向右移动2个单位长度;
(2)向右移动3个单位长度,再向左移动4个单位长度;
(3)向左移动3个单位长度,再向右移动4个单位长度;
(4)向左移动3个单位长度,再向左移动2个单位长度.
14.观察数轴,然后回答下列问题:
(1)有没有最小的有理数?有没有最大的有理数?若有,请写下来。
(2)有没有最小的正整数?有没有最大的正整数?若有,请写下来。
(3)有没有最小的负整数?有没有最大的负整数?若有,请写下来。
课后作业
1.若a 是小于1的正数,用“<”号将1,1,0,1,1,,---a
a a a 连接起来为 . 2.一个有理数的相反数与它自身的和为 ( )
A 可能是负数
B 一定为正数
C 必为非负数
D 一定为0
3.下列说法正确的是( )
A 有理数不是正数就是负数
B 0是最小的有理数
C 正数和负数统称为有理数
D 7
1是分数也是有理数 4.关于0,下列说法正确的个数有( )个.
①0既不是正数,也不是负数; ②零既不是整数,也不是分数;
③0不是自然数,但它是整数.
A 0
B 1
C 2
D 3
5.下列说法正确的是( )
A 一个有理数不是正数,就是负数
B 整数一定是正数
C 最小的整数是0
D 自然数是整数
6.有理数的集合是( )
A 正数和负数的集合
B 正整数、负整数与分数的集合
C 整数与分数的集合
D 整数与负数的集合
7.下面说法中正确的是( )
① 在21--与之间没有负数; ② 1与2之间有无数个数;
③在21--与之间没有其他整数; ④在0与1之间没有负数.
A ①②③
B ②③④
C ①③④
D ①②④。