非线性规划和多目标规划模型-数学建模共45页文档
- 格式:ppt
- 大小:5.73 MB
- 文档页数:45
非线性规划模型非线性规划模型在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在实际问题中并不是所有的问题都可以利用线性规划模型求解。
实际问题中许多都可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。
一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。
对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。
一、非线性规划的分类1无约束的非线性规划当问题没有约束条件时,即求多元函数的极值问题,一般模型为()min 0x Rf X X ∈⎧⎪⎨≥⎪⎩ 此类问题即为无约束的非线性规划问题1.1无约束非线性规划的解法 1.1.1一般迭代法即为可行方向法。
对于问题()min 0x Rf X X ∈⎧⎪⎨≥⎪⎩给出)(x f 的极小点的初始值)0(X ,按某种规律计算出一系列的),2,1()(Λ=k X k ,希望点阵}{)(k X 的极限*X 就是)(x f 的一个极小点。
由一个解向量)(k X求出另一个新的解向量)1(+k X向量是由方向和长度确定的,所以),2,1()1(Λ=+=+k P X X k k k k λ即求解k λ和k P ,选择k λ和k P 的原则是使目标函数在点阵上的值逐步减小,即.)()()(10ΛΛ≥≥≥≥k X f X f X f检验}{)(k X 是否收敛与最优解,及对于给定的精度0>ε,是否ε≤∇+||)(||1k X f 。
1.1.2一维搜索法当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。
一维搜索的方法很多,常用的有: (1)试探法(“成功—失败”,斐波那契法,0.618法等); (2)插值法(抛物线插值法,三次插值法等); (3)微积分中的求根法(切线法,二分法等)。
数学建模中的非线性规划问题在数学建模领域中,非线性规划问题是一类重要且常见的问题,它在实际应用中具有广泛的意义和价值。
非线性规划问题的研究和解决,对于优化问题的求解和实际应用具有重要的指导作用。
非线性规划问题可以简单地理解为在约束条件下寻找一个或多个使目标函数最优化的变量取值。
与线性规划问题不同,非线性规划问题在目标函数和约束条件中可能存在非线性项,因此其求解难度较大。
不同于线性规划问题的凸性、单调性等属性,非线性规划问题涉及到更多的数学工具和分析方法。
在实际应用中,非线性规划问题的出现非常普遍。
例如,在生产中,企业需要在有限的资源条件下使利润最大化,这就需要解决一个非线性规划问题。
除此之外,非线性规划问题还广泛应用于交通、能源、金融等领域。
不仅如此,非线性规划问题还可以用于统计数据拟合、函数逼近等问题的求解。
因此,研究和解决非线性规划问题具有非常重要的实际意义。
在解决非线性规划问题时,常用的方法主要包括精确解法和近似解法。
精确解法主要包括拉格朗日乘子法、KKT条件等,通过求解一系列方程和方程组来确定最优解。
这类方法通常适用于问题结构相对简单、目标函数和约束条件有良好性质的情况。
然而,对于问题结构复杂、目标函数和约束条件非常复杂的情况,精确解法往往效率较低,难以求解。
因此,在实际应用中,近似解法更为常见。
近似解法主要包括梯度下降法、牛顿法、拟牛顿法、遗传算法等。
这些方法通常基于局部优化思想,通过不断迭代和优化,逐步靠近最优解。
这类方法适用于一般性的非线性规划问题,具有较强的鲁棒性和适应性。
但是,这些方法也有其局限性,如收敛速度慢、易陷入局部最优等。
除了上述方法外,还有一些新的研究方法和算法被提出,如混合整数非线性规划、次梯度法、粒子群优化等。
这些方法在某些特定问题中表现出较好的运用效果,并有望在未来的研究中得到更广泛的应用。
总之,非线性规划问题在数学建模中占据重要地位,对于优化问题的求解和实际应用具有重要的指导作用。
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
●旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d,找一条经过n个城ij市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
●车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP问题是VRP问题的特例。
●车间作业调度问题(JSP)车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。