超临界流体萃取技术简介
- 格式:pptx
- 大小:1.68 MB
- 文档页数:64
1.超临界流体萃取的简介超临界流体萃取(Supercritical fluidextraction,简称SFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。
超临界流体(Supercritical fluid,简称SCF)是指操作温度超过临界温度和压力超过监界压力状态的流体。
在此状态下的流体,具有接近于液体的密度和类似于液体的溶解能力,同时还具有类似于气体的高扩散性、低粘度、低表面张力等特性。
因此SCF具有良好的溶剂特性,很多固体或液体物质都能被其溶解。
常用的SCF有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等.其中以二氧化碳最为常用。
由于SCF在溶解能力、传递能力和溶剂回收等方面具有特殊的优点.而且所用溶剂多为无毒气体.避免了常用有机溶剂的污染问题。
早在100多年前,人们就观察到临界流体的特殊溶解性能,但在相当长时间内局限于实验室研究及石油化工方面的小型应用。
直到20世纪70年代以后才真正进入发展高潮。
1978年召开了首届专题讨论会,1979年首台工业装置投入运行,标志着超临界萃取技术开始进入工业应用。
超临界萃取之所以受到青睐,是由于它与传统额液-液萃取或浸取相比,有以下优点:①萃取率高;②产品质量高;③萃取剂易于回收;④选择性好。
1.超临界萃取的基本原理1.1.超临界流体特性所谓超临界流体(SCF),是指一类压强高于临界压强Pc,温度高于临界温度Tc,的流体,这种流体既不是液体,也不是气体,是一类特殊的流体。
超临界流体的物性较为特殊。
表1将超临界流体的这些物性与气体、液体的表1超临界流体的物性及与普通流体物性的比较相应值作了比较。
从表中可以看出:①超临界流体的密度接近于液体密度,而比气体密度高得多。
另一方面.超临界流体是可压缩的,但其压缩性比气体小得多;②超临界流体的扩散系数与气体的扩散系数相比要小得多,但比液体的扩散系数又高得多;③超临界流体的粘度接近于气体的粘度,而比液体粘度低得多。
超临界流体萃取技术概述超临界流体萃取技术是一种利用超临界流体作为溶剂的分离技术。
超临界流体是介于气体和液体之间的一种物质状态,在超临界状态下具有较高的溶解能力和扩散性能,因此被广泛应用于化工、制药、食品等领域的分离与提纯过程中。
本文将介绍超临界流体的基本概念、特点以及在萃取过程中的应用。
同时,还将探讨超临界流体萃取技术的优点和局限性,并结合实际案例进行分析。
超临界流体的基本概念超临界流体指的是在临界点之上的高压高温条件下,流体达到临界状态。
在超临界状态下,物质的密度和粘度等性质与传统液体和气体有明显差异,具有较高的溶解能力和扩散性能。
常用的超临界流体包括二氧化碳、水蒸汽、乙烯等。
与传统的有机溶剂相比,超临界流体作为溶剂具有以下优点:•高溶解能力:超临界流体的溶解能力比传统有机溶剂高,可以溶解更多的物质。
•可控性强:通过调节温度和压力等条件,可以控制溶解度和提取速度。
•萃取效率高:超临界流体在溶解物质后,可以通过调节温度或者减压来实现溶剂的快速脱失,从而提高萃取效率。
•环保可持续:超临界流体一般是可再生的,可以循环利用。
超临界流体萃取技术的应用超临界流体萃取技术在许多领域都得到了广泛的应用,以下是一些常见的应用场景:化工领域超临界流体萃取技术在化工领域用于分离和纯化特定化合物,常见的应用包括:•油脂提取:利用超临界流体(常用的是二氧化碳)可以高效地从植物油中提取脂肪酸、甘油等有机成分,用于制备食用油或者化妆品等产品。
相比传统的溶剂提取方法,超临界流体提取技术更加环保,不会产生有机溶剂残留。
•天然色素提取:超临界流体提取技术也可以应用于从天然植物中提取色素,用于食品、化妆品和纺织品等行业。
•聚合物分离:超临界流体还可以用于聚合物的分离和纯化,提高聚合物的纯度和质量。
制药领域在制药领域,超临界流体萃取技术被广泛应用于药物分离、纯化和微粒制备等方面,常见的应用包括:•天然药物提取:超临界流体提取技术可以高效地从天然植物中提取药物成分,用于药物生产和研发。
超临界流体萃取技术引言超临界流体萃取技术(Supercritical fluid extraction, SFE)是一种利用超临界流体对固体样品进行萃取的过程。
超临界流体是介于气体和液体之间的状态,在这种状态下具有类似于气体的低粘度和高扩散性,以及类似于液体的高溶解性。
超临界流体萃取技术在许多领域中得到了广泛应用,例如食品、医药、化妆品等行业。
超临界流体的特性超临界流体具有以下几种独特的特性:1.低粘度:超临界流体的黏度比液体低,因此在流体中的质量传递速度更快。
2.高扩散性:超临界流体的粒子间距比液体小,因此分子在流体中的扩散速度更快。
3.高溶解性:超临界流体具有较高的溶解度,能够更好地溶解固体样品。
4.可调性:超临界流体的溶解度可以通过调整温度和压力来控制,从而实现对萃取过程的精确控制。
超临界流体萃取技术的原理超临界流体萃取技术的原理基于超临界流体的特性。
在该技术中,固态样品首先与超临界流体接触,随着温度和压力的上升,样品中的目标化合物被溶解在超临界流体中。
然后,通过降低温度和压力,从超临界流体中分离出目标化合物。
超临界流体萃取技术常用的超临界流体包括二氧化碳(CO2)和乙烷(C2H6)等。
这些超临界流体在超临界状态下具有较好的溶解性和选择性,能够有效地提取出目标化合物。
超临界流体萃取技术的应用超临界流体萃取技术在许多领域中得到了广泛应用。
食品行业超临界流体萃取技术可以用于食品中有机溶剂残留的提取。
超临界流体能够高效地去除有机溶剂,同时保持食品的营养成分和风味。
医药行业超临界流体萃取技术可以用于药物成分的提取和纯化。
超临界流体能够高效地提取药物成分,同时减少对环境的污染。
化妆品行业超临界流体萃取技术可以用于提取植物精华和天然色素,用于化妆品的生产。
环境监测超临界流体萃取技术可以用于环境中有机污染物的提取和测定。
超临界流体能够高效地提取有机污染物,并且对环境无毒性。
超临界流体萃取技术的优势超临界流体萃取技术相比传统的溶剂提取方法具有以下几个优势:•高效性:超临界流体能够高效地提取目标化合物,减少提取时间和成本。
超临界萃取
超临界萃取是一种利用超临界流体(通常是超临界二氧化碳)作为
溶剂进行提取的技术。
超临界流体具有介于气体和液体之间的特性,具有较高的溶解力和低的粘度。
超临界萃取被广泛用于从天然产物
中提取化学物质,如药物、天然香料和植物提取物。
超临界萃取的过程是将待提取物料与超临界流体接触,在高压和高
温条件下进行混合和溶解。
随后,通过降压或降温来使溶液回到常
压下,提取物则会从溶液中析出。
这种技术具有以下几个优点:
1. 高选择性:超临界萃取可以根据物质的溶解度和分配系数来实现
有选择性的提取。
2. 高效性:超临界萃取过程通常较快,可以在短时间内完成大量提取。
3. 无残留溶剂:超临界流体通常可以通过减压来回收和重复使用,
因此没有残留的溶剂产生。
4. 温和条件:超临界萃取通常在相对温和的条件下进行,对物质的
活性和稳定性影响较小。
由于这些优点,超临界萃取已被广泛应用于食品、医药、化工和环保等领域。
它在提取高附加值产品、减少有机溶剂使用、替代传统萃取技术等方面具有重要的应用前景。
超临界流体萃取技术史丽岩 1 史景明 2 张先海31,2梨树县第二人民医院 (吉林梨树 136502)3 吉林省第二荣复军人医院[中图分类号]R943 [文献标识码]A [文章编号]1810-5734(2010)9-0096-021 引言早在1879年,Hannay等就发现超临界流体(supercritical fluid,SCF)具有显著的溶解能力,但超临界流体取(supercritical fluid extraction,SFE)却是在近30年来迅速发展起来的一种分离技术[1,2]。
2 超临界萃取的原理特点2.1 超临界流体萃取技术是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。
在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和相对分子质量大小不同的成分萃取出来。
2.2 SFE的萃取速率和范围更为扩大,具有以下特点:2.2.1 超临界萃取兼有精馏和液液萃取的某些特点。
2.2.2 超临界流体的萃取能力取决于流体密度,因而可方便地通过调节温度和压力来控制,这对保证产品质量的稳定是非常有利的。
2.2.3 萃取剂可循环使用,其分离与回收方法远比精馏和液液萃取简单,且能耗较低。
2.2.4 超临界流体萃取的操作温度与萃取剂的临界温度有关。
3 超临界萃取的主要影响因素3. 1 萃取压力萃取压力是SC-CO2萃取的最重要工艺参数之一。
不同原料在不同超临界条件下的溶解度曲线表明,萃取物在SC-CO2中的溶解度与SC-CO2的密度密切相关,而萃取压力是改变超临界流体对物质溶解能力的重要参数,这种溶解度与萃取压力的关系构成SC-CO2流体萃取过程的基础[3,4]。
3. 2 萃取温度萃取温度是影响SC-CO2密度的另一个十分重要的参数,对SC-CO2流体萃取过程的影响要复杂得多。
在一定萃取压力下,萃取温度对植物萃取的影响有两种趋势:一是随温度的升高,收率逐渐增加,当超过一定温度时,又逐渐下降,这种情况在萃取压力较高时出现。