高速公路大数据网络整体解决方案 高速公路大数据平台整体解决方案
- 格式:pptx
- 大小:5.40 MB
- 文档页数:66
智慧高速大数据信息化系统平台建设方案一、项目背景随着交通运输行业的快速发展,高速公路的建设与交通管理日益重要。
为了实现高速公路的智能化管理和提高交通运输效率,智慧高速大数据信息化系统平台建设就显得尤为重要。
本文档旨在提出一种智慧高速大数据信息化系统平台建设方案,以实现高速公路的智慧化管理。
二、项目目标1.建立一个智能化的管理平台,实现对高速公路交通运输的实时监控和智能调度。
2.提高交通事故的预测和处置能力,减少交通拥堵和事故发生率。
3.为交通管理部门提供实时的交通信息,并进行可视化展示和分析。
4.优化高速公路通行能力,提高交通运输效率。
三、项目架构1. 数据采集层数据采集层负责采集高速公路的各类数据,包括交通流量、车速、车辆类型、气象数据等。
常用的数据采集方法包括:使用传感器和监控摄像头采集交通流量和车速数据;通过气象站采集气象数据;通过信号探测器采集交通信号灯的状态等。
2. 数据处理层数据处理层负责对采集到的数据进行清洗、整理和存储,以便后续的分析和应用。
数据清洗和整理的步骤包括:去除噪声数据、填充缺失数据、标准化数据格式等。
数据存储可以选择使用关系型数据库或者分布式文件系统等,以满足大数据处理的需求。
3. 数据分析层数据分析层负责对采集到的数据进行分析和挖掘,提取有价值的信息。
常用的数据分析方法包括:机器学习算法、数据挖掘算法、统计分析方法等。
数据分析的结果可以用于交通事故预测、交通调度、交通流量预测等应用。
4. 数据展示层数据展示层负责将数据分析的结果以可视化的方式展示出来,以便用户进行监控和决策。
常用的数据展示方式包括:地图可视化、折线图、柱状图、热力图等。
5. 应用层应用层负责根据数据分析的结果进行交通管理和调度。
应用层可以实现交通事故预测、交通拥堵预测、交通信号灯优化等功能。
四、项目实施方案1. 系统搭建根据项目需求,搭建一个高可用的系统平台,以保证数据采集和处理的稳定性和可靠性。
系统采用分布式架构,提高系统的稳定性和处理能力。
智慧高速大数据信息化系统平台建设方案1. 引言高速公路作为现代交通基础设施的重要组成部分,承载着日益增长的交通流量和人员需求。
为了提高高速公路管理的效率和安全性,智慧高速大数据信息化系统平台应运而生。
本文将详细介绍智慧高速大数据信息化系统平台的建设方案,包括需求分析、系统架构设计、功能模块划分和实施计划等内容。
2. 需求分析智慧高速大数据信息化系统平台的建设旨在实现对高速公路运营数据的全面监测、分析和管理。
基于此,我们进行了以下需求分析:•实时监测:系统应能够实时监测高速公路的交通流量、车辆违法情况、车辆位置等信息。
•数据分析:系统应能够对采集到的数据进行分析,包括交通流量的预测、车辆违法行为的识别、交通状况的评估等。
•决策支持:系统应能够根据数据分析结果为高速公路管理部门提供决策支持,如交通疏导方案的制定、违法处理策略的制定等。
3. 系统架构设计基于需求分析,智慧高速大数据信息化系统平台的架构设计如下:系统架构设计系统架构设计•数据采集层:负责实时采集高速公路运营数据,包括交通流量数据、车辆违法数据、车辆位置数据等。
可以部署传感器、摄像头、GPS定位设备等实现数据采集功能。
•数据存储与处理层:负责存储采集到的高速公路数据,并进行数据的清洗、预处理和分析。
可以借助大数据技术,如Hadoop、Spark等进行数据的存储和处理。
•决策支持层:负责根据数据分析结果提供决策支持。
可以使用数据可视化工具实现数据分析结果的展示,同时提供决策支持系统供管理部门使用。
•用户界面层:提供用户界面,供高速公路管理部门和相关人员使用。
可以通过Web应用或移动应用实现用户界面。
4. 功能模块划分根据系统架构设计,将智慧高速大数据信息化系统平台划分为以下功能模块:4.1 数据采集模块•交通流量数据采集模块:负责实时采集高速公路的交通流量数据。
•车辆违法数据采集模块:负责实时采集高速公路的车辆违法数据。
•车辆位置数据采集模块:负责实时采集高速公路的车辆位置数据。
⾼速公路综合管理平台解决⽅案⾼速公路综合管理平台解决⽅案⽬录第1章概论 (1)1.1 背景 (1)1.2 实施⾼速公路数字化的意义 (2)1.3 ⾼速公路监控系统⾯临的挑战 (3)第2章系统简介 (5)2.1 总体框架 (5)2.2 系统结构 (6)2.3 系统设计原则和标准 (8)2.3.1 设计原则 (8)2.3.2 设计标准 (10)第3章基础监控单元设计 (12)3.1 【视频监控类】基础监控单元建设 (13)3.1.1 收费站视频监控系统建设 (13)3.1.1.1 收费站监控业务描述 (13)3.1.1.2 收费站视频监控系统结构 (14)3.1.1.3 收费站视频监控系统功能 (15)3.1.1.4 收费站视频监控系统核⼼设备 (16)3.1.2 服务区视频监控系统建设 (17)3.1.2.1 服务区监控场景及业务 (17)3.1.2.2 服务区视频监控系统结构 (18)3.1.2.3 服务区视频监控系统功能 (19)3.1.2.4 服务区视频监控系统核⼼设备 (20)3.1.3 沿线视频监控系统建设 (20)3.1.3.1 沿线视频监控场景 (21)3.1.3.2 沿线视频监控系统结构 (22)3.1.3.3 沿线视频监控系统功能 (22)3.1.3.4 沿线视频监控系统核⼼设备 (23)3.2 【交通事件类】基础监控单元建设 (24) 3.2.1 交通事件检测点位选择 (25)3.2.1.1 点位选择 (25)3.2.1.2 外场架设 (25)3.2.2 交通事件检测系统结构 (27)3.2.3 交通事件检测系统信息流向 (27)3.2.4 交通事件检测系统主要功能 (28)3.2.4.1 实时监控功能 (28)3.2.4.2 ⾏⼈、抛撒物检测 (28)3.2.4.3 机动车逆⾏检测 (28)3.2.4.4 机动车违停检测 (29)3.2.4.5 交通拥堵检测 (29)3.2.4.6 隧道烟雾检测 (30)3.2.4.7 交通数据采集 (30)3.2.4.8 交通事件报警功能 (30)3.2.5 交通事件检测系统核⼼设备 (31)3.3 【动环监测类】基础监控单元建设 (32) 3.3.1 动环检测类别 (34)3.3.1.1 交通⽓象重点关注的⼏个⽅⾯ (34) 3.3.1.2 动环检测的布设要求 (36)3.3.2 动环检测系统结构 (37)3.3.3 动环检测系统功能 (37)3.3.3.1 ⽓象环境条件观测 (37)3.3.3.2 路⾯状况观测 (37)3.3.3.3 实景⽓象观测 (38)3.3.4 动环检测系统核⼼设备 (38)3.3.4.1 路⾯检测器 (38)3.3.4.2 风速、风向传感器 (38)3.3.4.3 温湿度探头 (39)3.3.4.4 ⾬量传感器 (39)3.3.4.5 能见度检测器 (40)3.3.4.6 动环检测主机 (40)3.3.4.7 实景观测摄像机 (41)3.4 【交通调查类】基础监控单元建设 (41) 3.4.1 交通调查实施标准 (42)3.4.1.1 调查站分类 (42)3.4.1.2 调查设备分类 (43)3.4.2 ⼀类交通调查站建设 (44)3.4.2.1 布设标准 (44)3.4.2.2 系统结构 (45)3.4.2.3 主要功能及性能 (46)3.4.2.4 核⼼设备 (50)3.4.3 ⼆类交通调查站建设 (51)3.4.3.1 布设标准 (51)3.4.3.2 系统结构 (52)3.4.3.3 主要功能及性能 (52)3.4.3.4 核⼼设备 (53)3.5 【信息发布类】基础监控单元建设 (54) 3.5.1 点位选择 (54)3.5.1.1 点位选择 (54)3.5.1.2 架设分类 (55)3.5.1.3 设置规则 (57)3.5.2 系统结构 (57)3.5.3 系统主要功能 (58)3.5.4 核⼼设备 (58)3.6 【综合监控类】基础监控单元建设 (59) 3.6.1 隧道等级标准 (59)3.6.2 系统结构 (60)3.6.3 建设规范 (61)3.6.3.1 视频监控摄像机 (61)3.6.3.2 视频车检器 (62)3.6.3.3 交通事件检测 (62)3.6.3.4 环境监测 (63)3.6.3.5 报警 (65)3.6.3.6 信息联动发布 (65)3.6.4 核⼼设备 (66)3.6.4.1 视频监控摄像机 (66)3.6.4.2 视频车检器 (67)3.6.4.3 交通事件检测设备 (68)3.6.4.4 动环检测主机 (68)3.6.4.5 CO/VI检测仪 (68)第4章传输及供电系统设计 (69) 4.1 通信传输建议 (69)4.1.1 ⽹络组成 (69)4.1.2 ⾻⼲传输⽹ (71)4.1.3 路段接⼊⽹ (71)4.1.3.1 组成⽐较 (71)4.1.3.2 可靠性⽐较 (72)4.1.3.3 先进性⽐较 (72)4.1.3.4 建议 (73)4.1.4 组⽹⽅式 (73)4.2 供电 (74)4.2.1 ⼀般供电 (74)4.2.2 特殊点位供电 (75)第5章监控中⼼及软件平台 (76) 5.1 监控中⼼整体架构 (77)5.2 ⼀级监控中⼼设计 (78)5.2.1 系统结构 (78)5.2.2 功能设计 (79)5.2.2.1 信息采集 (79)5.2.2.2 数据处理 (79)5.2.2.3 信息显⽰ (80)5.2.2.4 视频图像管理 (80)5.2.2.5 路⽹监测、协调管理 (80) 5.2.2.6 公众信息服务 (80)5.2.2.7 信息共享 (81)5.2.2.9 数据备份和系统恢复 (81) 5.2.2.10设备管理 (81)5.2.2.11系统安全 (81)5.3 ⼆级监控分中⼼设计 (82) 5.3.1 系统结构 (82)5.3.2 功能设计 (82)5.3.2.1 信息采集 (82)5.3.2.2 数据处理 (82)5.3.2.3 信息显⽰及发布 (83)5.3.2.5 交通管理与应急处置 (83)5.3.2.6 系统设备管理功能 (83)5.3.2.7 系统安全 (83)5.4 基础监控单元⼦中⼼设计 (84)5.4.1 系统结构 (84)5.4.2 功能设计 (84)5.4.2.1 信息采集 (84)5.4.2.2 信息处理 (85)5.4.2.3 视频管理 (85)5.4.2.4 交通管理与应急处置 (85)5.4.2.6 系统安全 (85)5.5 中⼼存储系统 (85)5.5.1 存储技术对⽐ (86)5.5.2 存储⽅案选择 (89)5.5.3 存储容量设计 (89)5.6 解码拼控及显⽰系统 (91)5.6.1 解码拼控设备选择 (91)5.6.2 显⽰设备选择 (93)5.7 中⼼服务器架构系统 (94)5.7.1.1 平台主要设备、模块 (94)5.7.1.2 硬件环境及服务器参考配置⽅案 (97) 5.8 中⼼平台软件 (101)5.8.1 控制管理功能 (101)5.8.1.1 各类监控信息融合 (102)5.8.1.2 电⼦地图 (102)5.8.1.3 综合查询 (102)5.8.1.4 统计功能 (103)5.8.1.5 路况信息管理 (103)5.8.1.6 智能研判 (103)5.8.1.7 运维管理 (104)5.8.1.8 本地配置 (105)5.8.2 配置管理功能 (105)5.8.2.1 组织资源 (105)5.8.2.2 ⽤户管理 (106)5.8.2.4 录像管理 (106)5.8.2.5 地图管理 (107)5.8.2.6 备份管理 (107)5.8.2.7 任务计划 (108)5.8.2.8 系统管理 (108)5.8.3 资源信息获取功能 (108)5.8.3.1 公告信息 (108)5.8.3.2 报警信息 (109)5.8.3.3 ⽇历 (109)5.8.3.4 异常信息 (109)5.8.3.5 下载中⼼ (109)5.8.3.6 版本信息 (110)第1章概论1.1背景近年来,我国公路建设取得举世瞩⽬的成绩,以⾼速公路为⾻架、国省⼲线公路为主体的全国⼲线公路⽹快速形成。
智慧高速公路大数据信息化系统方案
智慧高速公路大数据信息化系统方案的目标是利用大数据
技术和信息化手段,实现对高速公路交通数据的采集、分
析和应用,以实现智慧交通管理和提升高速公路运营效率。
方案的主要组成部分包括:
1. 数据采集系统:部署在高速公路上的传感器和摄像头,
可以实时采集道路交通流量、速度、车辆类型等数据,并
且将数据按时间和空间标签进行整理和存储。
2. 数据存储和管理系统:包括数据库和数据仓库,用于存
储和管理采集到的大数据。
数据库用于实时存储和访问实
时数据,数据仓库用于长期存储和分析历史数据。
3. 数据分析和挖掘系统:通过数据分析算法和挖掘技术,
对采集到的大数据进行统计、分析和挖掘,以提取交通特征、找出交通拥堵等问题,并生成相应的报告和预测结果。
4. 实时报警和管理系统:根据分析结果,及时发出警报并
向相关部门发送实时报告,以便采取相应的交通管控措施。
同时,系统还可以支持对高速公路的运营进行实时监管和
管理。
5. 信息化服务平台:为用户提供各种交通信息查询和服务
功能,如路况查询、车辆追踪、出行建议等,以方便用户
的出行和提升用户体验。
6. 智能决策支持系统:根据历史数据和实时数据,对高速
公路运营进行智能决策支持,包括交通管理、道路维护和
设施优化等方面,以提高高速公路的运营效率和安全性。
总之,智慧高速公路大数据信息化系统方案旨在借助大数据和信息化技术,实现对高速公路交通数据的全方位、实时和智能化的管理和应用,从而提升高速公路运营效率、减少交通拥堵、提高交通安全水平,为用户提供更好的出行体验。
智慧高速公路大数据信息化系统方案1. 引言智慧高速公路大数据信息化系统是针对高速公路运行管理和交通安全的需求,利用大数据和信息技术开发而成的一套系统方案。
本文档将详细介绍该系统的设计和功能,并提供相关的技术方案和实施计划。
2. 系统概述智慧高速公路大数据信息化系统主要包括以下几个模块:2.1 数据采集模块该模块负责采集高速公路上的各类数据,包括车辆信息、交通流量、天气情况等。
采集方式包括传感器采集、视频识别、卫星定位等多种技术手段,以保证数据采集的准确性和实时性。
2.2 数据存储模块该模块负责将采集到的数据进行存储和管理。
数据存储可以采用分布式数据库技术,以支持大规模数据的存储和高并发访问。
同时,针对不同类型的数据,可以采用不同的存储方式,如关系数据库、NoSQL数据库等。
2.3 数据处理与分析模块该模块负责对存储在数据库中的数据进行处理和分析。
通过数据挖掘和机器学习算法,可以从大量数据中发掘出有价值的信息,如交通拥堵预测、事故风险评估等。
2.4 数据展示与应用模块该模块负责将处理和分析得到的数据以可视化的形式展示出来,并提供相应的应用功能。
用户可以通过网页或移动端应用程序访问该系统,查看实时交通情况、查询路线信息、获得推荐的出行方案等。
3. 技术方案系统采用了以下技术方案以满足需求:3.1 云计算系统采用云计算平台进行部署,以满足系统的高可用性和弹性扩展的需求。
通过虚拟化技术和自动化管理,可以实现系统的快速部署和资源的动态分配。
3.2 大数据存储系统使用分布式文件系统和分布式数据库来存储和管理大数据。
分布式文件系统可以实现数据的高可靠性和可扩展性,分布式数据库可以支持高并发的数据访问和查询。
3.3 数据挖掘与机器学习系统采用数据挖掘和机器学习算法来分析和挖掘大数据中的有价值信息。
通过建立模型和训练算法,可以实现交通拥堵预测、事故风险评估等功能。
3.4 可视化与用户界面系统采用Web和移动端应用程序来展示数据和提供应用功能。
智慧公路大数据运营中心解决方案智慧公路大数据运营中心解决方案是当前社会发展中重要的一个方向,在实现数字化和智能化发展的过程中,为智慧出行提供了更加完善的服务。
下面就该解决方案进行详细的阐述。
第一步:设立大数据运营中心要想实现智慧公路大数据运营中心,首先需要设立一个大数据运营中心。
这个中心可以集成不同来源的数据,并且实现数据的整合、重组和分析。
其中包括交通速度监测、车辆轨迹、道路信息等相关数据,这些数据可以体现出公路交通的特点,为车辆提供参考信息,同时还可以借此监测行车情况和路况。
第二步:建设云平台在设立好大数据运营中心之后,下一步工作就是建设一个云平台,用于数据的存储和分析。
该平台可以支持海量数据的实时接入和处理,同时还可以创建多个组件,用于数据分析、挖掘和展示。
这一步的建设可以使用云计算技术,大大降低运营成本,并且提高系统稳定性和数据安全性,充分保障系统的正常运转。
第三步:数据挖掘与分析数据挖掘是云平台中最为重要的一个组成部分,从海量的交通数据中提取出有价值的信息,这是实现智慧公路的基础。
采用数据挖掘技术,可以为车辆提供实时的路况信息和行车建议,同时还可以为政府部门提供数据分析和统计,用于路网规划和管理,从而提高公路交通的运行效率和质量。
第四步:实现大数据应用实现了数据挖掘之后,下一步就是实现大数据应用。
其中包括指路导航、违章监测、交通信息咨询等多个方面,这些应用可以提供更加贴近用户需求的多样化服务,为公众出行的便利和安全提供保障,同时政府能够更好地了解公众的需求,精准安排交通资源,使交通运输更便捷,更安全,减少交通拥堵和事故发生。
总之,智慧公路大数据运营中心的解决方案是目前智能出行发展中的一大趋势,通过建立信息共享和交流平台,为车辆提供更多的行车信息和服务,并且为政府进行数据管理和决策提供基础数据支持。
这一解决方案的实施不仅能够提高公路交通效率,也可以推动智慧交通建设的发展。