统计学基础最新版课件(03)第3章 数据的概括性度量(J6)
- 格式:pptx
- 大小:3.16 MB
- 文档页数:70
【统计学】4.数据的概括性度量【统计学】4.数据的概括性度量4.1 集中趋势的度量4.2 离散程度的度量4.3 偏态与峰态的度量学习⽬标1.集中趋势各测度值的计算⽅法2.集中趋势各测度值的特点及应⽤场合3.离散程度各测度值的计算⽅法4.离散程度各测度值的特点及应⽤场合5.偏态与峰态的测度⽅法6.⽤excel 计算描述统计量并进⾏统计4.1 集中趋势的度量集中趋势(central tendency )1.⼀组数据向其中⼼值靠拢的倾向和程度,反映了⼀组数据中⼼点位置所在2.测度集中趋势就是寻找数据⽔平的代表值或中⼼值3.不同类型的数据不同的集中趋势测度值4.低层次数据的测度值适⽤于⾼层次的测量数据,但⾼层次的数据的测度值并不适⽤于低层次的测量数据4.1.1 分类数据:众数众数(mode )1.⼀组数据中出现次数最多的变量值2.⼀般仅适合数据量较多时使⽤3.不受极端值得影响4.⼀组数据可能没有众数或有⼏个众数(众数可能不唯⼀也可能不存在)5.主要⽤于分类数据(分类数据只对应分类的频数),也可⽤于顺序数据和数值型数据4.1.2 顺序数据:中位数和分位数中位数(median )1.⼀组数据排序后处于中间位置上的值2.中位数不受极端值的影响3.中位数主要⽤于顺序数据,也可⽤于数值型数据,但不适⽤于分类数据中位数(位置和数值的确定)排序位置确定n +12数值确定M e =x (n +12),n 为奇数12[x (n2)+x (n2+1)],n 为偶数因此中位数不⼀定是原数据中的某个变量值四分位数(quartile)1.排序后处于25%和75%位置上的值2.不受极端值的影响3.计算公式Q L 位置=n4,Q U 位置=3n4,4.如果是在0.25或0.75的位置上,则四分位数等于该位置的下侧值加上按⽐例分摊位置两侧数值的差值(加权平均数概念){{4.1.3 数值型数据:平均数平均数(mean )1.也称为均值2.集中趋势的最常⽤测度值3.⼀组数据的均衡点所在4.体现了数据的必然性5.易受极端值的影响6.有简单平均数和加权平均数之分7.根据总体数据计算,称为平均数,即为µ,根据样本数据计算的,称为样本平均数,即为x 简单平均数(算数平均数)设⼀组数据为:x 1,x 2,...x n (总体数据x N )样本平均数¯x =x 1+x 2+...+x n n =∑n i =1x i n 总体平均数µ=x 1+x 2+...+x N N =∑Ni =1x iN加权平均数(Weighted mean )设各组的组中值为:M 1,M 2,...,M k 相应的频数为:f 1,f 2,...f k 样本加权平均¯x =M 1f 1+M 2f 2+...M k f kf 1+f 2+...+f k=∑k i =1M i f in总体加权平均µ=M 1f 1+M 2f 2+...M k f kf 1+f 2+...+f k=∑⼏何平均数(geometric mean )1. n 个变量值乘积的n 次⽅根2. 适⽤于对⽐率数据的平均3. 主要⽤于计算平均增长率4. 计算公式为G =nx 1×x 2×...×x n =nn∏i =1xi4.1.4众数、中位数和平均数的⽐较1. 众数不受极端值影响具有不唯⼀性数据量较⼤时众数才有意义数据分布偏斜程度较⼤且有明显峰值时应⽤2. 中位数不受极端值影响数据分布偏斜程度较⼤时应⽤3. 平均数利⽤了全部数据信息,数学性质优良易受极端值影响数据对称分布或接近对称分布时应⽤4.2 离散程度的度量离中趋势1.数据分布的⼀个重要特征2.反映各变量值远离其中⼼值的程度(离散程度)3.从另⼀个侧⾯说明了集中趋势测度值的代表程度4.不同类型的数据有不同的离散程度测度值4.2.1 分类数据:异众⽐率异众⽐率(variation ratio )1. 对分类数据离散程度的测度2. ⾮众数组的频数占总频数的⽐例3. 计算公式v r =∑f i −f m ∑f i=1−f m∑f i4.⽤于衡量众数是否具有代表性4.2.2 顺序数据:四分位差四分位差(quartile deviation )1. 对顺序数据离散程度的测度2. 也称为内距或四分间距3. 上四分位数与下四分位数之差Q d =Q U −Q L4. 反映了中间50%数据的离散程度5. 不受极端值影响√√6. ⽤于衡量中位数是否具有代表性4.2.3 数值型数据:⽅差和标准差极差(range)1. ⼀组数值型数据的最⼤值和最⼩值之差2. 离散程度的最简单测度值3. 易受极端值影响4. 未考虑数据的分布,数据利⽤率低5. 计算公式为R=max(x i)−min(x i)标准差(mean deviation)1. 各变量值与其平均数离差绝对值的平均数2. 能全⾯反映⼀组数据的离散程度3. 数学性质差,实际应⽤较少4. 计算公式未分组数据M d=∑n i=1|x i−¯x|n组距分组数据Md=∑k i=1|M i−¯x|fin⽅差和标准差(variance and standard deviation)1. 各变量与其平均数离差平⽅的平均数2. 数据离散程度的最常⽤测度值3. 反映了各变量与均值的平均差异4. 根据总体数据计算的,称为总体⽅差(标准差)σ2(σ)根据样本数据计算的,称为样本⽅差(标准差)s2(s)⽅差的计算公式未分组数据s2=∑n i=1(x i−¯x)2n−1组距分组数据s2=∑k i=1(M i−¯x)2fin−1标准差的计算公式未分组数据s=∑n i=1(x i−¯x)2n−1组距分组数据s=∑k i=1(M i−¯x)2fin−1为什么是除以n-1⽽不是n?⾃由度(degree of freedom)1. ⾃由度是指数据个数与附加给独⽴观测值的约束或限制的个数之差2. 从字⾯涵义看,⾃由度是指⼀组数据中可以⾃由取值的个数3. 当样本数据的个数为n时,若样本平均数确定后,则附加给n个观测值的约束个数就是1个,因此只有n-1个数据可以⾃由取值,其中必有⼀个数据不能⾃由取值。