0-2_金融数学的数学基础
- 格式:pptx
- 大小:537.92 KB
- 文档页数:62
炼数成金:学习金融数学基础金融数学作为金融领域中非常重要的一门学科,通过运用数学工具和方法来解决金融问题。
学习金融数学基础有助于我们更好地理解金融市场和金融产品,提高金融决策的准确性。
本文将介绍金融数学的基本概念和应用,并探讨如何通过学习金融数学基础来实现财富增值。
1. 金融数学的基本概念金融数学是数学在金融领域中的应用,它主要涉及到概率论、数理统计、微积分等数学工具和方法。
其中,概率论是金融数学的基础,它用来描述金融市场中不确定性的特征。
数理统计则用来对金融数据进行分析和预测,揭示金融市场的规律性。
微积分则用来解决涉及到连续变量和函数的金融问题,如期权定价等。
2. 金融数学的应用领域金融数学的应用领域非常广泛,下面将介绍几个常见的应用领域。
2.1 金融市场分析金融数学可以帮助我们分析金融市场的走势和规律。
通过运用数学模型和方法,我们可以对股票、债券、期货等金融产品进行定价和风险评估,为投资决策提供科学依据。
2.2 金融风险管理金融市场中存在各种风险,如市场风险、信用风险、操作风险等。
金融数学可以用来衡量和管理这些风险,帮助金融机构更好地控制风险并提高盈利能力。
2.3 金融工程金融工程是利用数学和计算机技术对金融产品进行创新和设计。
金融数学可以帮助我们设计和定价各种金融衍生品,如期权、期货等,为投资者提供更多的投资选择。
3. 学习金融数学基础的意义学习金融数学基础对个人和社会都具有重要意义。
3.1 对个人而言学习金融数学基础可以帮助我们更好地理解金融市场和金融产品,提高个人的投资决策能力。
通过运用数学工具和方法,我们可以对市场进行分析和预测,降低投资风险,增加投资收益。
此外,金融数学也是许多金融职业的基本要求,学习金融数学基础可以提升我们就业竞争力。
3.2 对社会而言金融数学的应用在金融机构和金融市场中起着重要的作用,可以帮助金融机构更好地进行风险管理和金融创新,提高金融体系的稳定性和效率。
此外,金融数学的发展也推动了金融行业的数字化转型,促进了金融业的创新和发展。
金融随机数学基础
金融中的随机数学基础是指在金融领域中应用的随机过程、概率论和统计学等数学原理。
以下是一些金融中常见的随机数学基础:
1. 随机过程:
- 随机过程在金融中被广泛应用,如布朗运动(Brownian motion)、随机漫步(random walk)等模型用于描述资产价格的变动过程。
2. 概率论:
- 概率论是金融中的基础,用于描述随机现象的概率分布、期望值、方差等,如正态分布、泊松分布等。
3. 随机变量:
- 随机变量用于描述金融中涉及的不确定性,如股票价格、汇率波动等可以被视为随机变量。
4. 蒙特卡洛模拟:
- 蒙特卡洛模拟是金融中常用的技术,通过随机数生成来模拟复杂的金融问题,如期权定价、风险管理等。
5. 统计学:
- 统计学在金融中用于数据分析、风险评估等,如统计推断、回归分析、时间序列分析等方法。
6. 随机过程中的随机微分方程:
- 随机微分方程在金融数学中有重要应用,如布莱
克-舒尔斯期权定价模型中的随机微分方程。
这些数学基础在金融领域中起着至关重要的作用,帮助金融从业者理解和分析市场的不确定性、风险和波动性。
熟练掌握金融中的随机数学基础对于进行定价、风险管理和决策制定是至关重要的。
中央财经大学金融数学是一个具有较高挑战性和实用性的专业,它注重培养学生的数学、统计和金融知识,使学生能够运用数学工具分析和解决金融问题。
首先,中央财经大学金融数学专业对学生的数学基础要求较高,包括高等数学、线性代数、概率论与数理统计等课程。
这些课程的学习不仅要求学生掌握基本的数学理论和技能,还要求学生能够运用这些理论和方法解决金融问题。
因此,学生需要具备较强的数学基础和思维能力,能够独立思考和解决问题。
其次,金融数学专业强调统计学和金融学的结合。
在课程设置上,学生需要学习统计推断、时间序列分析、统计建模等课程,以便能够更好地理解和分析金融数据。
此外,学生还需要学习货币银行学、投资学、风险管理等课程,以便能够更好地了解和掌握金融市场的运作规律和风险管理的方法。
这些课程的学习有助于学生建立起全面的金融知识体系,为将来从事金融工作打下坚实的基础。
再次,中央财经大学金融数学专业注重培养学生的实践能力和创新能力。
学校为学生提供了丰富的实践机会,如参加金融建模比赛、参与金融实验室实验等。
这些实践机会有助于学生将所学的理论知识应用到实际工作中,提高自己的实践能力和解决问题的能力。
此外,学校还鼓励学生参加学术研究,这有助于培养学生的科研能力和创新精神。
最后,中央财经大学金融数学专业的就业前景非常广阔。
随着金融市场的不断发展,对金融数学人才的需求也越来越大。
学生毕业后可以从事金融分析、风险管理、投资咨询、量化交易等职业。
此外,学生还可以选择继续深造,攻读金融学、统计学、数学等相关专业的硕士或博士学位。
总之,中央财经大学金融数学专业是一个具有较高挑战性和实用性的专业,它注重培养学生的数学、统计和金融知识,使学生能够运用数学工具分析和解决金融问题。
学生在学习过程中需要注重实践能力和创新能力的培养,同时也要注意调整自己的心态和目标,以适应不断变化的市场需求。
孟生旺《金融数学基础》参考答案(中国人民大学出版社,2015年2月第一版)第1章 利息度量1.1360021500.125,2000(1)2848i i i ⨯=⇒=+=1.2 /121/1218/121004314271141.6T v v v T =+⇒= 1.3:(2)2i A X i X =⋅, ()()1615:1/21/2B X i X i +-+ 1615[(1/2)(1/2)]0.09458X i i i X i +-+=⋅⇒=1.427.72e 20.025δδ=⇒=, 当0.5i δ= 时, /2(12)7.0480n n δ+=⇒=1.5 1/42100(146%)114.71-⨯⨯-⨯=1.6 ()()11118//mmm m i i d d m m m -+=+=-=-⇒=⎡⎤⎡⎤⎣⎦⎣⎦1.7 12:()(1.01)tA a t =, 2/12:()e tB a t =, 212/12(1.01)e 1.43t tt =⇒=1.8 2:()exp()/2A a t an bn =+, 2:()exp()/2B a t gn hn =+, 2()/()n a g h b =--1.9 8512()100(1)exp /4(1)d 2600.129a t d t t d --=-⋅⎡⎤+=⇒=⎢⎥⎣⎦⎰ 1.10 11/(1)t δ=+, 222/(1)t t δ=+, 0.41t = 1.11 2()(1)a t t =+1111300(3)600(6)200(2)(5)=315.82a a a X a X ----⨯+⨯=⨯+⨯⇒1.12 ()10.2025330(3)exp e/100d a t t --==-⎰.1.13 20.5()0.040.031,(0.5)/(0.5)0.068a t t t a a δ'=++== 1.14 ()320(3)100exp/100d 109.42A t t X X=⋅+=+⎰()623(6)(109.42)exp /100 1.8776(109.42)A X t dt X =+⋅=+⎰(6)(3)(109.42)(0.87761)784.61A A X X X -=+=⇒=1.15 t = 4时的累积值为:()30.04501000exp0.02d e 1144.54t t ⋅=⎰令名义利率为x , 则 161000(1/4)1144.540.03388x x +=⇒=1.16 ()20.075i=, (4)(2)(2)21/2/2/2ln (1)41(1)0.1466d i i δ⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦+=++-+= 1.17 ()()510205expd exp/25d 2.71830.414kt t kt t k ⋅=⇒=⎰⎰1.18 0()exp d (2)/2,()(0)/216tt a t t t a n a n n δδ⎡⎤==+=-=⇒=⎢⎥⎣⎦⎰ 1.19 201000exp 1068.94d t t δ⋅=⎡⎤⎢⎥⎣⎦⎰ 1.20 1010267.5, 10(1.0915)30(1.0915), 2.3254nn A B n --==+=第2章等额年金2.1 1363元 2.2 279430元 2.3260052.4 基金在第30年初的现值为658773.91, 如果限期领取20年, 每次可以领取57435, 如果无限期地领下去, 每次可以领取39526 2.5 31941.68元, 21738.97元, 46319.35元 2.6 9年 2.7 29月末2.8 0.1162 2.9 8729.23 2.10 45281.05 2.11 0.2 2.12 302 2.13 4.06%2.14假设最后一次付款的时间为n , 则有:4410000010000(10.05)23.18n a n --=+⇒=假设在23年末的非正规付款额为X , 则有4231910000010000(10.05)(10.05)1762.3a X X --=+++⇒=2.15 601004495.503860000.749329k k a v v k ==⇒=⇒=2.16 20101020153810721072153846600.08688a a v v i =⇒-+=⇒=2.17 设j 为等价利率, 则0.040604j =, 1681000()32430s s =+=&&&&累积值 2.18 以每半年为一个时期, 每个时期的实际利率为/2i , 两年为一个时期的实际利率为()411/2j i =-+, 故 5.891/0.08j i ⇒==2.19 ()20101012126410.7520.09569i s i s i i ⋅⋅+⋅⋅=⇒+=⇒=2.20 {}ln(1)1exp d d 1n nta n r t r==+-+⎰⎰2.21 20()exp d (10.5)tr a t r t δ==+⎡⎤⎣⎦⎰, 5(5)(5)(5)...12.828(1)(2)(5)a a a s a a a =+++=2.22()8888111188100d (1)d tt v a a t v t δδδδ-==-=-=⎛⎫- ⎪⎝⎭⎰⎰()()5/48101810018100v v δδδδ=--⋅⇒=--⎡⎤⎣⎦()[]5/410101181001v a δδδδ----==2.23 1/302.24 1[ln(/)]/i δδ- 2.25 4e 12e 3n n δδ=⇒=, e 112121/6n n s δδδ-=⇒=⇒=第3章变额年金3.1 ()29/229229 /22972.8865.440.1/2j j j s j Is j s j j -⎡⎤=⋅=⋅⇒=⇒=⎢⎥⎢⎥⎣⎦&&&& 3.2 1010900100()a I a += 1088.693.3 2312(1)23......n n n nn i a a v v v nv nv nv id++++++++++==3.4 335792222468...49.89(1)v X v v v v v =++++==-3.5A 的现值为:102010105555()X a a v a ==+B 的现值为:1020101010306090X a v a v a =++ 故 10102055(1)3060900.07177574.74v v vi X +=++⇒=⇒=3.6 1()()n n n n nIa v Da a a -+=⋅&& 3.7 71520()1602146.20Da a +=3.8 11846.663.9每季度复利一次的利率为0.0194, 所有存款在第八年末的终值为40.019480.08()183.01s Is =&&, /0.08183.0114.64X X =⇒= 3.10 3433203.11 166073.12 现值为5197.50, 累积值为9333.98.3.13 111193070()9998.16a Ia +=&&&&, 终值为23312.11. 3.14 现值为111120()2803246.03Da a +=, 在第20年末的终值为10410.46. 3.15 212.343.16 此项投资在第10年末的终值为:106%106%80000(5000)500()X s Ds =-+&&&&80000(5000)(13.97164)500(83.52247)7736.88X X =-+⇒=3.17 ()4106%116%100()200015979.37X v Da a =+=. 3.18 第20年末的终值为:16115%(1)200()19997.38i Ia +=3.19 前5年的现值为77.79, 从第6年开始, 以后各年付款的现值为:()510.092010.09v k k +⎛⎫+ ⎪-⎝⎭, 总现值为335, 故 3.76%k =.3.20 104%104%9010()1735.96s I s +=3.21 第8年的终值为:87%87%605()894.48478s Ds +=第10年末的终值为1024.10. 3.22100(43)exp (0.030.04)d d 89.97t t s s t ⎡⎤+-+=⎢⎥⎣⎦⎰⎰ 3.23 在时刻5的现值为:102255(1.22)exp (0.00060.001)d d 382.88tt t s s s t ⎡⎤+-+=⎢⎥⎣⎦⎰⎰ 时刻零的现值为:50382.88exp (0.0040.01)d 346.44t t⎡⎤-+=⎢⎥⎣⎦⎰ 3.24 ()10100250009exp 1/(9)d d 190131.58t k tk s s t k k ⎡⎤=++=⇒=⎢⎥⎣⎦⎰⎰第4章收益率4.10.1483 4.2 1221.99 4.3 时间加权收益率0.5426, 币值加权收益率0.5226, 两者之差0.0236.4.4 93000 4.5 −10%4.6 120100506565(10050)136,0.1834100120100501009/12503/12D D i D D --+-⋅⋅=⇒===-+-+⨯-⨯ 4.7 0.1327 4.8 7.5% 4.9 236.25 4.100.06194.11 5年末投资者共得到56245.5元. 设购买价格为P , 要得到4%的收益率, 有5(1.04)56245.546229.7P P =⇒=4.12 20.0820/220/25000100000(5000)()34.710.1i i s i Is s i =+⇒=⇒=&&&& 4.13 再投资利率为8.73%. 投资者B 的利息再投资后的积累值为6111.37.4.14 ()10200.75100.7512126410.7520.09569i i i s i s i i ⋅⋅+⋅⋅=⇒+=⇒=4.15 3项投资在2015年初的余额为320.46万元, 在2015年末的余额为344.56万元, 故2015年中所获利息为24.10万元.第5章 贷款偿还方法5.1 X = 704.065.2 设每年的等额分期付款金额为R , 由已知28(1)135R v -=, 147(1)108(1)72R v R v -=⇒-=5.3 301301(1)/32/322.69t t R vR v t -+-+-=⇒=⇒=故在第23年分期付款中利息金额最接近于付款金额的三分之一. 5.4 109832290.35,408.55Rv Rv Rv Rv Rv Rv =++=++0.05,150.03,1158.4i R L ⇒===. 支付的利息总金额为10341.76R L -=5.5 1510.65.6 (1)借款人第2年末向偿债基金的储蓄额应为4438.42(2)第2年末的余额为9231.91 (3)第2年末的贷款净额为10768.095.7 0| 4| 6104.56/20000/8.4911%k i i R L a a i ===⇒= 5.8 第5次偿还中的利息为66.89万元.5.9 22912125,0001 1.02(1.02)(1.02)526i Ra v v v R ⎡⎤=+++⋅⋅⋅⋅+⇒=⎣⎦5.10 各期还款的积累值为 20200.0510*******(1)0.0616s i i =+⇒=5.11 121212155000500.3812 0.09173077.9455000(1)500.38jn njn a i j j s -=⎧⎪⇒==⎨=+-⎪⎩ 5.12 第一笔贷款偿还的本金为490.34, 第二笔贷款偿还的本金为243.93, 两笔贷款的本金之和为 734.27. 5.13 3278.5.14 第3次支付的本金金额为784.7, 第5次支付的利息金额为51.4. 5.15 0.1196. 5.16 64.74.5.17 调整后最后一次的偿还额为1239.1. 5.18 第11年末.5.19 调整后借款人增加的付款为112.5.20 20301019100001900100()5504.7Xa v a v Ia X =++⇒=. 5.21 11190.11.第6章证券定价6.1 价格为957.88元, 账面值为973.27元.6.2价格为974.82元, 账面值为930.26元(理论方法), 929.82(半理论方法), 1015(实践方法.6.37.227% . 6.4 6.986% .6.5 10201010101000.11000.091000.0897.74P a v a v a --=⨯+⨯+⨯=元.6.6债券每年末的息票收入为80元, 故有()()()54321082.27(1)801801801099.84(1)80(1)80 6.5%V V i V i i i i i ==+-=+-+-⎡⎤⎣⎦=+-+-⇒=(3)3 8010001099.8412n n i a v n --⋅+=⇒= 1212 0.065801000(1.065)1122.38P a -=⋅+=元.6.7应用债券定价的溢价公式可以建立下述三个等式:20202040(1) 45(2) 50(3) 2X C i a C Y C i a C X C i a C ⎛⎫-=- ⎪⎝⎭⎛⎫=- ⎪⎝⎭⎛⎫=- ⎪⎝⎭由(3)/(1)得:501302403Ci Ci Ci --=⇒=-由(1)(3)+得:2020(902)902XX Ci a a Ci=-⇒=-所以有 20(45)/25Y Ci a X =-==元. 6.8 t = 7/12, 理论方法的账面值为87.35元, 实践方法的账面值为87.35元.6.9110019019/110910/33n n n v v a =⇒=⇒= 0.0311********.03n n P v a =+=.6.10 40n n P a M v =+⋅, 30n n Q a M v =+⋅, 令债券C 的价格为X , 则有8054n n X a M v X P Q =+⋅⇒=-.6.11 ()()()()1010 0.041010 0.0510*******.040.03581.49100011001.05P r a r P r a --⎧=+⎪⇒=⎨-=+⎪⎩ ()1010 0.0351*******.0351371100 1.0351371070.80X a -=⨯+⨯=6.12 ()()()219202320105050 1.03 1.03 1.03837.78P v v v v v ⎡⎤=+++++=⎣⎦L .6.13 偿还值的现值为55200584.68()v a =元, 未来息票收入的现值为5556012()355.99()a v Da +=元, 故债券的价格为940.67元. 也可以应用Makeham公式计算, 即0.06/0.07(1000584.68)584.68940.67P =⨯-+=元.6.14 2020 10104010001071.06401041.58P a v P P a X v X ⎧=+=⎧⎪⇒⎨⎨=+⋅=⎪⎩⎩6.15 债券每年末的息票收入为60元, 修正息票率为60/1050 = 5.7143%, 小于投资者所要求的收益率8%, 所以赎回越晚(即到期时赎回), 债券的价格越低. 由此可得该债券的价格为1010501050(5.7143%8%)888.94P a =+⨯-⨯=元.6.16 股票在第六年的红利为60.50.2(1.10)⨯⨯, 以后每年增长10%. 应用复递增永续年金的公式, 该股票的价格为6510.50.2(1.10) 1.1110.510.110.1P -=⨯⨯⨯⨯=-元.6.17 投资者每个季度的实际收益率为 2.47%j =, 应用复递增永续年金的公式, 投资者购买该股票的价格为0.3/(2.47%2%)63.83P =-=元. 6.18 1.5/305%10%i =+=. 6.19 30元.6.20 每股利润为109.500.50-=元, 保证金为100.505⨯=元, 保证金所得利息为50.0500.25⨯=元, 每股红利为0.1元, 卖空收益率为(0.50.250.1)/513%+-=.6.21 8.59%第7章利率风险7.115D =马, 基于名义收益率的修正久期为15/(11%)14.85D =+=. 年实际收益率为12.68%i =, 基于实际收益率的修正久期为15/(112.68%)13.31D =+=.7.2 1()/()e 1n nD P P δδδδ'==--7.3 假设债券的面值为100, 则92.648.027.57P D D ===马,, 7.4债券的马考勒久期可以表示为nm j a D m=&&马, 其中()/m j im =. 变形可得:()()()11(1)1(1)(1)n n m m m nm jni v D j a j a m i d--+-=+=+==&&马. 7.5 对年金的现值关于利率i 求导, 应用修正久期的定义公式可得111n nnv D i v +=--.7.6对于期末付永续年金, 现值为()1/P i i =, 2()1/P i i '=-, 所以修正久期为1/D i =, 马考勒久期为=(1)(1)/D D i i i +=+马.7.7对于期初付永续年金, 现值为()(1)/P i i i =+, 2()1/P i i '=-, 所以修正久期为1/[(1]D i i =+), 马考勒久期为=(1)1/D D i i +=马.7.8 24 /2()510096.53()169.29 1.75()i P i P a v P i D P i ''=+=⇒=-⇒=-= 7.97.49D =效7.10 7.8861D D i ==+马, () 1.18%Pi D P∆=-∆⋅= ⇒ 新的债券价格近似为:75.98 1.01876.88⨯= 7.11 8.92D =效, 13.35C =效.2()0.5()8.85%Pi D i C P∆=-∆⋅+⋅∆⋅=-, 债券的新价格近似为95.59元. 7.12 修正久期为8.12, 凸度为101.24. 7.13 马考勒凸度为105.15.7.14 22231d 1d 216.67d d P P P i i i i i==⇒=- = ()116.67()P i D P i i'⇒=-==2()2555.55()P i C P i i''⇒=== 7.152()0.5() 4.28%Pi D i C P∆=-∆⋅+⋅∆⋅=- 7.16 负债的现值为12418.43L P =, 负债的马考勒久期为5LD =马, 负债的马考勒凸度为25L C =马. 不妨假设两种零息债券的面值均为1000元, 则4年期零息债券的价格为441000/(1)683.01P i =+=元, 10年期零息债券的价格为10101000/(1)385.54P i =+=元. 假设有%x 的债券投资4年期的零息债券, (1%)x -的债券投资10年期的零息债券, 由ALD D =马马, 有:(%)(4)(1%)(10)5%83.33%x x x +-=⇒=投资4年期零息债券的金额为10348.28元, 投资10年期零息债券的金额2070.15元. 7.17 债券A 的价格为982.17元, 马考勒久期为1.934, 马考勒凸度为3.8. 债券B 的价格为1039.93元, 马考勒久期为4.256, 马考勒凸度为19.85. 在债券A 上投资11.02%, 在债券B 上投资88.98%, 则债券组合的马考勒久期等于负债的马考勒久期, 均为4年, 债券组合的马考勒凸度为18.08, 大于负债的马考勒凸度16, 满足免疫的条件. 7.18 各种债券的购买数量分别如下:购买5年期债券的数量 80000 购买4年期债券的数量 300000 购买2年期债券的数量 600000 购买1年期零息债券100000购买各种债券以后净负债的现金流如下(单位:万元): 年度 1 2 3 4 5 负债的现金流1794 6744 144 3144 824 5年期债券的现金流 24 24 24 24 824 净负债的现金流 1770 6720 120 3120 0 4年期债券的现金流 120 120 120 3120 0 净负债的现金流 1650 6600 0 0 0 2年期债券的现金流 600 6600 0 0 0 净负债的现金流 1050 0 0 0 0 1年期债券的现金流 1050 0 0 0 0 净负债的现金流第8章利率的期限结构8.1一年期债券的价格为102.78P =;两年期债券的价格为92.96P =;三年期债券的价格为112.43P =.11111102.788%1s s =⇒=+ 2212323123510592.969.03%1(1)1515115112.4310.20%1(1)(1)s s s s s s s =+⇒=++=++⇒=+++8.2现金流分别按对应的即期利率折现得债券的价格为:231010110105.751.05 1.06 1.08P =++= 8.3 各年远期利率分别为8%、10.1%和12.6%. 8.4假设债券的面值为100元, 计算5年期债券的价格:2345234512345234123410101010110101010101101.07 1.07 1.07 1.07 1.071(1)(1)(1)(1)1111 3.741(1)(1)(1)s s s s s s s s s ++++=+++++++++⇒+++=++++每年支付40元的5年期期初付年金按对应的即期利率折现即得其现值为:23412341111401189.751(1)(1)(1)s s s s ⎡⎤++++=⎢⎥++++⎣⎦8.5由远期利率计算的债券价格为:1010110107.251.07(1.07)(1.05)(1.07)(1.05)(1.1)++=(元)8.6假设债券的面值为100元, 则有:001041004%(1)f f =⇒=+1001200101261061008.16%(1)(1)(1)8810810012.69%(1)(1)(1)(1)(1)(1)f f f f f f f f f f f ⇒=+⇒=+++⇒=++⇒=++++++8.7 应用即期利率和远期利率的关系, 有101022012330123116%(1)(1)(1) 5.50%(1)(1)(1)(1) 6.98%s f s f s f f s s f f f s +=+⇒==+=++⇒=+=+++⇒=8.8用t C 表示债券在t 年末的现金流入, 则有:111120%1.21C Cs s =⇒=+ 1212222220%1.2 1.2 1.2(1)C C C C s s +=+⇒=+ 33121232323320%1.2 1.2 1.2 1.2 1.2(1)C C C C C Cs s ++=++⇒=+ 8.91001120%s f f +=+⇒=3211221.21.2(1.2)(1)20%,120%1.2f f f =+⇒==-=8.10 00110106 3.77%1f f =⇒=+ 1001200101251059512.20%1(1)(1)991091029.37%1(1)(1)(1)(1)(1)f f f f f f f f f f f =+⇒=+++=++⇒=++++++用远期利率计算年息票率为15%, 面值为100元的3年期债券的价格:0010121515115117.651(1)(1)(1)(1)(1)P f f f f f f =++=++++++ 8.11 用远期利率分别计算3年期和4年期零息债券的价格可得:01210082(1)(1)(1)f f f =+++,30123100759.33%(1)(1)(1)(1)f f f f f =⇒=++++8.12 21012012115%,(1)(1)(1)6%s f s s f f s +=+⇒=+=++⇒=假设债券的面值为100元, 则有:3233881081008.2%1.05 1.06(1)s s =++⇒=+8.13 通过收益率计算的债券价格为 2610693.061.1(1.1)P =+= 通过即期利率计算的债券价格为2610694.831.07(1.09)P =+= 债券价格被低估了1.77元, 故可以按94.83元的价格购买一个2年期债券, 同时按即期利率出售一个1年期的面值为6元的零息票债券和一个2年期的面值为106元的零息票债券.8.14 与远期利率一致的债券价格为5510597.421.05(1.05)(1.06)(1.05)(1.06)(1.07)P =++=(元) 债券的市场价格为100元, 说明债券被高估了, 因而存在套利机会.套利者可以按100元的价格卖出一个三年期债券, 同时将97.42元按4%的利率投资一年. 在第一年末, 支付已出售债券的5元利息后, 把剩余的资金在第二年按6%的远期利率再投资一年. 在第二年末, 支付已出售债券的5元利息后, 把剩余的资金在第三年按8%的远期利率进行投资. 在第三年末的累积值正好用于支付套利者所售债券在第三年末的偿还值. 完成上述步骤后, 套利者即可在当前时刻获得100 - 97.42 = 2.58元的无风险收益.第9章远期、期货和互换9.1股票多头的回收和盈亏如下表所示: 1年后的股票价格多头的回收多头的盈亏50 50 −16 60 60 −6 70704如果1年后的股票价格为66元时, 则股票多头的回收为66元. 购买股票的初始费用在1年后的累积值为66元, 所以盈亏为0元. 9.2股票空头的回收和盈亏如下表所示, 与多头的回收和盈亏正好相反. 1年后的股票价格空头的回收 空头的盈亏50 −50 16 60 −60 6 70−70−4如果1年后股票的价格是66元时, 则空头的回收为−66元. 初始所得在1年后的累积值为66元, 所以盈亏为 0元. 9.3 40.06/40.061(105 1.7e )e 104.54t t F -==-⨯=∑(元)9.4日股利为0.02/3651050.00575⨯=元. 若在年初持有一单位股票, 年末将持有0.02e 1.0202=单位. 若要在年末持有一单位股股票, 年初应持有0.02e 0.9802-=单位,故投资额为0.02105e 102.92-=元. 9.5(1)0.060.570e 72.13F ⨯=⨯=元. (2)0.0670e 720.032δδ-⨯=⇒=.9.6无套利的远期价格为 0.060.5105108.20F e ⨯==(元)(1)远期价格115 > 108.20, 所以投资者可以先签出一份远期合约, 约定在6个月末以115元的价格卖出股票. 同时借入105元购买股票, 承诺在6个月末还款. 到6个月末, 以115元卖出手中的股票, 同时偿还借款108.20元, 最终无风险获利6.80元. (2)远期价格107 < 108.20, 所以投资者可以先签订一份远期合约, 约定在6个月末以107元购买股票. 同时将手中持有的股票卖出, 获得105元, 将这105元投资于5%的零息债券, 6个月末可以获得108.20元. 6个月末利用远期合约买入股票, 最终获得无风险利润1.20元.9.7 22838483.491.05 1.055 1.05 1.055x xx +=+⇒= 9.8(1)232382838482.981.05 1.055 1.06 1.05 1.055 1.06x x xx ++=++⇒= (2)2323838483.501.055 1.06 1.055 1.06x xx +=+⇒= 9.9四个时期的浮动利率分别为0.06、 0.07、 0.08和 0.09. 互换利率为0.0745.9.10 应用债券组合的定价方法:0.13/120.1059/120.1115/120.13/124e 4e 104e 98.24(5.1100)e 102.5198.24102.51 4.27B B f B B -⨯-⨯-⨯-⨯=++==+==-=-=-固浮浮固第10章 期权10.1 远期多头的回收分别为−10元、−5元、0元、5元和10元, 空头的回收是其相反数. 看涨期权多头的回收分别为0元、0元、0元、5元和10元. 看跌期权的回收分别为10元、5元、0元、0元和0元.10.2 回收分别为0元、0元和5元. 盈亏分别为−6.01元、−6.01元和−1.01元.10.3 看跌期权的回收分别为5元、0元和0元. 盈亏分别为3.96元、−1.04元和−1.04元. 10.4 组合的回收分别为105元、105元、110元和115元. 组合的盈亏分别为−7.56元、−7.56元、−2.56元和2.44元.10.5 组合的回收分别为−105元、−105元、−110元和−115元. 组合的盈亏分别为12.81元、12.81元、7.81元和2.81元.10.6 多头的盈亏为0.95元, 盈亏平衡点为42.05元. 10.7 多头的盈亏为3.47元, 盈亏平衡点为28.53元. 10.8 看跌期权的期权费是3.13元. 10.9 10.2417d =, 20.09167d =.根据Black−Scholes 公式, 欧式看涨期权价格为:12()e () 3.61rTC S d K d -=Φ-Φ=根据平价公式, 欧式看跌期权价格为e 2.38rT P C K S -=+-=10.10 1.0905u =, 1/0.9170d u ==, 0.5266r t e dp u d∆-==- 欧式看跌期权的价值为2.62, 相应的二叉树如下:美式看跌期权的价值为2.71, 相应的二叉树如下:10.11 1.0524u =, 1/0.9502d u ==, ()0.5118r tedp u dτ-∆-==-欧式看涨期权的价值为19.63, 相应的二叉树如下:10.12 回收和盈亏如下表:股票价格 看跌期权回收总回收 成本及其利息 盈亏 90 5 95 −105.98 −10.98 100100−105.98−5.9810.13回收和盈亏如下表:股票价格看涨期权回收股票空头回收总回收净收入及其利息盈亏90 0 −90 −90 94.03 4.03100 5 −100 −95 94.03 −0.97 10.14回收和盈亏如下表:股票价格看涨期权回收空头回收总回收净收入及其利息盈亏100 0 −100 −100 97.44 −2.56 110 5 −110 −105 97.44 −7.5610.15回收和盈亏如下表:股票价格看涨期权回收看跌期权回收贷出资金回收总回收净成本及其利息盈亏90 0 −5 95 90 −105 −15100 5 0 95 100 −105 −5 10.16回收和盈亏如下表:股票价格看涨期权回收看跌期权回收借入资金的回收总回收净收入及其利息盈亏100 0 5 −105 −100 105 5 110 −5 0 −105 −110 105 −510.17105(9.31 1.69) 1.0597--⨯=10.18通过下表可以看到两种交易的盈亏相同:股票价格买进看涨期权的回收卖出看涨期权的回收总回收净成本及其利息盈亏90 0 0 0 −2.46 −2.5100 5 0 5 −2.46 2.54 10.19通过下表可以看到两种交易的盈亏相同:股票价格买进看涨期权的回收卖出看涨期权的回收总回收净成本及其利息盈亏90 0 0 0 3.41 3.41 100 0 −5 −5 3.41 −1.59第11章随机利率11.1 A 10的完整分布如下:概率 A 10 (A 10)2 0.20 1.63 2.65 0.40 2.10 4.41 0.402.918.48(1) 十年末累积值的期望为2330.05元.(2) 十年末累积值的方差为255027.66, 标准差为505.11.2 期望累积值为2593.74元. 累积值的方差为83865.54, 标准差为289.60. 11.3 期望累积值为1560.9元. 11.4 公式(3)和(4)是正确的.11.5 三个投资额的期望累积值分别为6350.4元, 3528元和2240元. 第3年末该账户的期望累积值为12118.4元.11.6 期望累积值为1.1449, 累积值的方差为0.000916.11.7 (1) ln(1)t i +的期望为0.073189, ln(1)t i +的方差为0.000122.(2) ()()25050ln 50, var ln 50E A A μσ==⎡⎤⎡⎤⎣⎦⎣⎦()()()[][]5050Pr 100040000Pr ln ln 40Pr 0.3761Pr 0.376A A Z Z >=> ≈> =-<⎡⎤⎣⎦ []Pr 0.3760.65Z <=, ()50Pr 1000AV 400000.35>= 11.8 累积价值的95%置信区间为(0.81, 1.34). 11.9 (1)t i +的期望和方差分别为222/22E(1)e , var(1)e (e 1)t t i i μσμσσ+++=+=-, 故有E()0.0844, var()0.00235t t i i ==假设年收益率的中位数为k , 则有()ln(1)Pr()0.5Pr ln(1)ln(1)0.5Pr 0.5t t k i k i k Z μσ+-⎛⎫<=⇒+<+=⇒<= ⎪⎝⎭ln(1)08.33%k k μσ+-=⇒=.11.10 利率树:现金流和各节点的价值:可赎回债券的价格为99.19元.11.11 第1年末的即期利率由当前的即期利率发展而来, 在当前利率水平的基础上上调30%的概率为0.75, 下降30%的概率为0.25. 第2年末的即期利率由第1年末的即期利率发展而来, 在第1年末利率水平的基础上上调30%的概率为0.75, 下降30%的概率为0.25. 利率树如下:[]()()()()()()()()()()()()2E 0.750.750.08450.750.250.050.250.750.050.250.250.029596.813%i =+++=。
1.13 1.141.15a(t) = 0.04r + 0.03, +1, % % = "(0.5) /。
(0.5) = 0.068 *(3) = 100 • exp (J" /1 OOdr) + X = 109.42 + X 4(6) = (109.42 + X) • exp([7 / ] oo力卜i .8776(109.42 + X) A(6)一A0) = (109.42 + X)(0.87761) = X nX= 784.61 t = 4时的累积位为:1OOOexp ({ 0.02/d/) • e0045 = 1 144.54参考签案(中国人民大学出版社,2015年2月第一版)第1章利息度量1.1600 x 2i = 150 n,= 0.125, 2000(1 + z)3 = 28481.21004/m = 314"" + 271V,8Z,2 n T = 141.61.3A: -(2X) = i-X , B: X(1+ Z72),6~X(1+ Z/2)15X[(1 + i/2)16-(14-//2)15] = i・X ni = 0.094581.4e27'725 = 2 n 5 = 0.025,当严=S时,(i + 2S)n,1 = 7.04 n 〃 = 801.5100 x (1 - 4 x 6%)-1/4X2 =114.711 6 l + i = [l +广""丁 = [1 - d(m) / m] ' = 1 - J zn = 81.7A:g) = (l.01)”',8:〃(f) = /"2,(i.oi),2x =e z: 12 =>r = 1.431.8 A : a(t) = exp(凯 + 如广 / 2), B: a(t) = exp(gn + hn2 /2), n = 2(a 一 g) / (h -b) 1.9。
数学建模在金融数学专业的应用随着金融市场的不断发展,金融数学专业的应用越来越广泛。
数学建模在金融数学专业中的应用,不仅可以帮助金融机构更好地管理风险,还可以为投资者提供更准确的投资建议。
本文将从数学建模在金融市场中的应用、金融数学专业的发展以及数学建模在金融数学专业中的应用等方面进行探讨。
一、数学建模在金融市场中的应用数学建模在金融市场中的应用主要体现在风险管理、投资决策和金融工程等方面。
在风险管理方面,数学建模可以帮助金融机构更好地识别和管理风险。
例如,通过建立风险模型,可以对市场风险、信用风险和操作风险等进行量化分析,从而制定相应的风险管理策略。
在投资决策方面,数学建模可以帮助投资者更准确地预测市场走势和股票价格等,从而制定更科学的投资策略。
在金融工程方面,数学建模可以帮助金融机构设计和开发各种金融产品,例如期权、期货、衍生品等,从而满足不同投资者的需求。
二、金融数学专业的发展金融数学专业是近年来兴起的一门新兴学科,它主要研究数学在金融领域中的应用。
随着金融市场的不断发展和金融风险的不断增加,金融数学专业的发展越来越受到重视。
目前,国内外许多高校都设立了金融数学专业,培养了大量的金融数学人才。
金融数学专业的学生需要具备扎实的数学基础和对金融市场的深刻理解,同时还需要具备良好的计算机技能和沟通能力。
三、数学建模在金融数学专业中的应用数学建模在金融数学专业中的应用主要体现在以下几个方面:1. 风险管理风险管理是金融数学专业中的重要内容,数学建模可以帮助金融机构更好地识别和管理风险。
例如,通过建立风险模型,可以对市场风险、信用风险和操作风险等进行量化分析,从而制定相应的风险管理策略。
2. 金融工程金融工程是金融数学专业中的另一个重要内容,数学建模可以帮助金融机构设计和开发各种金融产品,例如期权、期货、衍生品等,从而满足不同投资者的需求。
数学建模可以帮助金融机构更好地理解金融产品的特性和风险,从而制定相应的风险管理策略。
金融数学专业有什么就业上的优势_这个专业的特点金融数学专业有什么就业上的优势金融领域技能:金融数学专业培养学生具备扎实的数学和统计学基础,并结合金融学的相关知识,使他们具备了处理金融数据、建立金融模型和分析金融风险的能力。
这些技能使他们在金融机构从事量化分析、风险管理、金融工程等工作上具备优势。
数据分析与模型应用:金融数学专业的毕业生熟练掌握统计学、概率论和计量经济学等数学工具,并能运用统计建模、数据挖掘和计量经济学等技术解决金融问题。
他们在金融机构、保险公司、投资银行等领域的数据分析和模型应用方面具有优势。
量化金融岗位:金融数学专业的毕业生在量化金融领域有较高的竞争力。
他们可以在高频交易、算法交易、投资策略研发、风险管理等领域从事工作,提供量化模型和策略支持,帮助机构进行高效的交易和风险控制。
理论研究机构:金融数学专业的毕业生也可以在大学、研究所从事金融领域的理论研究工作。
他们可以参与金融市场、金融衍生品等方面的研究项目,推动金融学与数学、统计学的融合发展。
国际金融中心:许多国际金融中心如纽约、伦敦、香港等对金融数学专业的毕业生需求量较大。
这些城市的金融机构、投资银行等都会寻找具备金融数学背景的人才,给予他们更多的就业机会和发展空间。
金融数学专业的相关介绍金融数学是数学与金融学相结合的学科领域,旨在培养具备扎实的数学基础和金融知识的专业人才。
该专业强调数学建模、数据分析和风险管理等方面的应用能力,以解决金融领域的实际问题。
在学习金融数学专业期间,学生将接触到包括高级微积分、线性代数、概率论与数理统计、数值计算等数学核心课程,以及金融市场、证券投资、金融衍生品、金融工程等金融学相关课程。
通过这些课程的学习,学生将获得对金融市场运作规律和金融产品特性的理解,同时也能够具备金融数据处理、金融模型建立和金融风险分析的能力。
金融数学专业就业前景金融市场存在巨大的利润和高风险,需要计算机技术帮助分析,然而计算机不可能处理“大概”,“左右”等描述性语言,它本质上只能识别由0和1构成的空间,金融数学在这个过程中正好扮演了一个中介角色,它可以用精确语言描述随机波动的市场。
金融数学金融数学(FinancialMathematics),又称数理金融学、数学金融学、分析金融学,是利用数学工具研究金融,进行数学建模、理论分析、数值计算等定量分析,以求找到金融学内在规律并用以指导实践。
金融数学也可以理解为现代数学与计算技术在金融领域的应用,因此,金融数学是一门新兴的交叉学科,发展很快,是目前十分活跃的前沿学科之一。
目录概述必备工具现状及发展研究科目人才现状主要研究内容数据挖掘图书《金融数学》概述必备工具现状及发展研究科目人才现状主要研究内容数据挖掘图书《金融数学》•目录概述金融数金融数学学是一门新兴学科,是“金融高技术”的重要组成部分。
研究金融数学有着重要的意义。
金融数学总的研究目标是利用我国数学界某些方面的优势,围绕金融市场的均衡与有价证券定价的数学理论进行深入剖析,建立适合我国国情的数学模型,编写一定的计算机软件,对理论研究结果进行仿真计算,对实际数据进行计量经济分析研究,为实际金融部门提供较深入的技术分析咨询。
金融数学是在两次华尔街革命的基础上迅速发展起来的一门数学与金融学相交叉的前沿学科。
其核心内容就是研究不确定随机环境下的投资组合的最优选择理论和资产的定价理论。
套利、最优与均衡是金融数学的基本经济思想和三大基本概念。
在国际上,这门学科已经有50 多年的发展历史,特别是近些年来,在许多专家、学者们的努力下,金融数学中的许多理论得以证明、模拟和完善。
金融数学的迅速发展,带动了现代金融市场中金融产品的快速创新,使得金融交易的范围和层次更加丰富和多样。
这门新兴的学科同样与我国金融改革和发展有紧密的联系,而且其在我国的发展前景不可限量。
必备工具21世金融数学纪数学技术和计算机技术一样成为任何一门科学发展过程中的必备工具。
美国花旗银行副总裁柯林斯(Collins)1995年3月6日在英国剑桥大学牛顿数学科学研究所的讲演中叙述到:“在18世纪初,和牛顿同时代的著名数学家伯努利曾宣称:‘从事物理学研究而不懂数学的人实际上处理的是意义不大的东西。
孟生旺《金融数学基础》复习提纲(中国人民大学出版社2015.2版)利息度量本章介绍了利息的各种度量工具,包括单利、复利、实际利率、名义利率、实际贴现率、名义贴现率、利息力和贴现力等,以及累积函数和贴现函数。
它们之间的关系可以总结如下:1.累积函数是期初的1元本金在时刻t 的累积值。
复利的累积函数为:()()0()(1)1(1)1e //exp(d )mtmtt t t tm m s a t i d i m d m s δδ--=+=+=-=-=⎡⎤⎡⎤=⎣⎦⎣⎦⎰单利的累积函数为:()1a t it =+ 贴现函数是累积函数的倒数。
2.常用的各种利息度量工具之间有如下关系: (1))1(i i d += (2))1d d i -= (3)d v -=1 (4)i d id -=(5)()1(1)1m mi m i ⎡⎤=+-⎣⎦ (6)()11(1)m d m d ⎡⎤=--⎣⎦(7))1ln(i +=δ等额年金本章介绍了等额年金的计算问题,包括年金的现值和终值,期初付年金与期末付年金的关系,现值与终值的关系等,涉及较多公式,现将它们归纳如下。
下表仅给出了期末付年金的公式,对于期初付年金,只需把分母上的利率符号改变为贴现率符号即可。
等额年金计算公式之间的关系式可以概括如下:变额年金下表总结了期末付年金的现值和累积值(终值)公式。
对于期初付年金,只需把分母上的利率符号改变为相应的贴现率符号即可。
s nna s 乘以(1+i )乘以()m i i乘以i()()m nm na s 乘以()m d d 乘以1/(1+)mi变额年金之间的关系可以概括如下:对于增长率为r 的复递增年金,期末付年金和期初付年金的现值为:, 1, 1n ja r i rP n r i r⎧≠⎪⎪+=⎨⎪=⎪⎩+末 , 1, n j a r i P r n r i⎧⎪≠=⎨+⎪=⎩初其中,1i rj r-=+Da n nIa Da 乘以(1+ i )乘以()m i i乘以i()()m nm nIa Da 乘以()m d d 乘以1/(1+)mi收益率1.收益率是使得未来资金流入的现值与资金流出的现值相等时的利率,也是使得净现值等于零时的利率。
金融学类特设专业:金融数学、信用管理、经济与金融
【金融数学】:
统计信息(数据统计截止日期:2012年12月30日)
1、该专业2012年全国普通高校毕业生规模:200-250人
2、该专业2012年全国普通高校毕业生性别比例:男36%:女64%
3、该专业2012年全国高考招生文理科比例:未知
4、该专业近几年全国就业率区间:未知
5、该专业全国报考硕士较集中的专业:国际商务
培养目标:培养具有扎实的数学基础,掌握金融数学基本理论和基本分析方法,能够运用所学的数学与金融分析方法进行经济、金融信息分析与数据处理的应用型人才。
毕业后能在金融、投资、保险等部门从事金融分析、策划与管理等工作,并为更高层次的研究生教育输送优秀人才。
主干课程:数学分析、大学物理、、常微分方程、复变函数、数值分析、数学建模、实变函数、金融英语、金融数学、近世代数、运筹学等。
专业特色:系统掌握应用数学、金融学的基础理论和方法,形成扎实的.数学
基本功底和严谨的数学思维模式。
具备灵敏获取信息能力和分析信息能力,具备不断学习和创新的精神,具有一定的科学研究和教学能力,具有在经济、金融领域
从事定量分析,解决实际经济问题及设计经济数学模型等方面的基本能力。
就业方向:进入金融、投资、保险等部门从事金融分析、策划和管理等工作。
金融数学专业培养方案Financial Mathematics学科门类:经济学专业代码:T一、专业培养目标本专业培养具备扎实的金融数学理论基础,掌握金融风险评估、金融产品设计开发的方法,具备进行定量分析和解决金融实务问题的能力,可在银行、证券、投资等金融部门从事金融、财务、风险管理工作,也可在教育、科研部门从事教学、科研工作的高素质应用型专门人才。
二、专业培养要求本专业要求学生掌握扎实的数学、金融学的基本理论和知识,接受数理金融思维和科学实验方面的基本训练,能够运用各种金融工具和数量分析方法解决金融实务问题。
毕业生应获得以下几方面的知识和能力:1.具有较好的数学基础,掌握金融学的基本理论和分析方法,能够运用所学知识对金融理论问题进行分析和研究;2. 能够运用金融工具和数量分析方法解决金融实务问题,具备处理银行、保险、证券、投资等方面业务的基本能力;3.了解金融数学的理论前沿和发展动态,熟悉国家有关经济和金融的方针、政策和法规;4.熟练掌握一门外语,能顺利阅读本专业的外文资料;掌握文献检索、资料查询的基本方法,具备一定的科学研究和实际工作能力;5. 具有独立学习与创新思维能力,有较强的社会适应能力和优秀的综合素质。
三、课程设置课程按性质分为必修课、选修课两类。
其中必修课包括通识必修课、学科基础课和专业必修课;选修课包括通识选修课、专业方向模块选修课和专业任选课。
课程按内容分为通识课(包括通识必修课和通识选修课)、学科基础课和专业课(包括专业必修课、专业方向模块选修课、专业任选课)三级课程平台,实践教学课程作为整个课程体系的有机组成部分,贯穿于学生培养的全过程。
本专业主干课程:数学分析、高等代数、常微分方程、概率论与数理统计、运筹学、微观经济学、宏观经济学、金融学、金融数学、证券投资学、计量经济学。
(一)通识课程(61学分)1.通识必修课程(43学分)通识必修课指教育部或学校规定的,原则上各专业必须修读的课程,包括思想政治理论课、大学英语、大学语文、计算机基础课程、体育等。
高等数学经济应用数学基础微积分课后习题答案标题:高等数学经济应用数学基础微积分课后习题答案详解高等数学是大学数学的重要组成部分,它在经济、物理、工程等领域都有着广泛的应用。
在经济应用数学基础微积分课程中,学生需要掌握微积分的基本概念和技能,包括极限、导数、微分、积分等。
本文将对这些基本概念和技能进行详细的解释,并给出一些相应的例题和答案。
一、极限极限是微积分的基础,它描述了一个变量在趋近于某个值时变化的趋势。
在数学上,我们用lim表示极限,记作lim f(x) = A,其中f(x)是自变量x的函数,A是一个常数。
例1:求lim(x->0) sin(x)/x。
解:当x趋近于0时,sin(x)和x都趋近于0,因此我们可以使用洛必达法则来求解。
将分子和分母分别求导,得到lim(x->0) cos(x)/1 = 1。
二、导数导数描述了一个函数在某一点的变化率,记作f'(x)。
如果f'(x)是一个常数,那么f(x)就是线性的;如果f'(x)不是常数,那么f(x)就是非线性的。
例2:求f(x) = x^3的导数。
解:f'(x) = 3x^2。
三、微分微分是导数的逆运算,它描述了一个函数在某一点的微小变化。
记作df(x) = f'(x)dx。
例3:求f(x) = x^3的微分。
解:df(x) = 3x^2dx。
四、积分积分是微分的逆运算,它可以将一个函数的微小变化累积起来,得到这个函数的积分。
记作∫f(x)dx。
例4:求∫(x^2)dx。
解:∫(x^2)dx = (1/3)x^3+C,其中C为常数。
以上就是微积分的基本概念和技能,通过这些例题和答案,我们可以更好地理解和掌握这些概念和技能,为后续的学习和应用打下坚实的基础。
经济应用数学基础教案标题:经济应用数学基础教案一、文章类型与目标本文将提供一份全面的经济应用数学基础教案,旨在为教师提供教学指导,帮助学生掌握与经济相关的数学基础知识,为进一步学习经济学、金融学等专业课程打下坚实的基础。
孟生旺《金融数学孟生旺《金融数学》》(第二版)公式汇总∎复利的累积函数:0()()d ()(1)1(1)1e e t s mt mt m m t t t si d a t i d m m δδ−−=+=+=−=−=∫⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦∎单利的累积函数:()1a t it=+∎各种利息度量工具之间的关系:(1))1(i i d +=v i ⋅=()11n n d n ⎡⎤=−−⎢⎥⎣⎦(2))1(d d i −==()11m m i m +−⎡⎤⎢⎥⎣⎦e 1δ=−(3)dv −=1(4)i d id−=(5)()1(1)1m i m i ⎡⎤=+−⎣⎦(6)()111(1)(1)n n n d n d n v ⎡⎤=−−=−⎣⎦(7)()()11m nm n i d m n −+=−⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦(8))1ln(i +=δ∎期末付复递增年金的现值:11n jPV a r =+末∎期初付复递增年金的现值:n j PV a =̇̇初,其中r 表示年金增长率,1i r j r−=+。
∎若i r =,则有:1n PV r=+末,PV n =初。
∎币值加权收益率的近似公式:)1(0t C A Ii t t −+≈∑∎时间加权收益率的一般公式:1/121(1)(1)(1)1T n i j j j +éù=+++-ëû⋯;如果投资期为1年,即T =1,则该年的时间加权收益率可以表示为121(1)(1)(1)1n i j j j +=+++-⋯,其中k j 是第k 个时间区间的时间加权收益率。
∎在等额分期偿还方法中,借款人每次偿还的总金额为R ,其中支付的利息为I k ,偿还的本金为P k ,未偿还本金余额为L k 。
它们的计算公式为:(1)in a L R |0=(2)I k =R (1–v n–k +1)=ik n iRa |1+−(3)P k =R v n–k +1=in a L |01+−k n v (4)L k =L 0(1+i )k –R k s |(过去法)=R i k n a |−(将来法)∎在等额偿债基金方法中,借款人每期支付的利息金额为I =iL 0,向偿债基金的储蓄额为D=jn s L |0,总的付款金额为I +D ,偿债基金在第k 期末的余额为j k s D |⋅,贷款净额为L 0–j k s D |⋅。